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Abstract: To improve the optimization performance of multi-objective particle swarm 

optimization, a new sub-swarm method, where the particles are divided into several sub-swarms, 

is proposed. To enhance the quality of the Pareto front set, a new adaptive sharing scheme, which 

depends on the distances from nearest neighbouring individuals, is proposed and applied. In this 

method, the first sub-swarms particles dynamically search their corresponding areas which are 

around some points of the Pareto front set in the objective space, and the chosen points of the 

Pareto front set are determined based on the adaptive sharing scheme. The second sub-swarm 

particles search the rest objective space, and they are away from the Pareto front set, which can 

promote the global search ability of the method. Moreover, the core points of the first 

sub-swarms are dynamically determined by this new adaptive sharing scheme. Some Simulations 

are used to test the proposed method, and the results show that the proposed method can achieve 

better optimization performance comparing with some existing methods. 
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1 Introduction 

In 1995, Kennedy et al. proposed a new metaheuristic optimization algorithm called 

Particle Swarm Optimization (PSO) [Kennedy, 95], and PSO is a stochastic 

optimization technique that simulates the behaviour of a flock of birds or fish. In the 

original PSO concept, the particles’ velocities are updated based on two important 

factors: one is the best position (pbest) of each particle; and another is the best position 

(gbest) among all the particles. Due to the simple updating formulas and good 

optimization performance, PSO and its variants have been successfully applied to many 

single objective optimization problems [Ho, 05]. However, in the real-world 

applications, the optimization problems often involve optimizing several 

non-commensurable and often competing objectives [Tan, 05]. Although PSO can be 
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looked as a good optimization algorithm for solving multi-objective optimization 

problems, the information sharing method, which inherent to PSO methods, has a 

tendency to degrade the exploration and exploitation performance [Ho, 05]. 

Multi-objective optimization is different from single-objective (SO) optimization 

since the multi-objective optimization must obtain a well-distributed and diverse 

solution set for finding the final tradeoff. Some multi-objective optimization algorithms 

including the non-dominated sorting genetic algorithm (NSGA-II & NSGA-III) [Deb, 

02], [Bhesdadiya, 16], the strength Pareto evolutionary algorithm (SPEA2) [Zitzler, 01] 

and multi-objective PSO (MOPSO) [Coello coello, 04], [Tian, 2017], [Zhang, 17] have 

been proposed for multi-objective optimization problems. During optimization 

process, the solution points or individuals should be distributed as diversely as possible 

on the discovered trade-offs. Moreover, it is also important that the solution points or 

individuals are distributed uniformly in order to achieve consistent transition among 

the solution points when searching for the most suitable solution from the best possible 

compromise [Khor, 05].  

To improve the optimization performance of single objective PSO, some 

multi-swarm particle swarm optimization (MPSO) methods have been proposed, such 

as the master-slave model based MPSO [Yu, 08], ladder function form based PSO 

[Chen, 09], and so on. At the same time, some multi-swarm multi-objective particle 

swarm optimization (MMPSO) methods have also been proposed to get good 

optimization performance for multi-objective optimization problems. Some 

multi-swarm PSOs [Yen, 03], [Leong, 08] adopt the notion of using a heuristical 

method to choose several swarms with a fixed swarm size throughout the search 

process. To improve the optimization performance, the swarm size of some 

multi-swarm PSOs [Cooren, 11] is adaptive based on a certain strategy. However, there 

is no MMPSO algorithm which uses the Pareto front information to allocate the 

sub-swarms. In this study the Pareto front information/points are used to allocate the 

sub-swarms to find whether the optimization performance can be improved. 

This paper proposes a new sub-swarm multi-objective particle swarm 

optimization (SMOPSO) based on Pareto front points and sharing scheme. To balance 

the exploitation and exploration, the swarm of particles includes two groups of 

particles. The first group of particles is consisted of several sub-swarms which are 

searching some areas around some properly chosen points. The second group of 

particles are searching the area, which is far away from the first group particles and can 

improve the explore ability of the particles. To make sure the uniformity of the Pareto 

front sub-swarms, a proper scheme should be used to assess the density of the Pareto 

front points and choose the cores of the Pareto front sub-swarms. A new adaptive 

sharing scheme is proposed and it is a new density assessment technique to guarantee 

the diversity of the points in the set.  

