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Chapter 1

Introduction

Computational simulations of blood flow and vessel wall mechanics for vascular
structures are currently mainly used as a research tool to study vascular diseases.
In the near future, however, these methods may find their way into hospitals and
clinics to aid the medical experts with deciding when to intervene, with planning
the surgical procedure and with predicting the outcome of the procedure. The ap-
plication area in this thesis is abdominal aortic aneurysm (AAA). The main focus is
the patient-specific modelling of the wall mechanics of these pathologies. This intro-
ductory chapter provides an overview of the relevant background information on the
nature of AAAs, their development, intervention criteria and the currently available
methods for treatment. Also, a brief discussion of the available literature on image
processing and wall mechanics modelling for AAAs is presented. In the concluding
section of this chapter, a more detailed motivation and outline is provided.

1.1 Abdominal aortic aneurysm

An AAA is a dilatation of the human abdominal aorta situated between the branch-
ing with the renal arteries (leading to the kidneys) and the bifurcation to the iliac
arteries (leading into the legs). Figure 1.1 shows a schematic overview of the struc-
ture of an AAA. In many AAAs, part of the aneurysm sac is filled with clotted
blood, called the thrombus. The part of the aneurysm available for blood flow is
called the aneurysm lumen.

The aorta is classified as aneurysmal if the diameter is approximately two times
the normal aorta diameter of 15 mm. In a population based study of 6.386 men
and women aged from 25 to 84 years the prevalence of the disease among men was
estimated at 9%, while the estimated prevalence among women in the same age
group was only 2% [99]. The main risk associated with AAA is that of a rupture,
which leads to death before reaching the operating theatre in 75% of the cases [116].
For the remaining 25% of rupture cases, about half of the patients die during or
shortly after surgery [6]. The disease mainly occurs in older people and rupture
seldom occurs before the age of 65 [116]. In the last decades, the incidence has been

1
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Figure 1.1: Schematic overview of an abdominal aortic aneurysm.

increasing at a rate that is higher than can be explained solely by the aging of the
population [116].

The exact mechanism of AAA formation is not fully understood. Influences that
play a role in the pathogenesis are degradation of the extracellular matrix, inflam-
mation of the vessel wall, wall stress distribution, and genetic influences [9, 92].
Recognised risk factors for development and progression of AAA are its size, ab-
normal growth rates of the aneurysm, hypertension, smoking, chronic pulmonary
disease and familial AAA [92, 116]. The patient-specific blood flow, and especially
the wall shear stress on the vessel wall is believed to have a significant influence on
the remodelling of the vessel wall and specifically on the size of the AAA [76, 103].
The wall of the AAA is often heterogeneous with lipid, fibrous and calcified regions
[4, 111]. Aneurysm progression is highly variable. The majority of the aneurysms
grow in a discontinuous way, with distinct periods without significant growth and
periods with stronger growth [60].

Since AAA is usually an asymptomatic disease, detection happens mostly by
chance [56]. Treatment of AAAs is performed through the placement of a stent-
graft which acts to relieve the AAA wall of the systemic pressure. The placement of
the stent-graft is either performed through open surgery, or via endovascular AAA
repair (EVAR). With EVAR, a stent-graft is delivered to the AAA via a guide wire
which is inserted through the femoral artery. The first successful EVAR procedure
has been reported by Parodi et al. [82] in 1991. Because of the limited surgical
trauma, the mortality rates with EVAR are much lower than with open surgery
[42, 89]. However, EVAR may have some long term complications. Endoleak,
which means incomplete occlusion of the aneurysmal sac, may be caused by leakage
at the connection of the stent-graft with the vessel wall but also by non-ligated
branch vessels, which may continue to put systemic pressure onto the aneurysmal sac
[3]. Initial endoleak does, however, not significantly predict lack of sack regression
[89]. Other reported complications are stent migration, limb thrombosis and even
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AAA rupture [7]. These complications cause some surgeons to favour open surgery
especially for younger, otherwise healthy patients. Because of the complications
with EVAR, follow-up scans are usually performed every three to six months for the
remainder of the patient’s life [34].

Because of the mortality and other risks associated with both intervention proce-
dures the selection of patients for surgery is critical. Performing surgery on patients
who do not run a serious risk of a rupture may cost lives, as does withholding treat-
ment from patients for whom there is a significant rupture risk. Straightforward
rupture risk predictors include the ratio of length and diameter, the blood pressure,
and the aneurysm expansion rate [48]. Still, the current intervention criterion is only
based on the maximum diameter and the growth rate of the aneurysm. If the maxi-
mum aneurysm diameter at detection exceeds a preset threshold, usually 55 mm, the
patient is scheduled for repair. Otherwise, the patient is followed with ultrasound
imaging to monitor the progression of the AAA until the maximum transverse di-
ameter has grown above this threshold, or until the growth rate increases to a value
above a certain threshold [65, 127]. Change of AAA volume is an important factor
in assessing rupture risk after endovascular repair [59, 126, 131].

1.2 Imaging

Currently, the main objectives of medical imaging of AAAs are monitoring, surgical
planning and EVAR follow-up. For these purposes, visualisation of the aneurysm
lumen, outer wall contours, calcifications and endoleaks are the main issues. For
analysis of wall stress and hemodynamics, an ideal data set of images would also
include information on the local wall thickness, the local wall composition, the
detailed structure of the thrombus and the flow at several locations in the aneurysm.
Not all of this information can, however, currently be acquired with standard clinical
patient scanners.

Conventional freehand ultrasound imaging is a common imaging modality for
AAA because of its use in monitoring. Its use is, however, limited for very obese
patients and for patients with excessive bowel gas [127]. Intravascular ultrasound
(IVUS) is currently the only modality which can provide some detail of the patient-
specific AAA wall composition. Also, it is the best modality for detecting subtle
endoleaks [127]. The main drawback of IVUS is its invasive nature, which makes
this modality less attractive in clinical practice.

The most common imaging modality for surgical planning and EVAR follow-up
is computed tomography angiography (CTA) [7]. The main advantages of CTA are
the wide availability, the high resolution, the limited scan time and the excellent
contrast between the vessel lumen and soft tissues. However, the contrast between
thrombus and surrounding structures is very limited and the detailed structure of
the thrombus cannot be visualised with CT. Not all serious endoleaks are visible
on CT [3]. The greatest disadvantage is the ionising radiation, which limits the
use for screening purposes. Furthermore, cardiac triggered CT is not yet widely
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Figure 1.2: CTA and non-contrast enhanced MR images of abdominal aortic aneurysm.
CTA gives very good contrast for the AAA lumen and has superior resolution. MR offers a
better visualisation of the outer vessel wall and it provides better contrast for the different
structures inside the thrombus.

available, so that dynamic or gated imaging is not yet possible on a large scale. Hall
et al. [44] have performed wall thickness measurements on CT, but they did not
show combined images of the wall and the measurements. In general, accurate local
wall thickness reconstruction from CT is still very difficult, if not impossible. An
example of a typical CT image of AAA is depicted in figures 1.2(a) and 1.2(b).

Magnetic resonance angiography (MRA) is less common for surgical planning
and follow-up than CTA, mainly because of the poor visibility of calcifications and
because of the common presence of ferromagnetic materials in endografts [127].
However, it has been reported that MR provides better information for follow-
up than CT [33]. The flow sensitivity of magnetic resonance imaging makes it
possible to measure blood flow and to visualise the lumen without the use of contrast
agents with the steady state free precession (SSFP) protocol, as is shown in figure
1.2(c). Black blood imaging methods may be used to visualise the composition
of the thrombus, plaques and fibrous caps [58]. Figure 1.2(d) shows an example
of a black blood image in which several regions with different intensity can be
distinguished within the thrombus. The same techniques have been used for wall
thickness measurements in other parts of the body [61]. However, for AAA accurate
reconstruction of the wall thickness with black blood techniques is not yet feasible.
The required slice thickness for this protocol is large and the AAA wall is generally
not perpendicular to the imaging plane, resulting in an overestimation of the wall
thickness. Kramer et al. [58] used 7 mm thick slices, and in our own studies we used
6 mm thick slices. Furthermore, there is very little contrast between the thrombotic
sediments and the vessel wall, as can also be observed in figure 1.2(d).
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Some disadvantages of MR imaging, such as the contrast differences caused by RF
field inhomogeneities and the limited coverage of the receiver coils have been at least
partly resolved by some manufacturers in the past few years. The resolution may
improve in future with the introduction of a new generation of higher field strength
scanners, which may provide a better signal-to-noise ratio, at the possible cost of
increased artifacts and less contrast [35].

1.3 Image segmentation

The majority of segmentation methods for AAA described in literature aim at seg-
mentation of the vessel lumen and the outer wall of the aneurysm and are based
on CTA. Segmentation of the AAA lumen in CTA images is fairly easy because of
the use of contrast agent, leading to high contrast between the vessel lumen and
the surrounding tissue. Segmentation of the outer vessel wall is more challenging
because of the limited contrast with surrounding anatomical structures.

A large contribution concerning CTA based segmentation methods for the AAA
outer wall has been made by de Bruijne, who has dedicated her PhD work to this sub-
ject [16]. The approach followed in her PhD work is to optimise the 2D active shape
and appearance modelling method [15] for AAA segmentation. The optimisation is
achieved by using slice similarity, a dedicated active appearance model for tubular
structures, a non-linear appearance model and user interaction [17, 19, 20, 21]. De
Bruijne also worked on segmentation of AAA from MR images [18]. The accuracies
reported for this method are good. The main disadvantages of this approach for
wall stress modelling are that the method is based on a time-consuming training
with expert contours and that the model is still based on a set of 2D geometrical
primitives and not on a true surface description, implying that further processing
steps will be necessary to come to a finite element mesh, which is a prerequisite for
the simulations.

Another approach used for segmentation of AAA in CTA images is based on the
combination of deformable surfaces [25] and the level set method [80]. The accuracy
and robustness of the implementation of this approach by Subasic et al. [104] is not
good enough for employment in a clinical environment. Magee et al. [68] have also
followed this approach and they report very high accuracies. However, the methods
used for the validation remain unclear. The extension of deformable surfaces with
level sets appears to be aimed at segmenting fine details such as small branching
vessels. However, for AAA wall stress modelling, these details are currently not a
major concern.
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The segmentation method for the vessel wall location on CTA proposed by Olabar-
riaga et al. [79] is also based on 3D deformable surfaces. In this work the training
approach and the segmentation method with the non-linear appearance model from
[16] have been used as an external force for a deformable surface. The accuracy
that is achieved with this method is comparable to that of de Bruijne. The full 3D
nature of this approach makes it an attractive method for AAA modelling for finite
element applications.

