351 research outputs found

    The design and applications of the african buffalo algorithm for general optimization problems

    Get PDF
    Optimization, basically, is the economics of science. It is concerned with the need to maximize profit and minimize cost in terms of time and resources needed to execute a given project in any field of human endeavor. There have been several scientific investigations in the past several decades on discovering effective and efficient algorithms to providing solutions to the optimization needs of mankind leading to the development of deterministic algorithms that provide exact solutions to optimization problems. In the past five decades, however, the attention of scientists has shifted from the deterministic algorithms to the stochastic ones since the latter have proven to be more robust and efficient, even though they do not guarantee exact solutions. Some of the successfully designed stochastic algorithms include Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony Optimization, Firefly Optimization etc. A critical look at these ‘efficient’ stochastic algorithms reveals the need for improvements in the areas of effectiveness, the number of several parameters used, premature convergence, ability to search diverse landscapes and complex implementation strategies. The African Buffalo Optimization (ABO), which is inspired by the herd management, communication and successful grazing cultures of the African buffalos, is designed to attempt solutions to the observed shortcomings of the existing stochastic optimization algorithms. Through several experimental procedures, the ABO was used to successfully solve benchmark optimization problems in mono-modal and multimodal, constrained and unconstrained, separable and non-separable search landscapes with competitive outcomes. Moreover, the ABO algorithm was applied to solve over 100 out of the 118 benchmark symmetric and all the asymmetric travelling salesman’s problems available in TSPLIB95. Based on the successful experimentation with the novel algorithm, it is safe to conclude that the ABO is a worthy contribution to the scientific literature

    Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the `Rush to Heuristics'

    Get PDF
    In the power and energy systems area, a progressive increase of literature contributions that contain applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods that are based on weak comparisons. This ‘rush to heuristics’ does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems and aims at providing a comprehensive view of the main issues that concern the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls that are found in literature contributions are identified, and specific guidelines are provided regarding how to prepare sound contributions on the application of metaheuristic algorithms to specific problems

    A Collection of Challenging Optimization Problems in Science, Engineering and Economics

    Full text link
    Function optimization and finding simultaneous solutions of a system of nonlinear equations (SNE) are two closely related and important optimization problems. However, unlike in the case of function optimization in which one is required to find the global minimum and sometimes local minima, a database of challenging SNEs where one is required to find stationary points (extrama and saddle points) is not readily available. In this article, we initiate building such a database of important SNE (which also includes related function optimization problems), arising from Science, Engineering and Economics. After providing a short review of the most commonly used mathematical and computational approaches to find solutions of such systems, we provide a preliminary list of challenging problems by writing the Mathematical formulation down, briefly explaning the origin and importance of the problem and giving a short account on the currently known results, for each of the problems. We anticipate that this database will not only help benchmarking novel numerical methods for solving SNEs and function optimization problems but also will help advancing the corresponding research areas.Comment: Accepted as an invited contribution to the special session on Evolutionary Computation for Nonlinear Equation Systems at the 2015 IEEE Congress on Evolutionary Computation (at Sendai International Center, Sendai, Japan, from 25th to 28th May, 2015.

    Ontology Alignment using Biologically-inspired Optimisation Algorithms

    Get PDF
    It is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications

    A novel approach for coordinated design of TCSC controller and PSS for improving dynamic stability in power systems

    Get PDF
    The purpose of this article is to present a novel strategy for the coordinated design of the Thyristor Controlled Series Compensator (TCSC) controller and the Power System Stabilizer (PSS). A time domain objective function that is based on an optimization problem has been defined. This objective function takes into account not only the influence that disturbances have on the mechanical power, but also, and this is more accurately the case, the impact that disturbances have on the reference voltage. When the objective function is minimized, potential disturbances are quickly mitigated, and the deviation of the speed of the generator's rotor is limited; as a result, the system's stability is ultimately improved. Particle Swarm Optimization (PSO) and the Shuffled Frog Leaping Algorithm are both components of a composite strategy that is utilized in the process of determining the optimal controller parameters. (SFLA). An independent controller design as well as a collaborative controller design utilizing PSS and TCSC are developed, which enables a direct evaluation of the functions performed by each. The presentation of the eigenvalue analysis and the findings of the nonlinear simulation can help to provide a better understanding of the efficacy of the outcomes. The findings indicate that the coordinated design is able to successfully damp low-frequency oscillations that are caused by a variety of disturbances, such as changes in the mechanical power input and the setting of the reference voltage, and significantly enhance system stability in power systems that are connected weekly

    Particle Swarm Optimization for the Clustering of Wireless Sensors

    Get PDF
    Clustering is necessary for data aggregation, hierarchical routing, optimizing sleep patterns, election of extremal sensors, optimizing coverage and resource allocation, reuse of frequency bands and codes, and conserving energy. Optimal clustering is typically an NP-hard problem. Solutions to NP-hard problems involve searches through vast spaces of possible solutions. Evolutionary algorithms have been applied successfully to a variety of NP-hard problems. We explore one such approach, Particle Swarm Optimization (PSO), an evolutionary programming technique where a \u27swarm\u27 of test solutions, analogous to a natural swarm of bees, ants or termites, is allowed to interact and cooperate to find the best solution to the given problem. We use the PSO approach to cluster sensors in a sensor network. The energy efficiency of our clustering in a data-aggregation type sensor network deployment is tested using a modified LEACH-C code. The PSO technique with a recursive bisection algorithm is tested against random search and simulated annealing; the PSO technique is shown to be robust. We further investigate developing a distributed version of the PSO algorithm for clustering optimally a wireless sensor network

    Metaheuristic optimization of power and energy systems: underlying principles and main issues of the 'rush to heuristics'

    Get PDF
    In the power and energy systems area, a progressive increase of literature contributions containing applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods based on weak comparisons. This 'rush to heuristics' does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter, but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems, and aims at providing a comprehensive view of the main issues concerning the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls found in literature contributions are identified, and specific guidelines are provided on how to prepare sound contributions on the application of metaheuristic algorithms to specific problems

    Proton exchange membrane fuel cell stack design optimization using an improved Jaya algorithm

    Get PDF
    Fuel cell stack configuration optimization is known to be a problem that, in addition to presenting engineering challenges, is computationally hard. This paper presents an improved computational heuristic for solving the problem. The problem addressed in this paper is one of constrained optimization, where the goal is to seek optimal (or near-optimal) values of (i) the number of proton exchange membrane fuel cells (PEMFCs) to be connected in series to form a group, (ii) the number of such groups to be connected in parallel, and (iii) the cell area, such that the PEMFC assembly delivers the rated voltage at the rated power while the cost of building the assembly is as low as possible. Simulation results show that the proposed method outperforms four of the best-known methods in the literature. The improvement in performance afforded by the proposed algorithm is validated with statistical tests of significance
    • …
    corecore