The rest of this paper is organized as follows. MOPSO has been briefly described 

in Section 2. In Section 3, a new adaptive sharing method is proposed to quantify the 

distribution quality of a population. The SMOPSO algorithm is described in Section 4. 

Section 5 demonstrates the simulations for testing the new algorithm and the simulation 

results have been analysed and investigated. And the conclusions are drawn in Section 

6. 



2 Brief review of multi-objective particle swarm optimization 

For single objective optimization algorithms, the optimization process will usually be 

terminated when one optimal solution is obtained. However, for most of the 

multi-objective problems, there may be an optimal solution set which includes a 

number of solutions. Whether one solution is suitable for an optimization problem 

which depends on several factors such as user’s choice and problem environment, and 

hence it is necessary to find the entire set of optimal solutions. Many real-world 

applications involve complex optimization problems with various competing 

specifications. In general, a multi-objective optimization problem can be formulated as: 

Min
1( ) ( ( ), , ( )) mF x f x f x ,                                         (1)                                                             

       Subject to x , 

where   is the decision (variable) space, mR  is the objective space, and 

: mF R  is made of m  real-valued objective functions.  If   is a closed and 

connected region in nR  and all the objectives are functions of x , the problem (1) can 

be called continuous multi-objective optimization problem. In this study, we focus on 

continuous multi-objective optimization although the proposed method can be easily 

extended to discrete multi-objective optimization algorithms. 

If there is no information about the preference of objectives, the Pareto optimality 

based ranking scheme is regarded as a good approach to represent the fitness value of 

each individual for Multi-Objective Optimization (MOO) [Khor, 05]. The solution to 

an MOO problem can be described by the form of an alternate trade-off which is called 

Pareto optimal set or Pareto front set. Each objective function fitness of any 

non-dominated solution in the Pareto optimal set can only be improved by degrading at 

least one of other objective functions’ fitness [Sun, 11]. The vector 
aF  dominates 

another vector 
bF , which can be formulated as 

 , ,, 1, 2, ,   a b a i b iF F iff f f i m  

and   , ,1, 2, , where a j b jj m f f    

Besides the Pareto optimality based ranking scheme, the uniformity among the 

distributed solution points or individuals is also an important issue in order to ensure 

consistent transition among the solution points when searching for the most suitable 

solution from the best possible compromise, an appropriate density assessment method 

is needed in multi-objective particle swarm optimization to achieve the uniform 

distribution in the tangential direction to the currently found trade-off surface by giving 

biased selection probability at the less crowded region. Currently, there are a few 

density assessment techniques reported along the development of evolutionary 

techniques for MOO. Among these density assessment techniques, the sharing scheme 

[Goldberg, 89] may be the earliest assessment which is widely analyzed and used. To 

enhance the performance of sharing scheme, it is better to let the sharing scheme adapt 

to the optimization process and an adaptive sharing scheme will be proposed and used 

in this study.  

For more details on MOP, please refer to references [Coello coello, 04], [ Coello 

coello, 07]. 



3 Adaptive sharing assessment scheme 

Sharing concept was originally proposed by Goldberg [Goldberg 1989] and it is used to 

improve the population distribution and prevent genetic drift as well as to search for 

possible multiple peaks in SO optimization. Fonseca and Fleming [Fonseca, 03] latterly 

applied it in multi-objective optimization problems. Since then, it has received some 

attention from researchers and it is looked as one of the important operators in 

multi-objective evolutionary algorithms. 

The sharing scheme determines sub-divisions in the objective space by degrading 

an individual fitness upon the existence of other individuals in its neighborhood defined 

by a sharing distance. The niche count ( )
N

i ijj
m sh d  is determined by summing a 

sharing function over all members of the population, where the distance 
ijd  is the 

distance between the multi-fitness positions of the particles i  and j  in the objective 

space, and N is the number of the members of the population. The sharing function is 

defined by 

1
( )

0






  
   

   



ij

ij share
ij share

d
if d

sh d

otherwise

                                  (2) 

where the parameter  can be set to 1 in most cases [Goldberg, 89]. The sharing 

distance parameter  share
 can determine the neighbourhood size in terms of radius 

distance [Khor, 05].  

The most important factor for the sharing scheme is how to properly set the 

sharing distance  share
, which is usually unknown in the optimization problems. 

