66 research outputs found

    Numerical optimisation of thermoset composites manufacturing processes: A review

    Get PDF
    The impetus for higher performance, robustness and efficiency in the aerospace, automotive and energy industries has been reflected in more stringent requirements which the composite manufacturing industry needs to comply with. The process design challenges associated with this are significant and can be only partially met by integration of simulation in the design loop. The implementation of numerical optimisation tools is therefore necessary. The development of methodologies linking predictive simulation tools with numerical optimisation techniques is pivotal to identify and therefore develop optimal design conditions that allow full exploitation of the efficiency opportunities in composite manufacturing. Numerical and experimental results concerning the optimisation techniques and methodologies implemented in literature to address the optimisation of thermoset composite manufacturing processes are presented and analysed in this study

    Optimisation of the VARTM process

    Get PDF
    This study focuses on the development of a multi-objective optimisation methodology for the vacuum assisted resin transfer moulding composite processing route. Simulations of the cure and filling stages of the process have been implemented and the corresponding heat transfer and flow through porous media problems solved by means of finite element analysis. The simulations involved material sub-models to describe thermal properties, cure kinetics and viscosity evolution. A Genetic algorithm which constitutes the foundation for the development of the optimisation has been adapted, implemented and tested in terms of its effectiveness using four benchmark problems. Two methodologies suitable for multi-objective optimisation of the cure and filling stages have been specified and successfully implemented. In the case of the curing stage the optimisation aims at finding a cure profile minimising both process time and temperature overshoot within the part. In the case of the filling stage the thermal profile during filling, gate locations and initial resin temperature are optimised to minimise filling time and final degree of cure at the end of the filling stage. Investigations of the design landscape for both curing and filling stage have indicated the complex nature of the problems under investigation justifying the choice for using a Genetic algorithm. Application of the two methodologies showed that they are highly efficient in identifying appropriate process designs and significant improvements compared to standard conditions are feasible. In the cure process an overshoot temperature reduction up to 75% in the case of thick component can be achieved whilst for a thin part a 60% reduction in process time can be accomplished. In the filling process a 42% filling time reduction and 14% reduction of degree of cure at the end of the filling can be achieved using the optimisation methodology. Stability analysis of the set of solutions for the curing stage has shown that different degrees of robustness are present among the individuals in the Pareto front. The optimisation methodology has also been integrated with an existing cost model that allowed consideration of process cost in the optimisation of the cure stage. The optimisation resulted in process designs that involve 500 € reduction in process cost. An inverse scheme has been developed based on the optimisation methodology aiming at combining simulation and monitoring of the filling stage for the identification of on-line permeability during an infusion. The methodology was tested using artificial data and it was demonstrated that the methodology is able to handle levels of noise from the measurements up to 5 s per sensor without affecting the quality of the outcome

    Workshop on Accelerator Magnet Design and Optimization

    Get PDF

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    NASA Tech Briefs, January 1992

    Get PDF
    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Fabrication; Mathematics and Information Sciences; Life Sciences

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Material-based design computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 306-328).The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in geometric-driven form generation. Such prioritization of form over material was carried into the development and design logic of CAD. Today, under the imperatives and growing recognition of the failures and environmental liabilities of this approach, modern design culture is experiencing a shift to material aware design. Inspired by Nature's strategies where form generation is driven by maximal performance with minimal resources through local material property variation, the research reviews, proposes and develops models and processes for a material-based approach in computationally enabled form-generation. Material-based Design Computation is developed and proposed as a set of computational strategies supporting the integration of form, material and structure by incorporating physical form-finding strategies with digital analysis and fabrication. In this approach, material precedes shape, and it is the structuring of material properties as a function of structural and environmental performance that generates design form. The thesis proposes a unique approach to computationally-enabled form-finding procedures, and experimentally investigates how such processes contribute to novel ways of creating, distributing and depositing material forms. Variable Property Design is investigated as a theoretical and technical framework by which to model, analyze and fabricate objects with graduated properties designed to correspond to multiple and continuously varied functional constraints. The following methods were developed as the enabling mechanisms of Material Computation: Tiling Behavior & Digital Anisotropy, Finite Element Synthesis, and Material Pixels. In order to implement this approach as a fabrication process, a novel fabrication technology, termed Variable Property Rapid Prototyping has been developed, designed and patented. Among the potential contributions is the achievement of a high degree of customization through material heterogeneity as compared to conventional design of components and assemblies. Experimental designs employing suggested theoretical and technical frameworks, methods and techniques are presented, discussed and demonstrated. They support product customization, rapid augmentation and variable property fabrication. Developed as approximations of natural formation processes, these design experiments demonstrate the contribution and the potential future of a new design and research field.by Neri Oxman.Ph.D
    corecore