1.4 Computational models

The mechanical argument that correlates the maximum aneurysm diameter with
the maximum wall stress is based on the law of Laplace [29, 55]. Hall et al. [44]
have estimated the wall tension for AAA by application of Laplace’s law. Even
this simplified predictor, that does not take into account patient-specific material
properties or measured dynamics, proved to be a predictor of AAA rupture. Elger
et al. [32] used axisymmetric AAA models based on meridional curves to show that
the shape of the AAA has a substantial influence on the local wall stress, implying
that Laplace’s law is too simple a predictor. Sacks et al. [91] used patient-specific
models of AAA to derive the local principal curvatures and they concluded that
an axisymmetric model is also incapable of capturing the shape variations relevant
for the rupture prediction in AAA. The same conclusion was drawn by Vorp et al.
[123] who investigated the influence of asymmetry on the computed wall stress. In
another study [86] patient-specific shape models were build for six patients. The
results indicated a complex wall stress distribution in comparison to the healthy
aorta. Fillinger et al. [38] showed that the peak wall stress can outperform the
maximum transverse diameter with an ROC analysis based on a study with 103
patients, 14 of whom experienced a rupture. Comparison of the simulated wall
stress in ruptured and non-ruptured AAAs showed that the maximum stress in the
ruptured AAAs was significantly higher than for the non-ruptured AAAs [120]. In
this study, the authors also demonstrated a positive correlation between the site
of maximum wall stress and the rupture site. Li and Kleinstreuer [63] have used
simulation results to derive an empirical wall stress equation based on an extension
of Laplace’s law and they found good agreement. This approach may provide a way
to circumvent lengthy patient-specific simulations. However, as mentioned by the
authors, it cannot provide accurate predictions for seriously distorted geometries.
Although these studies all indicate that wall stress is an important influence for
AAA rupture risk prediction, the clinical significance of patient-specific wall stress
has so far only been tested in a single study based on a limited number of patients.

The question of what is the correct approach for modelling the influence of intra-
luminal thrombus (ILT) is still controversial. Vorp et al. [124] suggested that ILT
has an important influence on the weakening of the vessel wall because it hampers
the oxygen diffusion to the vessel wall. The first mechanical studies into ILT were
based on elastic ILT and lead to the conclusion that thrombus would reduce the
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stress exerted on the AAA wall [26, 27, 74, 125]. However, experimental studies
indicate that the full systemic pressure is transduced to the AAA wall, even in the
presence of ILT [95]. Thubrikar et al. [110] showed that even though thrombus does
not influence the pressure at the AAA wall, it may provide structural integrity to
the AAA wall and decrease dilatations. Medical images and postmortem studies
indicate that there are several kinds of thrombus, which may be visualised in-vivo
with black blood MR. Presence and configuration of these thrombus constituents
may vary largely between patients.

The importance of the local wall composition and thickness for the computed
wall stress has been widely recognised. However, the current limitation of imaging
techniques limit the patient-specific modelling of these variations in AAA to the
modelling of the influence of calcifications [69, 100].

1.5 Motivation and outline

In current clinical practice, diagnosis and treatment for complex diseases of the
vascular system highly depend on advanced 3D medical imaging techniques and
analysis of the resulting images by radiologists. Algorithms for image analysis and
computer aided diagnosis provide an important aid to the radiologists to cope with
the vast amount of data and to relieve them of tedious, time-consuming tasks.

Computer simulations of hemodynamics and vessel wall mechanics in the human
vascular system may be used to provide information that is not directly visible on
medical images. With image registration, segmentation and quantification and com-
puter aided diagnosis, the ground truth is often provided by the radiologist. For sim-
ulations based on medical images the performance evaluation is more complicated.
The raw output of patient-specific simulations of complex blood flow patterns, wall
motion and wall stress is difficult to interpret even for experts. Therefore, for clinical
use of blood flow and wall mechanics simulations, derivation of relevant but simple,
preferably even one-dimensional indices is essential.

The focus of this thesis is patient-specific finite element modelling of AAA. Al-
though Fillinger et al. [38] have shown that patient-specific peak vessel wall stress
may outperform the currently used maximum vessel diameter as an AAA rupture
predictor, this method has not yet been introduced into the clinical practice. Apart
from FDA approval, the main bottlenecks for clinical acceptance of this approach
will probably be the level of automation, the speed and the accuracy and robustness
of the method. Furthermore, the clinical sensitivity and specificity of this predic-
tor can possibly be improved further by using more patient-specific input, such as
local material properties, global compliance, initial wall stress and the influence of
thrombotic sediments.

Patient-specific modelling of the wall mechanics requires reconstruction of the ge-
ometry from medical images, construction of a computational mesh and a model for
simulating the wall stress resulting from the pressure load on the inner aneurysmal
vessel wall. These three sequential steps are described in chapters 2-4. In the second
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chapter a segmentation algorithm to reconstruct the dynamic AAA geometry from
dedicated MR images is presented. In the third chapter the chain of algorithms
leading from the segmentation result to the finite element mesh, which serves as
input for the simulation, is described. In the fourth chapter a backward incremen-
tal method is introduced, which allows wall stress assessment in the systolic AAA
based on the measured diastolic geometry. In the fifth chapter, the sensitivity of
the model is evaluated both for MR and CT using several independent manual de-
lineations of the vessel wall contours. In chapter six the influence of calcifications
in the AAA vessel wall on the computed wall stress is investigated. Finally, the
concluding chapter provides a summary of and a discussion on the results of the
preceding chapters.



Chapter 2

Automatic segmentation and

tracking of abdominal aortic

aneurysm from MR with 3D active

objects

Abstract

The current criterion for surgical intervention for abdominal aortic aneurysms
is based on the maximum transverse diameter of the aorta. Recent research
indicates that a better rupture predictor may be derived from the wall stress. A
major influence for the wall stress in the aneurysm is the patient-specific shape of
the aneurysm. We have developed an automatic method to derive the dynamic
patient-specific aneurysm geometry from 2D and 3D non contrast-enhanced MR
steady-state free precession (SSFP) images. The individual slices of the 2D-
scanned volumes are registered onto the 3D-scanned volumes via a normalised
mutual information similarity measure to restore spatial coherence. The resulting
images are anisotropically filtered to reduce the image noise and to enhance the
specific image features used for the segmentation. The lumen and the outer
wall boundary of the aneurysm are constructed from the end-diastolic 2D SSFP
images by using 3D active objects (3DAO, also known as deformable surfaces).
The resulting end-diastolic geometrical model is propagated over the remaining
dynamic acquisitions by deforming with an external force based on the correlation
between grey value profiles sampled at subsequent phases on the mesh nodes of the
3DAO. The resulting segmentations were evaluated with respect to manual image
segmentations produced by three expert users for four patients. The resulting
accuracy is shown to be comparable to the accuracy that is being reported in
literature for CT and MR based methods.

9
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2.1 Introduction

An abdominal aortic aneurysm (AAA) is a permanent dilation of the human aorta
which is life-threatening due to the potential event of a rupture. In current clinical
practice, surgical intervention is considered once the maximum transverse diameter
exceeds 55 mm. It has been shown that other geometry related quantities such as
aneurysmal volume, the ratio between diameter and length and the largest cross-
sectional area can provide better rupture risk predictors [48].

Recent advances in research on AAA intervention criteria have focussed on finite
element method (FEM) based wall stress simulations for AAA [28, 37, 38, 86, 120,
123]. The patient-specific shape of abdominal aortic aneurysms is one of the ma-
jor influences on the stress in the vessel wall [32, 123]. Accurate patient-specific
modelling of wall stress in AAA would require detailed input such as material
properties and the precise configuration of thrombus and atherosclerotic plaques
[27, 53, 95, 112, 125]. However, Fillinger et al. [38] have shown that even a sim-
plified model with constant wall thickness and constant material properties signifi-
cantly outperforms the maximum transverse diameter as an intervention criterion.
For possible future large scale clinical use of a wall stress based rupture risk predic-
tor automated methods to segment the medical images and obtain a patient-specific
finite element mesh are important prerequisites.

With contrast enhanced CT the vessel lumen geometry, the calcified plaque and
the outer vessel wall location may be visualised. With MR, the AAA lumen and
thrombus can be visualised as well. Although large calcified plaques can sometimes
be distinguished on MR images as signal voids, the visibility of these calcifications
is worse than with CT. However, MR can provide additional important hemody-
namical and mechanical information such as the patient-specific blood flow and the
pulsating motion of the aneurysm. The MR images of AAA have a more limited
spatial resolution, possibly some geometrical distortion, and less contrast between
the lumen and the thrombus and the vessel wall in comparison with the CT images.

A number of automatic and semi-automatic segmentation methods for AAA from
CTA have been reported in literature. Olabarriaga et al. [79] have used a de-
formable model in combination with a training via a k-nearest neighbours classifi-
cation method. A similar classification method has been used by de Bruijne et al.
[20, 21] in combination with a 2D statistical shape modelling approach. Another
approach that has been followed for segmentation of AAA is the combination of
deformable models and level sets [68, 104]. Imaging of AAA with MR is not yet a
generally accepted routine in clinical practice. In [18] segmentation of AAA from
MRA images was performed with a 2D statistical shape model with multi-spectral
image features. Apart from this work, there is very little literature on segmentation
of AAA from MR.

For our application it is essential to employ a segmentation method that leads
to an object representation that allows robust and accurate translation to a finite
element model. The main disadvantage of segmentation methods based on training
is that they require large training sets and that the resulting algorithm may require



2.1 Introduction 11

full retraining when adjustments in the imaging method are made. We do not yet
have enough patient data with our novel MR acquisition method to allow for such
an extensive training. The main disadvantages of the statistical shape modelling
approach in [20, 21] is that this method is based on a set of 2D geometrical prim-
itives and not on a true surface description like the deformable model, implying
that further processing steps will be necessary to come to a finite element mesh,
which is a prerequisite for the simulations. The 2-simplex based deformable model
approach has some advantages for finite element applications since it allows control
over smoothness and topology and it can be transformed to high quality surface
triangulations quite easily [2]. The extension of deformable models with level set
methods appears to be aimed at segmentation of fine details, which are not a major
concern for our application, since these fine details cannot yet be taken into account
in the wall stress simulations due to resolution limitations. For these reasons, the
standard deformable model approach suits our needs best.