Moreover, it is difficult to get the information of the size of the objective space in 

advance since it is difficult to determine the exact bounds of the objective space. 

Fonseca and Fleming [Fonseca, 03] proposed the Kernel density estimation method to 

determine an appropriate sharing distance for MOO. However, this sharing process is 

performed in the ‘sphere’ space which may not properly reflect the Pareto front whose 

population are expected to be uniformly distributed. Miller and Shaw [Miller, 96] 

proposed a dynamic sharing method for which the peaks in the parameter domain are 

dynamically detected and recalculated at every generation, but the sharing distance 

should be predefined and the approach is made on the assumption that the number of 

niche peaks can be estimated and the peaks are all at the minimum distance of 2 share
 

from each other. Moreover, their formulations are defined in the parameter space to 

handle multi-modal function optimization, which may not be appropriate for 

distributing the population uniformly along the Pareto-optimal front in the objective 

space. A dynamic sharing method was proposed in Tan et al [Tan, 03] and it adaptively 

computes the sharing distance  share
 in order to uniformly distribute all individuals 

along the Pareto front at each generation, but this method does not give an accurate 

sharing distance, especially when there are gaps on the Pareto front. 

Comparing with the existing approaches, we propose a new adaptive sharing 

method that can adaptively compute the sharing distance   share
 (we refer to the 



objective space in this paper) using all the information of the Pareto front at each 

generation. The process is as follows 

1) Calculate and find two nearest distances between two solutions i and j, that is, 

min 2
( , ) min( ) i i j i jd X X X X ,                            (3) 

and 

 min min2
( , ) min ,exclude ( , ) ie i j i j i i jd X X X X d X X         (4) 

( , 1,2, , i j i n  and 1,2, , .j n ). 

Here, 
min ( , )i i jd X X  is the minimum distance between the solution i and other 

solutions, and 
min ( , )ie i jd X X  is the second minimum distance between solution i and 

other solutions. 

2) Calculate the sum of all these nearest distances for all the members of the 

Pareto front, that is,  

 min min

1

( , ) ( , )


 
n

sum i i j ie i j

i

d d X X d X X .                     (5) 

3) The sharing distance 
share  is chosen as 

2
  sum

share

r

d

n
,                                                (6) 

where 
rn  is the maximum number of external repository set. 

The effectiveness of this approach can be graphically illustrated as shown in Fig. 

1.  
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Figure 1: Computation of the sharing distance 



To calculate the sharing distance, the valid linear distance should be firstly 

calculated. For this example, there are 20 points and there is a gap between point 10 and 

11. The real linear distance is the sum of the distance of two adjacent points, that is, 
10 20

1, 1,

2 12

 

 

 i i i i

i i

x x . If the number of the members of the Pareto front set is properly 

chosen, the proposed adaptive sharing assessment scheme can make sure 
8,10 10,11d d  

and 
11,13 10,11d d , and automatically reject the gap from the adjacent points, which 

means that the gap will not be considered by the proposed method as the distance 

between point 10 and point 11 is not the minimum or the second minimum distance. As 

all the information of the Pareto front set is used, it is more accurate than the existing 

methods; especially if the members of the Pareto front are numerous. For this example, 

the sharing distance is 0.34 using the real linear distance. Using the proposed method, 

the sharing distance is 0.41. The sharing distance is 0.43 using the method of Tan et al. 

[Tan, 11], which does not consider the gaps. According to our simulations, the sharing 

distance is very close to the sharing distance using real linear distance if the number of 

the members of the Pareto front set is large enough. 

4 Adaptive sharing scheme based multi-objective PSO  

These evidences by analogies are found in publications wherein multiple-swarm PSO 

is used to solve different optimization problems, particularly in multimodal problems 

[Iwamatsu, 06], [Seo, 06], and to counter PSO’s tendency in premature convergence 

[Yen, 08]. To improve the optimization performance, several multi-swarm PSOs were 

proposed in [Yen, 08], [Leong, 2008], [Cooren, 11] whose particle number is fixed or 

adaptive. However, they did not use the information of the obtained Pareto front to 

determine the searching areas/sub-spaces of sub-swarms. There is potential to achieve 

better results if some particles can search the areas around the achieved Pareto front 

during the search process, as most of the new Pareto front points are not far away from 

the old Pareto front points in the following iterations [Sun, 11]. In [Sun, 11], the fixed 

sharing distance and parameters were used, which limited the optimization 

performance since the shared distance cannot be accurately calculated. According to 

our investigation, if all the particles are too close to the Pareto front points, the global 

search ability will be limited. To avoid this disadvantage, some particles should be used 

to search other areas of the objective space and the Pareto front points should be 

properly chosen to allocate the sub-swarms. 

