84 research outputs found

    Vascular remodeling after endovascular treatment: quantitative analysis of medical images with a focus on aorta

    Get PDF
    In the last years, the convergence of advanced imaging techniques and endovascular procedures has revolutionized the practice of vascular surgery. However, regardless the anatomical district, several complications still occur after endovascular treatment and the impact of endovascular repair on vessel morphology remains unclear. Starting from this background, the aim of this thesis is to ll the gaps in the eld of vessel remodeling after endovascular procedure. Main focus of the work will be the repair of the aorta and, in particular thoracic and thoracoabdominal treatments. Furthermore an investigation of the impact of endovascular repair on femoro-popliteal arterial segment will be reported in the present work. Analyses of medical images will been conducted to extract anatomical geometric features and to compare the changes in morphology before treatment and during follow-up. After illustrating in detail the aims and the outline of the dissertation in Chapter 1, Chapter 2 will concern the anatomy and the physiology of the aorta along with the main aortic pathologies and the related surgical treatments. Subsequently, an overview of the medical image techniques for segmentation and vessel geometric quantication will be provided. Chapter 3 will introduce the concept of remodeling of the aorta after endovascular procedure. In particular, two types of aortic remodeling will be considered. On one side remodeling can be seen as the shrinkage of the aneurysmal sac or false lumen thrombosis. On the other side, aortic remodeling could be seen as the changes in the aortic morphology following endograft placement which could lead to complications. Chapter 4 will illustrate a study regarding the analysis of medical images to measure the geometrical changes in the pathological aorta during follow-up in patients with thoracoabdominal aortic aneurysms treated with endovascular procedure using a novel uncovered device, the Cardiatis Multilayer Flow Modulator. Chapter 5 will focus on the geometrical remodeling of the aortic arch and descending aorta in patients who underwent hybrid arch treatment to treat thoracic aneurysms. The goal of the work is to develop a pipeline for the processing of pre-operative and post-operative Computed Tomography images in order to detect the changes in the aortic arch physiological curvature due to endograft insertion. Chapter 6 will focuse on the use of 3D printing technology as valuable tool to support patient's follow-up. In particular, we report a case of a patient originally treated with endovascular procedure for type B aortic dissection and which experimented several complications during follow-up. 3D printing technology is used to show the remodeling of the aortic vasculature during time. Chapter 7 will concern patient-specic nite element simulations of aortic endovascular procedure. In particular, starting from a clinical case where complication developed during followup, the predictive value of computational simulations will be shown. Chapter 8 will illustrate a study concerning the evaluation of morphological changes of the femoro-popliteal arterial segment due to limb exion in patients undergoing endovascular treatment of popliteal artery aneurysms

    Computer simulations in stroke prevention : design tools and strategies towards virtual procedure planning

    Get PDF

    Numerical Insights for AAA Growth Understanding and Predicting: Morphological and Hemodynamic Risk Assessment Features and Transient Coherent Structures Uncovering

    Get PDF
    Les anévrismes de l'aorte abdominale (AAA) sont des dilatations localisées et fréquentes de l'aorte. En cas de rupture, seul un traitement immédiat peut prévenir la morbidité et la mortalité. Le diamètre maximal AAA (DmaxD_{max}) et la croissance sont les paramètres actuels pour évaluer le risque associé et planifier l'intervention, avec des seuils inférieurs pour les femmes. Cependant, ces critères ne sont pas personnalisés ; la rupture peut se produire à un diamètre inférieur et les patients vivre avec un AAA important. Si l'on sait que la maladie est associée à une modification de la morphologie et de la circulation sanguine, à un dépôt de thrombus intra-luminal et à des symptômes cliniques, les mécanismes de croissance ne sont pas encore entièrement compris. Dans cette étude longitudinale, une analyse morphologique et des simulations de flux sanguins sont effectuées et comparées aux sujets témoins chez 32 patients ayant reçu un diagnostic clinique d'AAA et au moins 3 tomodensitogrammes de suivi par patient. L'objectif est d'abord d'examiner quels paramètres stratifient les patients entre les groupes sains, à faible risque et à risque élevé. Les corrélations locales entre les paramètres hémodynamiques et la croissance de l'AAA sont également explorées, car la croissance hétérogène de l'AAA n'est actuellement pas comprise. Enfin, les paramètres composites sont construits à partir de données cliniques, morphologiques et hémodynamiques et de leur capacité à prédire si un patient sera soumis à un test de risque. La performance de ces modèles construits à partir de l'apprentissage supervisé est évaluée par les ROC AUC : ils sont respectivement de 0.73 ± 0.09, 0.93 ± 0.08 et 0.96 ± 0.10 . En incorporant tous les paramètres, on obtient une AUC de 0.98 ± 0.06. Pour mieux comprendre les interactions entre la croissance et la topologie de l'écoulement de l'AAA, on propose un worflow spécifique au patient pour calculer les exposants de Lyapunov en temps fini et extraire les structures lagrangiennes-cohérentes (SLC). Ce modèle de calcul a d'abord été comparé à l'imagerie par résonance magnétique (IRM) par contraste de phase 4-D chez 5 patients. Pour mieux comprendre l'impact de la topologie de l'écoulement et du transport sur la croissance de l'AAA, des SLC hyperboliques répulsives ont été calculées chez un patient au cours d'un suivi de 8 ans, avec 9 mesures morphologiques volumétriques de l'AAA par tomographie-angiographie. Les SLC ont défini les frontières du jet entrant dans l'AAA. Les domaines situés entre le SLC et le mur aortique ont été considérés comme des zones de stagnation. Leur évolution a été étudiée lors de la croissance de l'AAA. En plus des SLC hyperboliques (variétés attractives et répulsives) découvertes par FTLE, les SLC elliptiques ont également été considérées. Il s'agit de régions dominées par la rotation, ou tourbillons, qui sont de puissants outils pour comprendre les phénomènes de transport dans les AAA.Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. In the event of rupture only immediate treatment can prevent morbidity and mortality. The AAA maximal diameter (DmaxD_{max}) and growth are the current metrics to evaluate the associated risk and plan intervention, with lower thresholds for women. However, these criteria lack patient specificity; rupture may occur at lower diameter and patients may live with large AAA. If the disease is known to be associated with altered morphology and blood flow, intra-luminal thrombus deposit and clinical symptoms, the growth mechanisms are yet to be fully understood. In this longitudinal study, morphological analysis and blood flow simulations for 32 patients with clinically diagnosed AAA and at least 3 follow-up CT-scans per patient, are performed and compared to control subjects. The aim is first to investigate which metrics stratify patients between healthy, low risk and high risk groups. Local correlations between hemodynamical metrics and AAA growth are also explored, as AAA heterogeneous growth is currently not understood. Finally, composite metrics are built from clinical, morphological, and hemodynamical data, and their ability to predict if a patient will become at risk tested. Performance of these models built from supervised learning is assessed by ROC AUCs: they are respectively, 0.73 ± 0.09, 0.93 ± 0.08 and 0.96 ± 0.10. Mixing all metrics, an AUC of 0.98 ± 0.06 is obtained. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) on 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-years follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. In addition to hyperbolic (attracting and repelling) LCS uncovered by FTLE, elliptic LCS were also considered. Those encloses rotation-dominated regions, or vortices, which are powerful tools to understand the flow transport in AAA