Comparison of segmentation results for medical images is a difficult task. A vari-
ety of different performance characterisation methods has been proposed and eval-
uated [57, 78]. Even for similar segmentation tasks different evaluation approaches
are being followed to compute the performance and the exact method is not always
presented, as may become clear from the following examples. The segmentation
method proposed in [79] has been evaluated with respect to a single expert segmen-
tation. The distance measure used in this work is the distance from the vertices of
the 3DAO surface to a reconstructed triangular mesh based on the manual contours.
However, the method used to reconstruct the mesh from the manual contours is not
reported. In [18, 21] the in-slice root mean squared error between the manual seg-
mentation and the automatic result is reported. In [104] the relative differences of
the number of pixels included in the segmentation in each slice between automatic
segmentation results and manually corrected semi-automatic segmentation results is
reported. In [68] the automatic segmentation results are compared with interactive
results by measuring the maximum differences for each data set. No information is
provided on the distance measure that is used in this work.

In this chapter we present a method to reconstruct the dynamic lumen and ves-
sel surface of the AAA from non contrast enhanced MRA images with 3D active
objects (3DAO) [25, 24]. The method has been applied on data from six AAA
patients. For four patients, the segmentation results have been validated by com-
parison with manual contours from three experts. The validation method that we
used is the contour averaging method by [13] which assures transitivity between a
number of similar contours and simultaneously supplies a golden standard contour
for manual segmentations supplied by a number of users. Based on this method
we have computed several common error measures, to allow for a broad comparison
to the previous methods. For the remaining two patients, a visual inspection was
performed. The results of the evaluation indicate that the accuracy of the automatic
segmentations based on MRA is similar to the accuracies reported for segmentation
of AAA from CTA.
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2.2 Materials and methods

2.2.1 Imaging

2D balanced turbo field echo (B-TFE, steady state free precession protocol) [107]
images have been acquired on a Philips Gyroscan Intera 1.5T MR scanner (Rel. 10.4)
for six male AAA patients that were scheduled for surgery (age: min. 60, max. 77,
av. 69, max. transverse diameter: min. 58 mm, max. 73 mm, av. 63 mm) for 25
slices and 12 cardiac phases (SENSE cardiac coil, TE/TR=2.14/4.28 ms, flip angle
50 degrees, FOV=300 mm, matrix scan 224, voxel dimensions 1.2 × 1.2 × 6 mm3,
slice gap 0 mm, no breath-holding, non contrast-enhanced). 3D B-TFE images were
acquired with similar parameters for 50 slices with an overlap of 3 mm. For both
these imaging protocols, there is considerable anisotropy in the image sampling.
Patient motion (movement and respiration) may cause the slices in the 2D protocol
to be dislocated with respect to each other. However, the 2D imaging protocol
is more sensitive to flow and gives better contrast between the AAA lumen and
thrombus than the 3D B-TFE protocol. However, since the whole volume of interest
is acquired simultaneously in the 3D protocol, there is no dislocation between the
slices.

2.2.2 Image registration

Between the acquisition of the 3D B-TFE and the 2D B-TFE images, the patient
may have moved. Furthermore, the 2D B-TFE images are acquired slice by slice in
an interleaved manner, which means that within a single volume these slices may
also be slightly dislocated with respect to each other due to patient motion and
respiration. For these reasons, it may be necessary to realign the images and the
individual slices. This realignment is achieved with image registration techniques.

As a first step, we register the 2D and 3D B-TFE volumes by using a rigid body
motion model (rotations and translations with respect to the three principal axes)
using normalised mutual information as a similarity measure.

I(A,B) =
H(A) + H(B)

H(A,B)
, (2.1)

with I the computed similarity between the two images, H(.) the Shannon-Wiener
entropy and H(., .) the joint entropy of the two images [43].

The optimisation method for finding the optimal transformation is based on a
steepest gradient descent method in the transformation parameter space. The opti-
misation is performed at three resolution levels for which every next level uses half
the sampling step used in the previous level. The initial resolution in the registration
process is 2 mm.

We have assumed that further transformations of the individual slices of the 2D
B-TFE scan can be well described with an in-slice translation and a rotation around
the patient’s transversal axis. This approach should account for most of the dis-
locations resulting from small patient movements in the scanner. With this model
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we registered the individual 2D B-TFE slices onto the 3D B-TFE volume, again
with the normalised mutual similarity measure and a steepest gradient descent op-
timisation procedure, to further refine the registration. Reconstruction of the final
registered image slices is then performed with an in-slice interpolation.

2.2.3 Segmentation initialisation

First, the 2D B-TFE images are locally anisotropically filtered, tangentially to edges
with the method by Jago et al. [54], in order to reduce noise without affecting the
edge location. To delineate the AAA region of interest, the user selects a point in
the AAA lumen below the renal arteries and a second point above the bifurcation
to the iliac arteries. Based on these user-defined points a wave-front propagation is
performed on the in-slice gradient magnitude of the image intensity [130]. At every
iteration step the voxels neighbouring the current wave front are added to the front
and for each new voxel a cost is determined via

C =

{

Co + 1, i<s,
Co + 1000, i>s,

(2.2)

with Co the cost in the voxel from which the new voxel was reached, i the image
intensity at the new voxel and s a predefined threshold. When the end point is
reached by the wave front, the lumen centreline is constructed by back tracing the
minimal cost path of the wave front cost. From the centreline an initial 3DAO is
created [25].

2.2.4 3D active objects model

A 3DAO is a collection of connected non-planar simplex faces in which every 3DAO
simplex node has exactly three neighbour vertices. The surface can be iteratively
deformed based on forces computed from the image features and shape regulari-
sation forces. In the case of the AAA application, the initial 3DAO is a tubular
object, centred around the lumen centreline. The new position for a node is deter-
mined at every iteration from the current position via a time-discretised second-order
Newtonian-evolution equation

P t+1
i = P t

i + (1 − γ)
(

P t
i − P t−1

i

)

+ αF int + βF ext, (2.3)

where P t
i denotes the position of the i-th simplex node at iteration t. With F int

and F ext we denote the internal force (ensuring smoothness) and the external force
(fitting the node to image features) respectively. The parameters α and β denote
the respective weighting coefficients of these forces and γ is a damping coefficient
used to stabilise the deformation process.

The internal forces we used for the segmentation are based on a regularisation
approach that is aimed at making the estimated local surface curvature at a vertex
equal to the curvatures of the three neighbouring vertices [24]. A more detailed
description is provided in section 5.2.3. The image-based external forces are different
for the lumen segmentation and the outer vessel wall boundary segmentation and
will be presented in the next subsection.
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I n t e n s i t y  p r o f i l e

(a) Transversal
view of the AAA

lumen

(b) 3D view of
the AAA lumen

(c) Transversal
view of the AAA

outer wall

(d) 3D view of
the AAA outer

wall

Figure 2.1: Segmentation results for aneurysm 1.

2.2.5 External force calculation procedure

The external forces for the segmentation procedure are computed by sampling in-
slice intensity profiles at simplex surface nodes in the feature images, perpendicular
to the intersection contour between the image plane and the 3DAO surface, as
depicted in figure 2.1(a). To account for the high anisotropy in the data, the external
forces are only imposed on vertices that are within a user defined distance of an
imaging plane. The position of the remaining nodes is determined by the internal
forces only. For the segmentations presented in this chapter the distance criterion
was set to 0.25 times the slice distance.

The segmentation of the AAA lumen is based on the gradient magnitude of the
2D B-TFE images, which is usually high at the outer contours of the lumen. First
a threshold t is automatically derived from the histogram H of the 2D Gaussian

gradient magnitude Lw =
√

L2
x + L2

y of the portion of the image within the interior

of the initial 3DAO surface. The blurring factor τ for the Gaussian derivatives
used to compute Lw was taken as three pixels. For all the segmentations in this
chapter we used a value of t = H + 3σ, where σ denotes the standard deviation
in the histogram. At every iteration, intensity profiles with a total length of 6 mm
are sampled, centred at the simplex nodes and the maximum gradient magnitude
value on this profile is determined. If this maximum gradient magnitude on the
sampled profile is higher than t, we deform towards the location of this maximum.
Otherwise, the external force is set to move outwards with a constant weight.

For the segmentation of the outer wall of the AAA, we take advantage of the
boundary effect at the outer vessel wall caused by an MR phenomenon called the
chemical shift of the second kind [46], which leads to a local intensity dip (valley) at
the location of the outer vessel wall. Segmentation of the vessel wall is based on this
valley and on knowledge of the lumen intensity. Although unlike for CT, there are
strong variations between patients in the intensity with which the thrombus appears
on the 2D B-TFE images, we can use the assumption that the thrombus intensity
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Figure 2.2: The effect of application of the anisotropic filter on the 2D B-TFE images for
the outer AAA wall segmentation. Before the application of the filter, the grey values of
thrombus and the boundary effect cannot be well distinguished (a). The grey value distri-
bution of the outer wall boundary effect is well approximated by a Rayleigh distribution,
indicating that this distribution is dominated by noise (b). The fit of the Rayleigh distri-
bution in this middle figure is based on a least squares estimate for θ2. Application of the
anisotropic filter diminishes this noise, causing the grey values corresponding to the valley
to shift to the left. In figure (c) we have indicated the derivation method for the threshold
used in the segmentation process.

is lower than the lumen intensity. Because of the image noise, the intensities of
the valley feature can generally not be distinguished as a separate mode in the grey
value histogram, as depicted in figure 2.2(a). The noise distribution for low intensity
structures in MR images, such as the valley at the outer wall, is often approximated
with a Rayleigh probability density function [1, 47] which reads

p(x) =
x

θ2
e

−x2

2θ2 . (2.4)

Figure 2.2(b) shows a fit of a Rayleigh distribution on a typical histogram of the
valley feature. The noise model fits the intensity distribution very well. After
application of the anisotropic filter, the valleys in the image are deepened, resulting
in a shift of these grey values in the histogram to the left, as depicted in figure
2.2(c). To obtain a patient-specific threshold during the segmentation process, we
shoot outward intensity profiles with a length of 2 mm in every vertex of the lumen
3DAO to construct a new grey value histogram. A lower threshold tl is derived by
taking a fixed fraction of η times the grey value mt, corresponding to the maximum
of the histogram for the thrombus. For the segmentations we used a fixed value
of η = 0.3. A higher threshold tu is derived by taking the intensity level halfway
between the mean lumen intensity and mt.