 Motivated by the above reviews, a new adaptive sharing scheme based MMPSO 

is proposed. The equations of the new method are similar with our previous proposed 

method in [Sun, 11], but the choice of the parameters are different and the new adaptive 

sharing scheme is used to improve the optimization performance in this study. Firstly, 

all the particles are divided into two types of sub-swarms: Pareto front sub-swarms, 

which are used to search different areas/regions around the proper chosen points of the 

Pareto front based on the proposed adaptive sharing scheme of Section 3; and Spare 

sub-swarms, which can be one sub-swarm or multiple sub-swarms and search the 

space(s) far away from the Pareto front. Without loss of generality only one sub-swarm 

is used for the spare sub-swarm in this study. This strategy can balance the global and 



local search of all the particles in the objective space. The proposed method is based on 

the two types of sub-swarms, and there are two sets of the updating formulas based on 

these two different types of sub-swarms. 

1) Pareto front sub-swarms:  these Pareto front sub-swarms are used to search different 

areas around some properly chosen points of Pareto front; and the velocity and position 

updating equations are 

  
               (7) 

      
                                                             (8) 

In the updating equations, there are three uniformly distributed random weights
1R , 

2R  

and 
3R in the range between 0 and 1, ( )Core m  is the attraction point or the core of the 

mth sub-swarm and determined by the proposed adaptive sharing so the diversity of the 

central points can be preserved. The mth sub-swarm is also dynamically determined 

according to the distance between the average position of every Pareto front sub-swarm 

and the mth core. The average position of the ith (
max{1,2, , } i s ) sub-swarm and the 

mth attract point are one-to-one correspondence for the minimum distance between 

them, then the ith sub-swarm will be the corresponding sub-swarm to the mth attract 

point. Otherwise, one sub-swarm should be initialized around the mth attract point. If 

the number of the attract points is less than the maximum number of attract points, 

some Pareto front sub-swarms will be looked as part of the spare sub-swarm. 
3c  can 

affect the attraction to the cores, and it should be chosen carefully. At the beginning the 

attraction can be some weak, and it should be stronger at the end of the optimization 

procedure. Here the adaptive 
3c  can be used, and in this study, 

3 max0.5 0.5* /c iteration iteration  where iteration  is the current iteration and 

maxiteration  is the maximum number of iterations. 

2) Spare sub-swarm: this sub-swarm consists of the remaining particles, and their 

updating equations are 

                
 (9) 

             
                                          (10) 

Here, R4 is a uniformly distributed random weight in the range [0, 1],
4c  is 

variable parameter which is the value of the sharing function (2) based on the distance 

between particle i and its closest corresponding core particle m, 

                                                      (11) 

and 
gm  is a predefined parameter and it is the number of Pareto front sub-swarms. It 

should be noted that the cores are the attract points in (7) and the cores become the 

repulsive points in (9). 



To keep characteristic of fast convergence and avoid premature of PSO, a 

disturbance can be applied to a randomly chosen dimension of the velocity of the spare 

sub-swarm particles, and the formula can be described by 

                                    (12) 

where
vR  is a uniformly distributed random number between -1 and 1. 

We are using the same method to determine 
iP  and 

gP  as the method in [Jeong, 

09]. 

To realize this adaptive sharing scheme based multi-objective PSO, the follow 

steps can be used: 

(1) Initialize the parameters, velocities and positions of the multi-objective PSO; 

(2) Calculate the fitness functions of particles. 

  Repeat: 

(3) Determine the non-dominated Pareto front based on the adaptive sharing 

scheme and store the Pareto front points in the repository set. 

(4) Based on the adaptive sharing scheme to choose the cores from the repository 

set for the Pareto front sub-swarms and dynamically construct the relationship among 

the sub-swarms and the cores.  

(5) Using equations (7) and (8), or (9), (10) and (12) to update the velocities and 

positions of each particle. 

(6) Calculate the fitness functions of particles. 

  Until requirements are met. 

