8,219 research outputs found

    Modeling an Integrated Public Transportation System - a case study in Dublin, Ireland

    Get PDF
    The efficiency of the public transport system in any city depends on integration of its major public transport modes. Suburban railway and public buses are the modes normally used by the majority of commuters in metropolitan cities of developed and developing countries. Integration of these two services reduces overall journey time of an individual. In this research, a model is developed for operational integration of suburban trains and public buses. The model has two sub models: a Routing Sub Model and a Scheduling Sub Model. In the Routing Sub Model, feeder routes are generated for public buses which originate from a railway station. A Heuristic Feeder Route Generation Algorithm is developed for generation of feeder routes. In the Scheduling Sub Model, optimal coordinated schedules for feeder buses are developed for the given schedules of suburban trains. As a case study the Dun Laoghaire DART (Dublin Area Rapid Transit) (heavy rail suburban service) station of Dublin in Ireland is selected. Feeder bus services are coordinated with existing schedules of the DART on the developed feeder route network. Genetic Algorithms, which are known to be a robust optimization technique for this type of problem, are used in the Scheduling Sub Model. Finally the outcome of the research is a generated feeder route network and coordinated services of feeder buses on it for the DART station

    Non-emergency patient transport services planning through genetic algorithms

    Get PDF
    Non-emergency Patient Transport Services (PTS) are provided by ambulance companies for patients who do not require urgent and emergency transport. These patients require transport to or from a health facility like a hospital, but due to clinical requirements are unable to use private or public transport. This task is performed nowadays mainly by human operators, spending a high amount of time and resources to obtain solutions that are suboptimal in most cases. To overcome this limitation, in this paper we present NURA (Non-Urgent transport Routing Algorithm), a novel algorithm aimed at ambulance route planning. In particular, NURA relies on a genetic algorithm to explore the solution space, and it includes a scheduling algorithm to generate detailed routes for ambulances. Experimental results show that NURA is able to outperform human experts in several real scenarios, reducing the time spent by patients in ambulances during non-emergency transportations, increasing ambulance usage, while saving time and money for ambulance companies

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Train-scheduling optimization model for railway networks with multiplatform stations

    Get PDF
    This paper focuses on optimizing the schedule of trains on railway networks composed of busy complex stations. A mathematical formulation of this problem is provided as a Mixed Integer Linear Program (MILP). However, the creation of an optimal new timetable is an NP-hard problem; therefore, the MILP can be solved for easy cases, computation time being impractical for more complex examples. In these cases, a heuristic approach is provided that makes use of genetic algorithms to find a good solution jointly with heuristic techniques to generate an initial population. The algorithm was applied to a number of problem instances producing feasible, though not optimal, solutions in several seconds on a laptop, and compared to other proposals. Some improvements are suggested to obtain better results and further improve computation time. Rail transport is recognized as a sustainable and energy-efficient means of transport. Moreover, each freight train can take a large number of trucks off the roads, making them safer. Studies in this field can help to make railways more attractive to travelers by reducing operative cost, and increasing the number of services and their punctuality. To improve the transit system and service, it is necessary to build optimal train scheduling. There is an interest from the industry in automating the scheduling process. Fast computerized train scheduling, moreover, can be used to explore the effects of alternative draft timetables, operating policies, station layouts, and random delays or failures.Postprint (published version

    The crew-scheduling module in the GIST system

    Get PDF
    The public transportation is gaining importance every year basically due the population growth, environmental policies and, route and street congestion. Too able an efficient management of all the resources related to public transportation, several techniques from different areas are being applied and several projects in Transportation Planning Systems, in different countries, are being developed. In this work, we present the GIST Planning Transportation Systems, a Portuguese project involving two universities and six public transportation companies. We describe in detail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and genetic algorithm to solve the bus-driver-scheduling problem. The metaheuristics have been successfully incorporated in the GIST Planning Transportation Systems and are actually used by several companies.Integrated transportation systems, crew scheduling, metaheuristics

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    Dynamic Collection Scheduling Using Remote Asset Monitoring: Case Study in the UK Charity Sector

    Get PDF
    Remote sensing technology is now coming onto the market in the waste collection sector. This technology allows waste and recycling receptacles to report their fill levels at regular intervals. This reporting enables collection schedules to be optimized dynamically to meet true servicing needs in a better way and so reduce transport costs and ensure that visits to clients are made in a timely fashion. This paper describes a real-life logistics problem faced by a leading UK charity that services its textile and book donation banks and its high street stores by using a common fleet of vehicles with various carrying capacities. Use of a common fleet gives rise to a vehicle routing problem in which visits to stores are on fixed days of the week with time window constraints and visits to banks (fitted with remote fill-monitoring technology) are made in a timely fashion so that the banks do not become full before collection. A tabu search algorithm was developed to provide vehicle routes for the next day of operation on the basis of the maximization of profit. A longer look-ahead period was not considered because donation rates to banks are highly variable. The algorithm included parameters that specified the minimum fill level (e.g., 50%) required to allow a visit to a bank and a penalty function used to encourage visits to banks that are becoming full. The results showed that the algorithm significantly reduced visits to banks and increased profit by up to 2.4%, with the best performance obtained when the donation rates were more variable

    The trade-off between taxi time and fuel consumption in airport ground movement

    Get PDF
    Environmental impact is a very important agenda item in many sectors nowadays, which the air transportation sector is also trying to reduce as much as possible. One area which has remained relatively unexplored in this context is the ground movement problem for aircraft on the airport’s surface. Aircraft have to be routed from a gate to a runway and vice versa and it is still unknown whether fuel burn and environmental impact reductions will best result from purely minimising the taxi times or whether it is also important to avoid multiple acceleration phases. This paper presents a newly developed multi-objective approach for analysing the trade-off between taxi time and fuel consumption during taxiing. The approach consists of a combination of a graph-based routing algorithm and a population adaptive immune algorithm to discover different speed profiles of aircraft. Analysis with data from a European hub airport has highlighted the impressive performance of the new approach. Furthermore, it is shown that the trade-off between taxi time and fuel consumption is very sensitive to the fuel-related objective function which is used
    corecore