For the calculation of the external forces, we sample intensity profiles of 40 mm
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in the 2D B-TFE images, from which the minimum is used to deform towards the
valley, and the maximum is used to prevent growing into the vena cava, which
has a high intensity similar to that of the AAA lumen. To speed up the process
and to avoid a vertex from moving past a previously detected incomplete feature,
we shorten the sampling profiles at every iteration with respect to the distance to
the last encountered positive feature. With this approach, the deformation process
may halt before the 3DAO surface has reached the actual vessel wall location when
vertices do not follow the shortest path to a feature. In our implementation this
problem is overcome by automatically resetting the search depths at regular intervals
of 20 iterations.

2.2.6 Propagation of the AAA geometry over time

The segmentation process described in subsections 2.2.3 - 2.2.5 is performed for the
end-diastolic phase only. To propagate the resulting 3DAOs over the other car-
diac phases, we use the correlation between in-slice intensity profiles at subsequent
phases. First, the optimal position for a simplex node is determined once by opti-
mising the correlation coefficient ci between the two sampled profiles lt and lt−1 of
length n for this node when shifting one profile along the other one. The formula
for a shift in the outward direction with i steps is given by

ci =

∑n−i

j=0

(

lt(j) − lt
) (

lt−1(j + i) − lt−1

)

√

∑n−i

j=0

(

lt(j) − lt
)2∑n−i

j=0

(

lt−1(j + i) − lt−1

)2
. (2.5)

The formula for a shift in the opposite direction is similar, with the indices of lt and
lt−1 interchanged. Next, we iteratively deform the 3DAO to the computed optimal
position by using the distance to this position as an external force for the 3DAO.
Because the convolution domain in (2.5) is dependent on the shift i, the profile
length must be long in relation to the computed shifts. For the experiments we
used symmetric profiles with a total length of 10 mm. A similar approach based
on 2D active contours has been followed for segmentation of MR cardiac images by
Ranganath [88]. Our approach does not require adapting the dynamic segmentations
to specific image features as is done in the approach of Gérard et al. [41].

2.3 Validation procedure

For the validation of the segmentation result, the automatically segmented surfaces
were compared to manual segmentation contours for four patients. Three expert
users were asked to draw closed polybezier curves on the 2D B-TFE images for the
first four patients in our database, indicating the position of the vessel lumen and
of the outer AAA wall. The selection criterion for the slices used for this validation
procedure was that the slice should be located above the bifurcation of the aorta
into the iliac arteries, and below the renal arteries.
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The three observers were asked to draw the contours twice, in two separate sessions,
resulting in six manual contours for the lumen and six manual contours for the
vessel wall location on every selected slice. Since the manual contours have been
drawn on the original image data, we transformed the contour coordinates with the
transformations computed in the registration process.

2.3.1 Validation methodology

Since we only had two contours per user, we did not compute the intra-observer
variability based on these four patients. Instead we put the six manual contours in
a single validation set and computed the performance of the algorithm with respect
to the average and the variability within this validation set. In order to provide a
broad overview of the performance of our segmentation scheme, we have computed
the segmentation accuracy both in 3D and for the separate image slices employing
the contour averaging method and the 3D distance between the point cloud of the
discretised expert contours and the 3DAO surface. This last measure allows through
plane distance estimates as is the case in the work by Olabarriaga et al. [79]. We have
applied and evaluated the propagation algorithm for all four patients, even though
only two of the four AAAs showed a large amount of motion over the cardiac cycle.
However, even when there is only limited motion, the grey profile matching is still
influenced by noise and artifacts which may cause the grey value appearance in the
region of interest to vary on the images for different cardiac phases. Therefore, it
is still useful to apply the algorithm for these patients to evaluate the performance
and to establish that the algorithm can be applied without having to preselect the
data.

2.3.2 Measuring the distance to a 3DAO surface

The vertices of the simplices forming the 3DAO surface are not required to be
positioned within the same 2D plane. Therefore, the distance of a point x in 3D to
a 3DAO surface S can only be defined by assuming a model for the geometry of the
3DAO’s faces. For the computation of this distance the approximation depicted in
figure 2.3 has been employed. First, we find the mesh node closest to x, which shall
be denoted by ṽ. Let vi, 1 ≤ i ≤ 3 denote the three neighbouring vertices of ṽ. With
mi, 1 ≤ i ≤ 3, we denote the centres of mass of the neighbouring simplex faces.
Six triangles are constructed by connecting ṽ with the pairs (mi,vi), 1 ≤ i ≤ 3,
(mi,vi−1), 2 ≤ i ≤ 3 and (m1,v3). The distance is computed by taking the
shortest perpendicular distance to the six thus constructed triangles. This measure
leads to a continuous, but not differentiable approximation of the distance to the
3DAO surface. For this reason, this approximation is called the Co distance measure
throughout the remainder of this text.

2.3.3 Contour averaging method

Let the set of user contours be given by Xi, 1 ≤ i ≤ n. In the contour averaging
method, first an initial correspondence between X1 and all other contours is estab-
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Figure 2.3: Approximation of the distance from a point to a 3DAO surface.

lished for an arbitrary resampling of X1 denoted by x1,k, 1 ≤ k ≤ m, by finding the
closest points xj,k on Xj , j > 1. The first estimate for the points on the average
contour Y is computed from

yi =
1

n

n
∑

j=1

xj,i. (2.6)

Next, the sampling of the input contours Xj is updated by computing the inter-
section points of the lines normal on Y at each of the yi with the contours Xj . The
newly established sampling is then used to update Y. This procedure is iteratively
repeated until the variation of the average contour at each iteration becomes negligi-
ble. To establish the variations between the contours Xj , the distances are measured
between the corresponding points xj,k resulting from the averaging procedure. For
the validation we have used a discretisation with 60 points on each contour. The
number of averaging steps performed was 5.

We used the average contouring method to generate an averaged golden standard
contour based on the six manual contours. We measured the average deviations of
the user contours from this golden standard contour to evaluate the variability in
the validation set. Next we performed the contour averaging method once more
on the intersection contour of the automatically segmented surface and the golden
standard contour to measure the errors between the average of the manual contours
and the automatic segmentation result. Also, we computed the distances between
the sample points on the golden standard contour to the 3DAO surface, employing
the distance measure presented in section 2.3.2.

2.3.4 Statistical evaluation

For the statistical evaluation of the performance we used the extension of the index
from Williams [128] for multivariate data as proposed in [13]. This index lets us
compare the performance of the algorithm to the performance of the users, providing
an index that normalises the error estimates for the algorithm with respect to the
quality and the equivocality of the features. Let the n users be indexed from 1 to n
and let the index 0 refer to the automatically derived segmentation. Let vi,k denote
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a vector of m observations for user i, 0 ≤ i ≤ n, 0 ≤ k < m. And let e = e(v,v′)
be the function that measures the variation between two observations. The average
disagreement between two users i and j is computed from

Di,j =
1

m

m
∑

k=1

e(vi,k,vj,k). (2.7)

This leads to the following formula for the modified Williams index

I ′ =

1
n

n
∑

j=1

1
Do,j

1
n(n−1)

∑

j

∑

k:k 6=j

1
Dj,k

. (2.8)

Please note the difference with the original formulation in [13], which has an ex-
tra factor 2 in the denominator, which is incorrect with respect to the summation
domain.

For the application at hand, the observations are the individual contours on the
image slices. In our approach we used both the maximum difference and the root
mean squared (RMS) error to measure the disagreement between the observers. To
compute the 95% confidence interval of this index we use the jackknife parametric
sampling approach followed in the original article [13]. The performance of the
automatic segmentation method is considered to be as good as the performance of
the observers if the confidence interval contains the value 1.0.

2.4 Results

The image registration always resulted in a good visual match between the 2D B-
TFE and the 3D B-TFE volumes. For one patient we observed a major improvement
in the initial 3D rigid match from the slice-by-slice refinement (see figure 2.4). The
maximum difference in the translations between two slices for this patient was 2.1
mm. For the other patients, the initial match of the rigid registration was already
good. Application of the registration method resulted in maximum translations of
less than half the in-plane voxel size and only minimal rotations.

Figure 2.1 shows segmentation examples of the lumen and the outer vessel wall
both in 3D projection view and as an intersection contour with a transversal imaging
plane. Visual inspection of the segmentation results for six patients showed good
correspondence between the reconstructed surfaces and the image features for all
patients. In one case, an automatic threshold had to be overruled because of a bad
surface initialisation. For all other patients, the automatically determined param-
eters could be used. For two patients significant motion was observed that could
be replicated with the dynamic propagation technique. For the other patients, the
aorta deformations were too small to capture within the image resolution.

Tables 2.1 and 2.2 list the variability in the validation set for the lumen and the
outer vessel contours respectively. There is one major outlier (aneurysm 3, lumen).
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(a) Initial match (b) Match after rigid
registration

(c) Match after slice
based refinement

Figure 2.4: The effect of the registration procedure for two slices. The top halve of the
overlay images shows the 2D B-TFE image and the bottom halve shows the 3D B-TFE
image. The lines in figures (b) and (c) indicate a position where the 2D refinement results
in an improved match.

Data set Max. Average ± stdev RMS 0.95 percentile
1 2.1 0.5 ± 0.3 0.6 0.9
2 1.9 0.6 ± 0.3 0.7 1.1
3 8.3 1.0 ± 1.2 1.6 3.9
4 2.0 0.6 ± 0.3 0.6 1.0

Table 2.1: Average deviation of the manual contours from the averaged golden standard
contours for the aneurysm lumens.

Even with this outlier removed, the maximum deviation from the average golden
standard contour is considerable, up to 4 mm. The maximum distances between
pairs of observers are 7 mm, 6 mm, 21 mm and 6 mm for the lumen contours and 6
mm, 11 mm, 10 mm and 7 mm for the outer vessel contours of the respective AAAs.
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Even though these variations may be considerable, these severe disagreements are
generally very local, as can be observed in the 0.95 percentiles of the errors and the
RMS error, which are both very close to the pixel size for all data sets, except for
the lumen of aneurysm 3.

Data set Max. Average ± stdev RMS 0.95 percentile
1 2.2 0.5 ± 0.2 0.5 0.9
2 3.0 0.6 ± 0.4 0.7 1.6
3 4.0 0.7 ± 0.5 0.9 1.8
4 2.5 0.5 ± 0.4 0.6 1.2

Table 2.2: Average deviation of the manual contours from the averaged golden standard
contours for the aneurysm vessel walls.