5 Simulations and Analyses  

In this section, six test famous multi-objective optimization problems are used to 

compare the performance of the proposed methods with the competing methods 

available in the literature.  

5.1 Benchmark problems 

The multi-objective optimization problems, which are typical in the literature, are 

ZDT1, ZDT2, ZDT3, ZDT6, Deb 2 and Viennet3, whose Pareto fronts are convex, 

non-convex & disconnected [Deb, 02], [Coello coello, 07]. 

1) ZDT1 

Minimize 
1 1( ) f X x                                      (13) 

Minimize 1
2 ( ) ( ) 1

( )

 
  

 

x
f X g X

g X
                    (14) 

Here, 
1 2 30[ , , , ]X x x x ,  

2

( ) 1 9 1


 
   

 


n

i

i

g X x n , [0,1]ix  

( 1,2, ,i n ) and 30n . 

The Pareto front of this optimization problem is convex. 

2) ZDT2 



Minimize 
1 1( ) f X x          (15) 

Minimize
2

1
2 ( ) ( ) 1

( )

     
  

x
f X g X

g X
                    (16) 

Here, 
1 2 30[ , , , ]X x x x ,  

2

( ) 1 9 1


 
   

 


n

i

i

g X x n , [0,1]ix  

( 1,2, ,i n ) and 30n . 

The Pareto front of this optimization problem is non-convex. 

3) ZDT3 

Minimize 
1 1( ) f X x                                          (17) 

Minimize 11
2 1( ) ( ) 1 - sin(10 )

( ) ( )


 
  

 

xx
f X g X x

g X g X
        (18) 

Here, 
1 2 30[ , , , ]X x x x ,  

2

( ) 1 9 1


 
   

 


n

i

i

g X x n , [0,1]ix  

( 1,2, ,i n ) and 30n . 

The Pareto front of this optimization problem is non-convex and disconnected. 

The real Pareto fronts of ZDT1, ZDT2 and ZDT3 are the objective value with 

1 [0,1]x  and 0( 2, ) ix i n . 

4) ZDT6 

Minimize 6

1 1 1( ) 1 exp( 4 )sin (6 )  f X x x                     (19) 

Minimize 21

2 ( ) ( ) 1 ( )
( )

 
  

 

f
f X g X

g X
                        (20) 

Here, 
1 2 10[ , , , ]X x x x , 

0.25

2

( )

( ) 1 9
9



 
 
  
 
 
 


n

i

i

x

g X , [0,1]ix  ( 1,2, ,i n ) 

and 10n . 

The real Pareto front is ( ) 1g x and non-convex. 

5) Deb 2 [Coello coello, 07] 

  Minimize 
1 1( ) f X x                                      (21) 

Minimize 
2 ( ) ( ) ( )f X g X h X                             (22) 

Here, 
1 2[ , ]X x x , 

2( ) 1 10 g X x , 

21 1

1( ) 1 ( ) sin(12 )
( ) ( )

  
f f

h X f
g x g x

, [0,1]ix  ( 1,2.i ) . The Pareto front is 

disconnected. 

6) Viennet3 [Coello coello, 07] 

Minimize 2 2 2 2 2

1 1 2 1 2( ) 0.5( ) sin ( )   f X x x x x                (23) 

Minimize 
2 2

1 2 1 2

2

(3 2 4) ( 1)
( ) 15

8 27

   
  

x x x x
f X           (24) 



Minimize 
2 2

1 2( )

3 2 2

1 2

1
( ) 1.1

( 1)

 


 

x x
f X e

x x
                    (25) 

Here, 
1 2[ , ]X x x , [ 3,3] ix  ( 1,2.i ).  

The Pareto front of Viennet3 is three dimensional and is connected. 

The Pareto front data of Deb2 and Viennet3 can be downloaded from 

http://www.cs.cinvestav.mx/~emoobook 

To show the efficiency of the new method, the results from the new method are 

compared with the no-group method, which is also called single swarm method, and 

both of them are using the same parameters. The maximum number of fitness function 

evaluations is set to 50 000 and this is the unique stopping criterion. The swarm 

includes 200 particles for both methods. The maximum number of the first group 

sub-swarms is 8 and there are maximum 20 particles in each Pareto-front sub-swarm. 

For the test benchmark functions, the population are initialized 20 runs independently. 

