39 research outputs found

    Efficient genetic algorithms for solving hard constrained optimization problems

    Get PDF
    This paper studies many Genetic Algorithm strategies to solve hard-constrained optimization problems. It investigates the role of various genetic operators to avoid premature convergence. In particular, an analysis of niching methods is carried out on a simple function to show advantages and drawbacks of each of them. Comparisons are also performed on an original benchmark based on an electrode shape optimization technique coupled with a charge simulation metho

    Niching genetic algorithms for optimization in electromagnetics. I. Fundamentals

    Get PDF
    Niching methods extend genetic algorithms and permit the investigation of multiple optimal solutions in the search space. In this paper, we review and discuss various strategies of niching for optimization in electromagnetics. Traditional mathematical problems and an electromagnetic benchmark are solved using niching genetic algorithms to show their interest in real world optimization

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization

    Fitness sharing and niching methods revisited

    Get PDF
    Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recombination schemes to improve its efficiency. Some empirical results are presented for high and a limited number of fitness function evaluations. Finally, the study compares the sharing method with other niching techniques

    HCI Model with Learning Mechanism for Cooperative Design in Pervasive Computing Environment

    Get PDF
    This paper presents a human-computer interaction model with a three layers learning mechanism in a pervasive environment. We begin with a discussion around a number of important issues related to human-computer interaction followed by a description of the architecture for a multi-agent cooperative design system for pervasive computing environment. We present our proposed three- layer HCI model and introduce the group formation algorithm, which is predicated on a dynamic sharing niche technology. Finally, we explore the cooperative reinforcement learning and fusion algorithms; the paper closes with concluding observations and a summary of the principal work and contributions of this paper

    Adaptive sharing scheme based sub-swarm multi-objective PSO

    Get PDF
    Abstract: To improve the optimization performance of multi-objective particle swarm optimization, a new sub-swarm method, where the particles are divided into several sub-swarms, is proposed. To enhance the quality of the Pareto front set, a new adaptive sharing scheme, which depends on the distances from nearest neighbouring individuals, is proposed and applied. In this method, the first sub-swarms particles dynamically search their corresponding areas which are around some points of the Pareto front set in the objective space, and the chosen points of the Pareto front set are determined based on the adaptive sharing scheme. The second sub-swarm particles search the rest objective space, and they are away from the Pareto front set, which can promote the global search ability of the method. Moreover, the core points of the first sub-swarms are dynamically determined by this new adaptive sharing scheme. Some Simulations are used to test the proposed method, and the results show that the proposed method can achieve better optimization performance comparing with some existing methods

    Co-Evolutionary Multi-Agent System with Speciation and Resource Sharing Mechanisms

    Get PDF
    Niching techniques for evolutionary algorithms are used in order to locate basins of attraction of the local minima of multi-modal fitness functions. Co-evolutionary techniques are aimed at overcoming limited adaptive capabilities of evolutionary algorithms resulting from the loss of useful population the idea of niching co-evolutionary multi-agent system (NCoEMAS)is introduced. In such a system the species formation phenomena occurs within one of the pre-existing species as a result of co-evolutionary interactions. The results of experiments with Rastrigin and Schwefel multi-modal test functions aimed at the comparison of NCoEMAS to other niching techniques are presented. Also, the resource sharing mechanism's parameters on the quality of speciation processes inNCoEMAS are investigated
    corecore