In figure 2.5 we have plotted the segmentation errors with respect to the average
golden standard contour. The in-slice maximum errors are considerable, especially
for aneurysm 3. However, the 0.95 percentiles of the distances are generally below
5 mm and the RMS errors are around 2 mm. The maximum Co distances from the
contour points to the 3DAO surface are lower than the in-slice distances, always
below 5 mm. The RMS errors are again around 2 mm. The propagation algorithm
clearly causes the errors to increase. However, this increase is generally not very
large with respect to the original errors.

In figure 2.6 we have plotted the 0.95 confidence intervals of the modified Williams
index (2.8) using both the maximum error and the RMS error per slice as a disagree-
ment measure. In all but two cases, the algorithm is outperformed by the observers.
It is noteworthy that a larger segmentation error does not necessarily lead to a lower
modified Williams index (cf. aneurysm 1 and aneurysm 3) since the performance
of the algorithm is now normalised with respect to the user variability. The mod-
ified Williams index also shows that the segmentation performance decreases with
application of the propagation technique as the modified Williams index is always

slightly lower for the 12th phase than for the first phase. For this statistics both
the maximum error and the RMS error lead to a similar performance estimate.
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Figure 2.5: Segmentation errors for the first and the last dynamic phase for the segmenta-
tions of the four aneurysms.
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Figure 2.6: Modified Williams index (with 0.95 confidence interval) for the lumens and the
vessel walls for the four aneurysm segmentations at the first and the last dynamic phase
for the maximum error and the RMS error per slice.

Figure 2.7 shows the volume of the lumen and the vessel of aneurysm 1 over the
cardiac phases as computed with the propagation algorithm and figure 2.8 shows
the end-diastolic volume of the automatic segmentation result in relation to the
variability within the validation set. Once more, the automatic estimate is mostly
not within the variability bounds. However, the errors with respect to the volume
estimate based on the average golden standard contours are very small, below 7%.

2.5 Discussion

The image registration method proved capable of correcting the motion present in
the images in our data set. Moreover, a good initial match is left intact by the
algorithm, indicating that this approach may be applied as a pre-processing step
without having to preselect the images.

The highest error in the segmentation occurred for the lumen of AAA3. In figure
2.9 we have plotted the user contours for the corresponding slice and the automatic
segmentation result. The angle between the lumen surface and the imaging plane is
rather small, resulting in an unclear transition between lumen and thrombus because
of the partial volume effect. One of the experts has chosen to follow a dip in the high
intensity area in the vessel. Another expert has delineated the entire high intensity
area as the vessel lumen. The automatic segmentation partly follows both features.
The in-slice variations between the several manual segmentations and the automatic
segmentation is very high because of this unclear feature. The Co distance from the
contours to the 3DAO surface, however, is no more than 4 mm.

In general, the errors based on the 3-dimensional distances are considerably
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Figure 2.7: The dynamic volume of aneurysm 1 measured on the twelve subsequent imaging
phases.
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Figure 2.8: End-diastolic volumes of the four aneurysm lumens and the complete vessels,
based on the average golden standard contours. The whiskers indicate the variations in the
validation set. The open triangular mark indicates the end-diastolic volume based on the
automatic segmentation. Although the automatically determined volumes are not always
within the bounds of the variation in the validations set, the errors are small, below 7%.

smaller than errors based on the in-slice distances. For the manual segmentations, it
is possible to draw contours that do not match a consistent smooth 3D surface. The
deformable model has an extra, highly desirable, smoothness constriction which can
cause the segmentation to deviate from the contours, even when the image features
are very good. Therefore it is not unlikely that the maximum in-slice distance gives
a too negative impression of the algorithms performance. On the other hand, the
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orientations of the normals of the contours at the sample points are not taken into
account when computing the distance between the contours and the 3DAO surface.
Therefore, this 3D distance measure may give a too optimistic impression of the
segmentation performance.

When not taking into account a small number of outliers the RMS error reported
for MR by de Bruijne et al. is approximately 2 mm for the MR based segmentation
method. For her CT based segmentations, the errors are slightly smaller, around
1.5 mm. The in-slice RMS errors for our segmentations were close to 2 mm, so our
performance appears to be similar.

Olabarriaga et al. [79] employ a distance measure that allows through-slice short-
est distances for their CTA based segmentation method. Therefore, the distance
between the contour points and the 3DAO surface is probably the best measure
to use when comparing our results to theirs. The maximum segmentation errors
reported by Olabarriaga are around 5 mm, which compares well to the maximum
errors we observed.

Comparison of our results with those from Subasic et al. [104] is somewhat hard
since we did not compute any performance measure based on pixel-wise overlap.
However the results reported in that publication were not very good. Although it
appears that our results are slightly worse than those reported by Magee et al. [68]
for CTA, a true comparison is not possible because we do not know how the errors
were computed in that study.

One clear limitation of this work is the small number of data sets used for the
validation. In [20, 21, 79, 104] a higher number of data sets is used in the validation.
However, those validations were based on the manual segmentations of a single user.
The high variability between users in our trial indicates the importance of having
several expert segmentations for data with unclear or even confusing features like
the MR data used in this trial. Accurate manual segmentation of this data is
time consuming and therefore it is difficult to obtain large numbers of manually
segmented data from an adequate number of expert users. The relatively large
variation between the expert users indicated that the quality of the data may be an
important limiting factor for computing rupture risk criteria both with automatic
segmentation and with manual interaction.

The features used for our segmentation are strikingly simple compared to the
more advanced training and classification techniques used by others. The fact that
we have obtained quite good results with a rather basic approach for these novel
data sets is encouraging.

The propagation method that we developed allows automatic computation of the
dynamic volume of the vessel. The combination of the patient’s blood pressure and
the dynamic volume may be used to estimate the vessel wall compliance, which is
both an important clinical parameter and a potentially important input for numer-
ical simulations of the vessel wall motion since it is directly related to the wall’s
material properties.

In this study, we have observed considerable variations in the manual segmenta-
tions of the expert users with respect to the maximum error. In chapter 5 of this
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Figure 2.9: Largest user variation for the lumen of AAA3. Two users have put the manual
segmentation at separate features (a,b). The automatic segmentation partly follows each
feature (c). The shortest 3D path from the average user contour to the segmentation surface
is through-plane (d).

thesis the sensitivity of the wall stress we compute with the finite element method
for these variations is investigated. Our other future research is aimed at improv-
ing our segmentation method by using multi-spectral MR data with a larger set of
image features.

2.6 Conclusions

We have developed and implemented a highly automated registration and segmen-
tation method for AAA based on novel non contrast-enhanced combined 2D and 3D
MR data sets. A validation study with multiple observers has provided objective
numbers for the quality and the ambiguity of the image features in these data sets.
Our results indicate that MR may provide automatic segmentations with an accu-
racy similar to the values reported for other CTA and MRA based methods. The
dynamic propagation technique that we have developed has the potential to give
more insight to the patient-specific material properties of AAA.



Chapter 3

Computational Mesh Generation

for Vascular Structures with

Deformable Surfaces

Abstract

Computational blood flow and vessel wall mechanics simulations for vascular
structures are becoming an important research tool for patient-specific surgi-
cal planning and intervention. An important step in the modelling process for
patient-specific simulations is the creation of the computational mesh based on the
segmented geometry. Most known solutions either require a large amount of man-
ual processing or lead to a substantial difference between the segmented object
and the actual computational domain. We have developed a chain of algorithms
that lead to a combined implementation of image segmentation with deformable
models and 3D mesh generation. The resulting processing chain is very robust
and leads both to an accurate geometrical representation of the vascular structure
as well as high quality computational meshes. The chain of algorithms has been
tested on a wide variety of shapes. A benchmark comparison of our mesh gener-
ation application with five other available meshing applications clearly indicates
that the new approach outperforms the existing methods in the majority of cases.

3.1 Introduction

Atherosclerotic disease is an important cause of death in a large portion of the
world. Computational simulations of hemodynamics and vessel wall mechanics in
atherosclerotic vascular pathologies such as aneurysms and stenoses have proven to
be an important research tool. Hemodynamical simulations have been performed for
cerebral aneurysms [12, 102], abdominal aortic aneurysms (AAA) [28, 37, 132] the
carotid arteries [11, 101] and the coronary arteries [75, 83]. These simulations may
be used to study the development of the pathologies, the risk factors associated

The development and implementation of the 3D meshing prototype Mesh Machine was per-

formed at Medisys, Philips Medical Systems Research Laboratory in Paris.
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with the specific nature of the pathology, and the expected outcome of surgical
intervention.

An essential step to derive a well-defined model for computational fluid dynam-
ics or solid mechanics simulations from a medical image is the discretisation of the
three-dimensional domain which is called mesh generation. For patient-specific com-
putational modelling the pipeline leading from the image to the computational mesh
usually comprises

• segmentation of the medical image,

• modelling of other structures that are not visible in the image,

• generation of a surface mesh,

• creation of planar regions for boundary conditions,

• volume mesh generation,

• optimisation of the mesh.

The main criteria for this pipeline are

• generality,

• robustness,

• geometrical accuracy,

• smoothness control,

• resolution control,

• speed,

• quality and validity of the mesh.

A variety of automatic approaches for mesh generation from segmented medical
structures has been proposed in literature. A classic approach to build meshes
from medical images is based on surface interpolation between a set of contours
describing the segmented shape [37, 84, 94]. The main problem with this approach is
that the contours are delineated in 2D, without taking into account 3D smoothness
constraints, and this generally leads to a set of contours that do not necessarily
describe any sufficiently smooth surface. The smoothing or fitting operations needed
to obtain a useful surface representation can lead to a reduction of geometrical
accuracy. Some authors have proposed meshing methods that are essentially based
on subdividing the image voxels themselves [10, 114], or a collection of cubes cast
over the domain [36, 45, 70, 105], into elements. These methods impose no direct
constraints on the topology or the connectedness of the domain. Furthermore, the
domain that is obtained this way will have jagged edges, so that further optimisation
and smoothing are needed.

A popular method for tessellating iso-intensity surfaces is the marching cubes
method [66] which generates accurate but low-quality triangulations of the isophote
surface. Many authors use mesh improvement methods or remeshing strategies to
generate a high quality triangulation from initial low quality surface meshes such
as the ones resulting from the marching cubes algorithm [49, 64, 114]. The main
disadvantage is that the success of these methods still depends on the quality of
the input surfaces. Furthermore, the assumption that the geometry boundary is
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described by an image isophote only holds for quantitative imaging methods and
even then only if the boundary transition is similar over the entire boundary of the
object.