The maximum number of members of the external repository set is set 100. We 

set
1 2 and  are 2c c , and max

min min

max

( )
)   


  

loop i

loop
max（  where 

maxloop  is the 

maximum iterations; max  and 
min  are the maximum value and minimum value of 

inertia weight  , respectively. 

   If the proposed method is used, the achieved Pareto fronts are shown by the red 

‘o’ lines in Fig. 2 to Fig. 7, respectively. If the no-group method is used, which means it 

is single swarm and the multi-objective PSO in [Jeong, 09] is used, the Pareto front is 

the ‘*’ or ‘Δ’ in these figures.  
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Figure 2: Optimization performance for ZDT1 
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Figure 3: Optimization performance for ZDT2 
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Figure 4: Optimization performance for ZDT3 
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Figure 5: Optimization performance for ZDT 6 
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Figure 6: Optimization performance for Deb 2 
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Figure 7: Optimization performance for Viennet 3 

As can be seen from Figs. 2, 3, 4, and 6, the adaptive Sharing Scheme based 

Sub-swarm Multi-objective PSO can achieve better performance than the no-group 

method. Moreover, the no-group method cannot find the complete Pareto fronts in Figs. 

2, 3, 4 and 6 due to its premature. According to Fig. 5, the optimization performance of 

the proposed method is not good on the bound, but the results can be improved based on 

the optimization problem specifications such as rejecting some unreasonable results. It 

is difficult to compare their based on Figs. 5 and 7, and it would be better to use some 

performance metrics to compare their performance. The quantitative measures of 

Generational Distance and Spacing Metrics are discussed in the next section. 

5.2 Pareto Front Performance Metrics 

To quantitatively assess the performance of multi-objective optimizers, Generational 

Distance and Spacing metrics are two important metrics [Coello coello, 04], [Liu, 07], 

[Coello coello, 07]. 

1) Generational Distance (GD) 

This metric gives a good indication of the gap between the discovered Pareto front 

and the real Pareto front [Coello coello, 04], and it is described by 



 

2

1

n

i

i

d

GD
n





,                                   (26) 

where n  is the number of vectors in the set of non-dominated solutions found so far 

and 
id  is the Euclidean distance (measured in objective space) between each of these 

and the nearest member of the Pareto optimal set. 

The GD comparison of the proposed method and the no group optimization method 

is shown in Table 1. 

 

          

Test Problem 

Performance 

ZDT

1 

ZDT2 ZDT3 ZDT6 Deb 2 Viennet

3 

No 

Group 

metho

d 

min 
0 
(Paret
o 
front 
is one 
point) 

0 
(Pareto 
front is 
one 
point) 

0.0011 0 7.7407e-

05 

3.2245e

-04 

mea

n 

0.002

3 

9.9598e

-06 

0.0025 0.0087 3.6192e-

04 

5.5097e

-04 

max 0.004

8 

4.9799e

-05 

0.0042 0.0343 7.7389e-

04 

9.9714e

-04 

std 0.002

3 

1.9920e

-05 

0.0012 0.0146 2.9194e-

04 

2.2138e

-04 

Propo

sed 

metho

d 

min 2.050

5e-04 

8.9504e

-05 

9.7062e

-05 

0.0144 6.7171e-

05 

2.5594e

-04 

mea

n 

2.204

7e-04 

1.7917e

-04 

1.0296e

-04 

0.0295 7.7311e-

05 

4.9412e

-04 

max 2.259

0e-04 

2.2823e

-04 

1.1181e

-04 

0.0562 8.4099e-

05 

7.2074e

-04 

std 7.836

1e-06 

4.8601e

-05 

4.8563e

-04 

0.0151 6.2673e-

06 

1.3879e

-04 

Table 1: GD comparison of the proposed method and the no group optimization 

method 

     2) Spacing Metric 



 This metric is used to measure the distribution of vectors throughout the 

non-dominated vectors found so far [Coello coello, 04], and it is described by 
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( )
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S d d
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 

 .                                     (27) 

Here 
1 1 2 2min ( ( ) ( ) ( ) ( ) )   i j i j

i jd f x f x f x f x , , 1, , ,i j n d  is the mean of all 

id , and n  is the number of non-dominated vectors found so far. This metric shows 

how well the Pareto front found is, i.e. if all the points are on or very close to the real 

Pareto front. In general, the smaller the spacing metric is, the better the particles are 

spread along the Pareto front. At this situation, the smaller the spacing metric is, the 

better the particles are spread along the Pareto front. It is better to use the spacing 

metric together with the Pareto front figure since the spacing metric maybe not properly 

show the real optimization performance. For example, 0.038S   for the no-group 

method; and 0.0032S   for the new method for one run and the results are shown in 

Fig. 2. Using the no-group/single-swarm method, sometimes all Pareto front points 

converge to one point and the space metric is 0. 