    Optimization of CT scanning protocol of Type B aortic dissection follow-up through 3D printed model

    Get PDF
    This research aims to develop and evaluate a human tissue-like material 3D printed model used as a phantom in determining optimized scanning parameters to reduce the radiation dose for Type B aortic dissection patients after thoracic endovascular aortic repair. The results show that radiation risk for follow-up Type B aortic dissection patients can be potentially reduced. Further, the value of using 3D printed model in studying CT scanning protocols was further validated

    Design of a comprehensive modeling, characterization, rupture risk assessment and visualization pipeline for Abdominal Aortic Aneurysms

    Get PDF
    Abdominal aortic aneurysms (AAA) is a dilation of the abdominal aorta, typically within the infra-renal segment of the vessel that cause an expansion of at least 1.5 times the normal vessel diameter. It is becoming a leading cause of death in the United States and around the world, and consequentially, in 2009, the Society for Vascular Surgery (SVS) practice guidelines expressed the critical need to further investigate the factors associated with the risk of AAA rupture, along with potential treatment methods. For decades, the maximum diameter (Dmax) was introduced as the main parameter used to assess AAA behavior and its rupture risk. However, it has been shown that three main categories of parameters including geometrical indices, such as the maximum transverse diameter, biomechanical parameters, such as material properties, and historical clinical parameters, such as age, gender, hereditary history and life-style affect AAA and its rupture risk. Therefore, despite all efforts that have been undertaken to study the relationship among different parameters affecting AAA and its rupture, there are still limitations that require further investigation and modeling; the challenges associated with the traditional, clinical quality images represent one class of these limitations. The other limitation is the use of the homogenous hyper-elastic material property model to study the entire AAA, when, in fact, there is evidence that different degrees of degradation of the elastin and collagen network of the AAA wall lead to different regions of the AAA exhibiting different material properties, which, in turn, affect its biomechanical behavior and rupture. Moreover, the effects of all three main categories of parameters need to be considered simultaneously and collectively when studying the AAAs and their rupture, so once again, the field can further benefit from such studies. Therefore, in this work, we describe a comprehensive pipeline consisting of three main components to overcome some of these existing limitations. The first component of the proposed method focuses on the reconstruction and analysis of both synthetic and human subject-specific 3D models of AAA, accompanied by a full geometric parameter analysis and their effects on wall stress and peak wall stress. The second component investigates the effect of various biomechanical parameters, specifically the use of various homogeneous and heterogeneous material properties to model the behavior of the AAA wall. To this extent, we introduce two different patient-specific regional material property models to better mimic the physiological behavior of the AAA wall. Finally, the third component utilizes machine learning methods to develop a comprehensive predictive model that incorporates the effect of the geometrical, biomechanical and historical clinical data to predict the rupture severity of AAA in a patient-specific manner. This is the first comprehensive semi-automated method developed for the assessment of AAA. Our findings illustrate that using a regional material property model that mimics the realistic heterogeneity of the vessel’s wall leads to more reliable and accurate predictions of AAA severity and associated rupture risk. Additionally, our results indicate that using only Dmax as an indicator for the rupture risk is insufficient, while a combination of parameters from different sources along with PWS could serve as a more reliable rupture assessment. These methods can help better characterize the severity of AAAs, better predict their associated rupture risk, and, in turn, help clinicians with earlier, patient-customized diagnosis and patient-customized treatment planning approaches, such as stent grafting

    On patient-specific wall stress analysis in abdominal aortic aneurysms

    Get PDF

    Patient-specific virtual reality simulation : a patient-tailored approach of endovascular aneurysm repair

    Get PDF

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society
    • …
    corecore