In spite of the automated 3D based solutions described above, meshing based
on manually segmented 2D contours is still popular. One possible explanation for
this is that none of the available image segmentation methods are fail-safe. Manual
correction of automatic segmentation results is often a difficult and time-consuming
process. A second explanation is that for many of the methods described above, a
good segmentation does not guarantee the successful generation of a computational
mesh. The deformable model method as used by Audette et al. [2] does not suffer
from this limitation. In this approach, a successful image segmentation guarantees
a high quality finite element surface mesh, because the criteria for the deformable
model and the computational mesh are similar.

In this chapter we present a combined implementation of deformable models and
mesh generation which is especially well suited for cardiovascular applications. We
have made a number of important extensions and improvements with respect to
Audette et al. [2] concerning mesh accuracy, resolution control, boundary plane
creation and quality control. We also present two examples of applications of this
method for vascular structures in different regions of the body.

3.2 Materials and methods

In this section we present the specific implementation of the pipeline described in
the introduction. For the image segmentation we use the deformable surface model,
or 3D active object (3DAO) model [2, 25, 41], which will be briefly discussed. Next,
we give a detailed description of the algorithms used to generate the vessel wall
and to obtain an accurate, high quality surface mesh. Finally, we will discuss the
implementation and evaluation of the mesh generation and optimisation algorithms.

3.2.1 Deformable surface model

The 3DAO is a collection of connected non-planar simplex faces with connectivity
number 2, which means that every 3DAO simplex node has exactly three neighbour
vertices, as depicted in figure 3.1. The 3DAO can be iteratively deformed to fit the
shape to image features. During segmentation of anatomical structures with 3DAO,
the new position for a node is determined at every iteration from the current position
via a time-discretised second order Newtonian-evolution equation

P t+1
i = P t

i + (1 − γ)
(

P t
i − P t−1

i

)

+ αF int + βF ext, (3.1)

where P t
i denotes the position of the i-th simplex node at iteration t. With F int

and F ext we denote the internal force (ensuring smoothness) and the external force
(fitting the node to image features). The parameters α and β denote the respective
weighting coefficients of these forces and γ is a damping coefficient used to stabilise
the deformation process.
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Figure 3.1: Creating an offset on a vertex node of a 3DAO.

3.2.2 Generation of thin-walled structures

For hemodynamical simulation in vascular geometries it is often necessary to accu-
rately model thin structures such as the vessel wall. This requires the generation
of an offset surface, i.e. a surface with a prescribed small distance to the original
surface. The distance between surfaces consisting of basic facets such as triangles
or (generalised) simplices locally varies. Given a closed surface consisting of planar
regions it is impossible to create a new surface with a similar description with a
constant euclidian offset distance, because the true offset surface is not piecewise
planar. One of the advantages of using the 2-simplex structure is that it allows
for a fairly easy and accurate offset procedure which provides a one-to-one corre-
spondence between the facets on the two surfaces, and a constant gap between the
corresponding simplices. To achieve this, we shift all of the facets outwards and
recompute the vertex positions. This approach can only work for a model in which
every vertex is described as the intersection of exactly three planes, such as the
2-simplex structure.

For every node ṽ in the simplex mesh, three triangles are created from the vertex
and its three neighbours vi, 1 ≤ i ≤ 3, with normals ni, as depicted in figure
3.1(a). The points of the three triangles uniquely define three planes, which may be
described by their support points and normals through pi = (vi,ni). From these
planes we create three offset planes p̂i = (vi + δni,ni). The new position of the
node ṽ in the offset mesh is the intersection point of p̂1, p̂2 and p̂3. Theoretically,
it is possible that the intersection point is not defined. However, in our numerical
implementation this does not provide any problems, since the triangles never lie
exactly in the same plane. By applying this procedure for every node in the simplex
mesh, the entire surface is shifted over the distance δ. In the applications presented
in this work, we have only modelled structures with an assumed, constant wall
thickness. However, if additional wall thickness information is available, the offset
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distance could be allowed to vary locally.
Since the method for offsetting a discrete surface aims at creating a prescribed

gap between the corresponding simplices in the original and the transformed mesh,
the distance between corresponding mesh nodes will generally be higher than the
requested offset, depending on the local surface curvature. Evaluating the result of
the offset procedure is therefore somewhat difficult. Employing stringent distance
metrics such as the symmetrical Hausdorff distance will result in a very high error
estimate, in our case actually related to the distance between the mesh points.
To evaluate the offset procedure, we computed the maximum distance from the
collection of centres of gravity of the facets of the offset 3DAO, to the original
3DAO and the maximum distance from the collection of centres of gravity of the
facets of the original 3DAO to the offset 3DAO. The maximum distance is now
computed as

dc
max(S, T ) = max (max(d(m ∈ M(S), T )),max d(S,m ∈ M(T ))) , (3.2)

where M(.) denotes the collection of centres of gravity of the facets of the 3DAO
surface. We also computed the maximum of the average distances between the
surfaces as

dc
av(S, T ) = max

(

1

n

n
∑

i=1

d(mi ∈ M(S), T ),
1

n

n
∑

i=1

d(S,mi ∈ M(T ))

)

, (3.3)

with n the number of facets in the simplex mesh. The offset method has been tested
on three outer wall surfaces of AAAs segmented from MR with an average face area
of 18 mm2 for an inward offset of 2 mm.

3.2.3 Conversion of generalised simplex surfaces to triangulated sur-
faces

In order to generate triangular surface representations that can be used as input
for a 3D tetrahedral mesh generation algorithm, the simplex surface needs to be
transformed to a high quality surface triangulation. Audette et al. [2] have employed
a method in which the centers of gravity of all of the generalised simplices are
connected over exactly one simplex edge to obtain a triangulation which they call
the dual triangulation, analogue to the duality between planar Voronoi subdivisions
and Delaunay triangulations. For areas with high curvature, the triangulation that
is derived from the simplex mesh in this manner will be completely located on one
side of the simplex surface, thus providing a wrong local curvature estimate and, for
closed surfaces, an underestimation of the enclosed volume. To solve this problem,
we have constructed an iterative curvature correction method that provides a better
geometrical estimate of the segmented surface without affecting the quality of the
triangulation.

First we create the analogy of the standard dual triangulation similar to [2]. Let
F = {fi}, 1 ≤ i ≤ k be the collection of generalised simplex faces in arbitrary order
with centres of gravity mi and let the number of vertices of face fi be equal to ci. In
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u = 1

while ( d̃ > ε)
i = 1
while (i ≤ k)

di = 1
ci

∑ci

j=1 di,j · ni− ‖ mu−1
i − mi ‖

mu
i = mu−1

i + λdini

i = i + 1
end while

d̃ = max1≤j≤k dj

u = u + 1
end while

Figure 3.2: Curvature correction algorithm for the dual triangulation of a 2-simplex mesh
in pseudo-code.

the algorithm the mesh vertices are initialised at the centers of gravity mi and then
iteratively displaced. We will denote the position of these vertices at the j-th step
with m

j
i , with mo

i = mi. The outward normal of face fi is denoted with ni. The
triangles connected to mi will be denoted with ti,j and the corresponding vertices
of the fi with vi,j , 1 ≤ j ≤ ni. Furthermore, with di,j we denote the perpendic-
ular vector from vi,j onto ti,j . We choose a parameter λ between 0 and 1 and a
convergence criterion ε = ηhmax, with hmax the maximum of the initial distances
between the triangle node and the simplex faces and η << 1. The initial value
of the test parameter d̃ is set to hmax. The iterative procedure for the curvature
correction method proceeds as indicated in figure 3.2. The geometrical interpre-
tation of this algorithm is that we compute the shift of the triangle nodes along
the outward normals that balances the distance between the triangle nodes and the
simplex faces and the distances between the simplex nodes and the triangles, thus
obtaining a more equal distribution of the errors between the two surfaces. Since
directly shifting a single node to its optimal position would result in a suboptimal
positioning of the remaining nodes of the connected triangles, we only shift the node
in the direction of its optimal position proportional to λ. The effect of the procedure
on the location of the triangles with respect to the simplex faces is depicted in figure
3.3.

We have evaluated the conversion method for a variety of ideal shapes and realistic
medical structures. To investigate the sensitivity of the method for λ, we have
varied this parameter along the range (0.02, 1.5) for a number of shapes, with a
fixed convergence criterium η = 10−14. To evaluate the influence of the resolution
of the initial simplex mesh on the optimal choice of λ, we have applied the method
for a range of values for λ for a simplex description of a sphere with a radius of 10
mm at several mesh resolutions.
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3.2.4 Creation of planar regions for boundary conditions

For vascular structures, it is usually necessary to provide the boundary conditions
for the system of differential equations being solved on cross-sectional planes through
the vessel. These particular regions of the model have to be perfectly planar and
should not have a too small angle with any part of the adjacent vessel wall, to avoid
numerical problems when normal flow is prescribed. We create planar mesh regions
by imposing cut-planes placed before and after the part of interest of the vascular
structure (e.g. the aneurysm) and oriented perpendicularly to the centre line of the
vascular system. This is done in three distinct phases. The first phase is performed
in the simplex mesh domain and the other two are performed in the triangulated
mesh domain.

The first step of the method is cutting the segmentation mesh with a plane. The
intersection between a plane and the mesh consists of a piece-wise linear contour
formed by the intersection locations between the edges of the mesh and the plane.
At intersection locations, we insert new vertices and connect them by marching
along the contour. At the end, the complete intersection contour is retrieved; this
has the effect of creating a separation between parts of the mesh located below and
above the cut plane. Only the part that contains the object of interest is kept and
the resulting mesh is closed with one single simplex face, this face being composed
of vertices that lie within the plane. The process is repeated for each required input
or output region of the model.

The second step is performed after the mesh has been converted to a triangle
mesh using the method introduced in section 3.2.3. The dual triangulation curvature
correction process that transforms a simplex mesh to its triangular form does not
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Figure 3.3: Curvature correction procedure. In the dual triangulation the triangle node is
the center of gravity of the simplex causing a large distance between the simplex and the
triangle. After application of the algorithm, the distances between the triangle node and
the simplex and the simplex node and the triangle are well balanced.
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Figure 3.4: Creation of planar regions for boundary conditions. On the left, the original
mesh obtained from the segmentation of the patient-specific image is shown. In the middle,
two cross sections have been created by cutting the vessel with a plane and the mesh is closed
with a single face per section. On the right, the mesh has been converted to a triangulation
and the planar cross sections have been re-meshed.

keep the planar regions invariant. We need to recreate them: the vertices that
belong to the inflow and outflow regions are simply projected to the same planes as
the previous ones.