 

     Test 

Problem 

Performance 

ZDT1 ZDT2 ZDT3 ZDT6 Deb 2 Vienne

t3 

No 

Group 

metho

d 

min 
0 
(Pareto 
front is 
one 
point) 

0 
(Pareto 
front is 
one 
point)  

0.0361 0.002 0.0265 0.0209 

mean 0.0230 5.6e-004 0.0535 0.0241 0.0741 0.0271 

max 0.0472 0.0028 0.0940 0.0993 0.1448 0.0461 

std 0.0211 0.0011 0.0206 0.0422  0.0402 0.0089 

Propo

sed 

metho

d 

min 0.0029 0.0030 0.0035 0.0557 0.0032 0.0181 

mean 0.0032 0.0034 0.0041 0.1224 0.0044 0.0220 

max 0.0034 0.0038 0.0049 0.3009 0.0077 0.0263 

std 1.8547

e-004 

2.6874e-

004 

4.8563

e-004 

0.0951 0.0017 0.0029 

Table 2: Spacing comparison of the proposed method and the no group optimization 

method 

From Tables 1 and 2, the new method can achieve improved Pareto fronts, except for 

ZDT6. It should be noted that in general the smaller GD and spacing measures show the 

better optimization performance if the members of the achieved Pareto front are 

distributed around the real Pareto front. However, the results of GD and spacing 



measure maybe not properly show the real optimization performance especially the 

members of Pareto front converge to a very small space/area, for example, all the 

obtained members of Pareto front set converge to one point and the real Pareto front is 

lines or surfaces, which means the GD and spacing measure are zero but the 

optimization performance is not good such as the result for ZDT2 using the no group 

method. Hence we should also consider the figures to find whether the optimization 

performance is good or not when we are using GD and spacing measure. For ZDT6, the 

statistical results and Fig. 5 of the proposed method is not as good as some Pareto front 

points are on the bound, that is at the line of 
1 0.2808f , in the objective space. A 

similar situation occurred using the SPEA method as can be seen from Fig. 11 of 

reference [Deb, 02]. In general, the user’s choice and problem environment can also be 

used to choose a suitable set of Pareto front solutions. For ZDT6, we can delete some 

undesired points, for example, it maybe not acceptable if 
2 1f . The statistical results 

of the performance metrics are that the statistical results of GD all are zeros, and the 

statistical results of the spacing metrics are min = 0.0054, mean = 0.0083, max = 0.0171 

and std = 0.0037; and these results are acceptable.  

For the benchmark functions ZT1, ZT2 and ZT3, the average fitness values of the 

new method and one adaptive MOPSO [Cooren, 11] are (0.0032, 0.0034 and 0.0041) 

and (0.0047, 0.013 and 0.0336), respectively, which means the new method is more 

stable than the results from [Cooren, 11]. 

6 Conclusion 

A new adaptive sharing scheme was proposed. Using this scheme, the sharing distance 

is stable and very close to the real linear distance if the members of Pareto front are 

numerous. The proposed adaptive sharing scheme can automatically identify the gap 

and the adjacent points, and the members of the Pareto front set can be evenly 

distributed according the simulation results, and this scheme is a general technique and 

can be used in other MOO algorithms. To improve the optimization performance, 

multiple sub-swarms have been dynamical used based on the information of Pareto 

front set. In general, the simulations showed that the proposed adaptive sharing scheme 

based multi-swarm multi-objective PSO can achieve better optimization performance 

comparing with no-group/single-swarm method and one adaptive multi-objective 

Particle Swarm Optimization, especially for the optimization problems whose Pareto 

fronts have gaps. Due to the good optimization performance of the proposed method, it 

can be applied in the multi-objective problems in Economics, Finance, Optimal control, 

Optimal design, Process optimizations, Electric power systems, and so on. Moreover, 

particle swarm optimization with adaptive population size and adaptive swarm size will 

be further investigated in the future. 
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