The last step consists of improving the quality of the triangulation located at the
planar regions. The input and output regions of the model are now perfectly flat
but may contain poor quality triangles (i.e. oversized and/or very elongated), which
do not satisfy the mesh quality required for a good computational fluid mechanics
(CFD) modelling. Therefore, the planar regions inside the intersection contour are
re-meshed with the standard 2D Delaunay technique. Figure 3.4 shows the result
of the method on the mesh of an intra-cranial aneurysm.

3.2.5 Quadratic tetrahedrons and surface interpolation

The accuracy of the CFD solution does not only depend on the quality and the
number of mesh elements, but also on the order of the basis functions used for
the approximation of the physical solution. For our simulations we use a Q+

2 P1

tetrahedral Crouzeix-Raviart element with 15 nodes, providing a quadratic approx-
imation of the unknown solution. To obtain the 15-node tetrahedral elements, the
initial 4-node tetrahedrons are extended with one additional node on each edge, one
additional node on each face, and one additional node in the element center.

Inside the volume mesh, the extra vertices are placed in the center of gravity
of the defining entity. At the structure’s surface, however, the additional vertices
are used to obtain a more realistic approximation of the object’s surface, by taking
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Non-interpolated
quadratic triangle

(b)
Non-interpolated

quadratic
tetrahedron
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based on surface normals

Figure 3.5: In figures (a) and (b) a quadratic triangle and a quadratic tetrahedron are shown
respectively. Dark nodes represent mesh vertices while light nodes are additional vertices
located at middle edge position. In figure (c) the interpolation is illustrated on a part of a
triangle mesh. The additional vertices are also used to interpolate the surface. They are
moved to a certain height relative to the edge they belong to by using an interpolating spline
that is defined by the surface normals at the edge’s vertices.

into account the local curvature of the surface. For this purpose we have adapted
the curved PN triangles technique by Vlachos et al. [122], which was originally
proposed to improve the visual quality of triangle-based surface tessellations for our
purposes. Figure 3.5 illustrates the principle of curvature interpolation using the
additional vertices of quadratic triangles. The vertex normal vectors are computed
by averaging the normal orientations of adjacent triangles. Let na and nb be the
normal vectors associated to two vertices a and b with coordinates a and b defining
a single edge. The normal vector n associated to the edge is calculated as n =
(na + nb)/ ‖ na + nb ‖. To interpolate the curvature, we use a third degree
polynomial approximation, which is the lowest order polynomial that satisfies the
boundary conditions given by the position of the edge vertices and the corresponding
normal vectors. The polynomial approximation is the parametric cubic spline

x(t) =

3
∑

i=0

cit
i, (3.4)

where t ∈ [0, 1] is the parameter defined along the curve. Let

ta :=
dx(t)

dt

∣

∣

∣

∣

t=0

= na × ((b − a) × n), (3.5)

and

tb :=
dx(t)

dt

∣

∣

∣

∣

t=1

= nb × ((b − a) × n), (3.6)
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where × denotes the standard three dimensional cross-product. The coefficient
vectors ci are computed as follows:

co = a, (3.7)

c1 = ta, (3.8)

c2 = 3 (b − a) − 2ta − tb, (3.9)

c3 = 2 (a + b) + ta + tb. (3.10)

The position of the additional vertex associated with the edge is given by

x(t)|t=0.5 =
a + b

2
+

ta − tb

8
. (3.11)

For the extra vertices corresponding to the triangle faces we use the nodes of the
original simplex mesh from which the triangulation has been derived. Figure 3.6
shows the influence of the curvature interpolation procedure.

3.2.6 Tetrahedral mesh generation

The concluding step in the modelling process is to create a volume tessellation of the
object to complete our model. Because of the specific requirements for finite element
models of the cardiovascular system with respect to the volume representation, the
mesh resolutions desired throughout the structure and the specific types of boundary
conditions, we have developed our own volume mesh generation package, called Mesh
Machine. The package is based on the Delaunay mesh generation technique, which
has some major advantages when compared to the other existing methods. The
method is fast and reliable and it is very generic since it can handle any realistic
topology.

Our implementation is based on the Bowyer-Watson algorithm and its recent
improvements [5, 97]. Employing the Delaunay circumscribing sphere criterion for
a tetrahedron, the algorithm defines a rule for refining a mesh i.e. inserting a new
vertex into the mesh domain. Elements that do not satisfy the Delaunay criterion
are discarded, thus creating an open cavity in which the new vertex is inserted. Even
though literature shows that this method is commonly used, it does not guarantee
the quality of the generated mesh, while this is essential for the computations.

In our approach, we have developed tessellation algorithms that are able to pro-
duce very high quality meshes. The quality is controlled during the refinement
process. The choice to refine an element depends on both the quality and on the
size of the element. The goal is to obtain good quality elements with a good homo-
geneity in the volume of the elements. To quantify the quality of an element, we
have tested several widely used quality measures as reported by Shewchuk [98] and
Seveno [96] and chose the following one:

qi = 2
√

6
ρ

h
, (3.12)

where qi is the quality of the i-th tetrahedron of the mesh, ρ is the radius of the inner
sphere of the element and h is the length of the longest edge of the tetrahedron.



3.2 Materials and methods 37

(a) Rough action figure
model from the

counter-strike game

(b) Action figure with
interpolated curvature

(c) Rough model of a
cerebral aneurysm

(d) Cerebral aneurysm
with interpolated curvature

Figure 3.6: Two meshes with interpolated curvature. On the top, a rough model from
the Counter-Strike game. On the bottom, an intra-cranial aneurysm. For illustration
purposes only, the additional vertices of quadratic triangles have been linearly connected,
thus creating sub-triangles on the surface. The aneurysm model with interpolated curvature
clearly provides a more realistic description of a smooth vascular structure.
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This quality measure has values in the range [0,1] from completely degenerated
elements to the regular tetrahedron. Based on the quality of mesh elements, we can
restrictively generalise this measure to the quality of the whole mesh as

Q = min
i

qi. (3.13)

In other words, the quality of the mesh is the quality of its worst element. The
use of this criterion ensures that not even one single bad element is allowed. This
measure has the advantage that it is one of the fastest to compute while being
accurate enough for our needs.

At each step of the refinement procedure, we use the quality function to choose
between the several possible vertex insertion locations inside an element (e.g. ele-
ment center) the one that gives the best quality. The local element size homogeneity
is ensured with a size function that gives information on the optimal size of mesh
elements. A value of the size function is associated to each vertex of the mesh and
represents the ideal distance for which the vertex should be connected to its neigh-
bours. The input surface gives the boundary conditions of the size function: for
each surface vertex vi we compute the average distance to its neighbours Li. Next,
the size information is propagated from the surface to the volume using a diffusion
approach to initialise the size function everywhere in the 3D domain. During the
refinement process, an optimal volume wi of each tetrahedral element ti is derived
from the size function as:

wi =
1

6

(

1

4

4
∑

i=1

Li

)3

, (3.14)

with Li the size function associated to the vertex vi of the tetrahedron. The
optimal volume wi represents the volume of a regular tetrahedron with edge sizes
equal to the average of the size associated to its vertices. This optimal volume is
compared to the actual volume to decide whether the element should be refined. By
controlling both quality and volume of elements at the same time, we guaranty that
both requirements are fulfilled when the refinement ends.

After refinement, a post-processing step improves the quality by relocating the
volume vertices without changing the surface tessellation. With a steepest quality
gradient-descent, we move each vertex step by step inside the valid domain. At each
position, the quality of surrounding elements is updated and this process is iterated
until the optimum is found. It has been demonstrated that the quality function
has only one maximum inside the valid domain of the neighbour elements, so the
algorithm is guaranteed to converge to the optimal solution [39].

In order to evaluate the efficiency of our mesh generation approach, we compared
it with five other available packages in a benchmark test, using three criteria: the
quality of the generated meshes, the overall meshing speed, and the robustness
to complex geometries. The test set contains ten different meshes composed of
synthetic objects (e.g. cube, sphere, torus) and real objects (e.g. vertebra, brain
aneurysm).
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The meshes have a wide range of geometric aspects (e.g. multiple surfaces, topolo-
gies) and quality. For the tests, the input meshes were taken as is. However, in
order to provide the user the best possible quality in output, our application is able
to analyse the input mesh quality and to optimise it if needed.

3.2.7 Application examples

We have applied the methods described in this chapter for solid mechanics sim-
ulations and flow simulations. To show the possible application areas we present
two example simulations. The first simulation is a solid mechanics simulation of an
elastic model of an end-diastolic AAA, segmented from cardiac triggered MR with
a steady state free precession (SSFP) protocol. The AAA wall is modelled as a 2
mm thick neo-Hookean material with a shear modulus of 1.0 MPa [28]. The upper
and lower cross-section of the structure have been clamped in all directions. On the
inner wall of the aneurysm we have applied a pressure of 16 kPa (120 mm Hg) to
simulate the maximum systemic load on the vessel wall, using eight equal pressure
increments.

For the second application we have simulated the blood flow in a cerebral saccular
aneurysm segmented from CTA. For the governing equations of the blood flow we
have used the Navier-Stokes equation for an incompressible Newtonian fluid with
a density of 1.08 · 103 kg/m3 and a viscosity of 5.0 · 10−3 Pas. These values are
representative for human blood, when modelled as a continuum. The input signal
for the cardiac flow was modelled as a plug-flow with

v(t) = vo

(

1 +
1

2
(1 − cos(ωt))

)

, (3.15)

with ω = 2π, vo = 0.1, and v in m/s. We simulated 5 cardiac cycles and evaluated
that the periodic solution was stable in the last two periods. In this flow simulation,
the vessel wall was assumed to be rigid. Both simulations have been performed with
the finite element code SEPRAN (Sepra analysis, Delft, the Netherlands).

3.3 Results

3.3.1 Generation of thin-walled structures

The results of the validation of the offset procedure are listed in table 3.1. The
average deviation from the desired offset distance is always below 1% of the offset
distance. The maximum variation measured was approximately 6%.

3.3.2 Conversion of generalised simplex surfaces to triangulated sur-
faces

Figure 3.7 shows merge views of the simplex surfaces for a block, a cerebral vessel
structure with an aneurysm and an AAA vessel wall with the dual triangulation and
the triangulation after application of the algorithm. Clearly, the triangulation with
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(a) Dark: simplex surface, light: dual
triangulation

(b) Dark: simplex surface, light: corrected
triangulation

Figure 3.7: Comparison of simplex surfaces with the dual triangulations and the triangu-
lation after application of the curvature correction algorithm for a cube, a cerebral vessel
structure and an AAA. The best match between the two surface representation is achieved
when there is an equal distribution of dark and light regions over the surface.
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Data set dc
max(S, T ) dc

av(S, T )
AAA1 0.095 0.006
AAA2 0.129 0.011
AAA3 0.120 0.006

Table 3.1: Accuracy of the offset procedure for three AAAs for an inward offset of 2 mm.
Maximum error in mm.

Relative error
Volume Relative error volume triangulation
simplex volume dual with curvature

data set mesh (ml) triangulation correction
AAA1 lumen 164 2.6% 0.06%
AAA1 outer wall 333 1.2% 0.03%
AAA2 lumen 167 1.4% 0.03%
AAA2 outer wall 433 0.6% 0.02%
AAA3 lumen 146 2.1% 0.05%
AAA3 outer wall 206 1.6% 0.04%

Table 3.2: Relative volumetric errors for the dual triangulation and the triangulation with
curvature correction for the lumen and the outer vessel wall for three abdominal aortic
aneurysms. Application of the correction algorithm significantly reduces the volumetric
errors.

the curvature correction is overall closer to the initial simplex surface in all these
cases. Table 3.2 shows the errors in the estimated volume for the lumen and the outer
vessel wall location for three individual AAAs. The results show that the volume
error is greatly diminished by application of the curvature correction algorithm. The
graph in figure 3.8 shows the number of iterations necessary to match the stopping
criterion for the lumen of the first AAA for different values of λ. It appears that
the convergence is relatively insensitive to λ in the range (0.4, 1.0). The eventual
convergence is only affected for extreme values for this control parameter. Similar
results were obtained for tests with the two other AAA shapes. Finally, table 3.3
shows the number of iterations necessary for convergence for a sphere with a radius
of 10 mm at several mesh resolutions. The results indicate that the optimal choice
for λ is also hardly affected by the mesh resolution.

3.3.3 Tetrahedral mesh generation

The results of the benchmark are presented in table 3.4. Mesh Machine provides
the best results for six of the test cases and the second best results for two of the
other test cases. In terms of meshing speed, our meshing application is capable of
generating up to 3000 elements per second on a Pentium IV clocked at 2GHz. In the
context of the application, we use meshes with less than 100,000 elements. Over this
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Face area (mm2) Optimal value of λ Minimum number of iterations
12.0 0.69 19
6.3 0.66 20
3.1 0.66 21
1.4 0.63 21

Table 3.3: Optimal value for λ for a sphere with a radius of 10 mm at several mesh
resolutions. The value of the optimum is hardly affected by the mesh resolution.

0 0.5 1
0

100

200

300

400

500

λ

nu
m

be
r o

f i
te

ra
tio

ns

Figure 3.8: Number of iterations for the curvature correction method for AAA1 as a func-
tion of λ. Convergence is ensured in a wide range for the control parameter λ around its
optimal value.

limit, the CFD computation time becomes prohibitive. Thus, in our application,
the mesh generation takes less than a minute. Overall the meshing speed is similar
to the average speed of the tested programs.

3.3.4 Application examples

Figure 3.9 shows the displacement, the strain and the wall stress distribution in a
patient-specific model of an AAA. The image clearly shows regions with increased
wall stress which are directly related to the specific shape of this aneurysm. The
patient-specific wall stress for AAA may be used for rupture prediction [38].

Figure 3.10 shows the flow magnitude and the wall shear stress distribution in a
cerebral vessel structure with a saccular aneurysm. Clearly, the shear stress in the
aneurysm dome is significantly lower than in the parent vessel. Reduced wall shear
stress can be indicative of vessel wall degradation.

3.4 Discussion

We have developed a methodology for segmentation, modelling and meshing of
vascular structures from medical imaging. Every step in the chain has been tested
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Figure 3.9: Displacement, stress and strain in the wall of an abdominal aortic aneurysm.
Subfigures (b) and (c) clearly shows regions with increased wall strain and stress which are
directly related to the specific shape of this aneurysm.
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Figure 3.10: Flow and wall shear stress in a cerebral aneurysm. Reduced wall shear stress
can be indicative of vessel wall degradation.
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Qi = min(qi)
Model Geom- Grummp Net- Tet- Tet- Mesh-

pack Gen gen Mesh Machine
Cube 32.1 21.0 36.8 0.4 41.3 40.4
Sphere 28.9 19.7 37.7 7.0 39.9 39.8
Cube 2 13.0 16.3 14.1 0.3 14.0 17.4
Double Cube 9.6 8.3 27.9 0.1 21.9 31.5
Tore 36.1 22.8 26.1 0.8 31.2 44.1
Aneurysm 26.9 18.7 21.8 0.8 20.4 29.0
Aneurysm 2 5.4 4.1 6.3 0.0 6.9 3.0
Femur 30.9 19.7 35.0 0.9 34.5 38.8
Tibia 28.8 21.1 32.8 0.7 32.7 39.0
Vertebra 17.4 7.9 18.7 1.0 12.4 16.7

Table 3.4: Benchmark results of Mesh Machine compared to five other meshing software
packages. The mesh quality as defined in equation (3.13) is presented as a percentage.
Boldface figures correspond to the best results for these test cases.

and evaluated. The mean error of the offset procedure used to generate the vessel
walls is very small for all three test geometries. The maximum error is approximately
6% of the offset distance. The fact that these errors are related to the curvature of
the generalised simplices implies that the accuracy can be improved by refining the
simplex mesh.

The curvature correction method for the dual triangulation of a generalised sim-
plex surface produces triangulations that are very close to the original simplex sur-
faces. It appears that the optimal value for the control parameter λ is insensitive to
the specific geometry and also to the mesh resolution. Convergence can generally be
achieved in a broad range for λ around its optimal value within a limited number of
iterations. The initial volume errors in table 3.2 are already relatively small. How-
ever, if the mesh resolution decreases, this underestimation of the enclosed volume
will become worse. This also implies that details that are small with respect to
the mesh resolution will be better retained with application of the curvature cor-
rection method. Therefore, the correction method provides an important accuracy
improvement in the chain leading from a medical image to a computational mesh.

We have successfully applied the PN curved triangles method by Vlachos et al.
[122], originally proposed for visualisation applications, for improved 2D meshing
with quadratic elements. The high quality input surface meshes resulting from
the curvature correction method, in combination with simultaneous quality and
resolution control in the 3D mesh generation algorithm leads to very high quality
meshes, that in general are significantly better than the meshes resulting from the
other five packages that we tested.

Our prototype is very robust: it has been successfully tested on more than hun-
dred meshes. It handles very complex mesh topologies including ones with several
interconnected surfaces or non-manifold objects. Mesh Machine is also capable of
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checking the validity of the input mesh by checking for self-intersection, flat triangles
and holes.

In conclusion, we have developed and optimised a chain of algorithms, the com-
bination of which allows robust, automatic generation of very high quality finite
element meshes for realistic, patient-specific vascular structures, without compro-
mising the accuracy of the segmented geometry.





Chapter 4

Patient-specific initial wall stress in

abdominal aortic aneurysms with a

backward incremental method

Abstract

Patient-specific wall stress simulations on abdominal aortic aneurysms may pro-
vide a better criterion for surgical intervention than the currently used maximum
transverse diameter. In these simulations, it is common practice to compute the
peak wall stress by applying the full systolic pressure directly on the aneurysm
geometry as it appears in medical images. Since this approach does not account
for the fact that the measured geometry is already experiencing a substantial
load, it may lead to an incorrect systolic aneurysm shape. We have developed
an approach to compute the wall stress on the true diastolic geometry at a given
pressure with a backward incremental method. The method has been evaluated
for several simple test problems. The results show that the method can pre-
dict an unloaded configuration if the loaded geometry and the load applied are
known. The effect of incorporating the initial diastolic stress has been assessed by
using three patient-specific geometries acquired with cardiac triggered MR. The
comparison shows that the commonly used approach leads to an unrealistically
smooth systolic geometry and therefore provides an underestimation for the peak
wall stress. Our backward incremental modelling approach overcomes these issues
and provides a more plausible estimate for the systolic aneurysm volume and a
significantly different estimate for the peak wall stress.

4.1 Introduction

Wall stress simulations on abdominal aortic aneurysms (AAA) have been widely
recognised to provide an indication of rupture risk on a patient-specific basis [37,
38, 86, 110, 120, 125]. Fillinger et al. [38] have actually shown that wall stress can
have a higher discriminatory value than the currently used maximum transverse
AAA diameter.

47
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The aneurysm shape has an important influence on the wall stress distribution
[32, 123]. The correct approach for modelling the influence of intra-luminal throm-
bus is still controversial. Modelling the thrombus as an elastic medium leads to a
diminished load on the vessel wall [27]. Clinical studies, however, indicate that the
pressure at the aneurysmal wall is not affected by the presence of thrombus [95, 112].

Non patient-specific values are often used for the wall thickness and the material
properties, since these model parameters cannot easily be assessed on a patient-
specific basis. The value for the maximum pressure is either the monitored systolic
pressure [37, 38, 86, 120, 125] or a non patient-specific systolic value [110].

All of the aforementioned patient-specific studies rely on non cardiac triggered
computed tomography angiography (CTA), for which the measured AAA geometry
is a non-trivial average of the dynamic aneurysmal geometry. With cardiac triggered
CTA and magnetic resonance angiography (MRA) it is possible to capture the dy-
namic geometry at several stages in the cardiac cycle. However, medical imaging
methods can never provide the unloaded aneurysmal geometry in a living subject,
which would be the preferred starting geometry for a wall stress simulation load
sequence.

None of the previously mentioned studies on patient-specific wall stress in AAA
take into account the effects of the initial loads present in the diastolic geometry.
Instead, the measured geometry is used as an unloaded starting point for a simu-
lation in which the full systolic pressure is applied. We will refer to this modelling
approach as the classical method for AAA wall stress simulations. Although this
classical method will lead to a realistic range for the stress, the size of the systolic
geometry may be overestimated.

There have been at least two previous publications on this subject. Raghavan
et al. [87] assume that the forward deformation field is linearly related to the back-
ward deformation field and they use a population mean for the compliance of the
AAA, based on two cadavers, to estimate the volume change to the unloaded con-
figuration. A recent paper on this subject by Lu et al. [67] uses an inverse modelling
approach which is similar to our approach to compute the zero-pressure configura-
tion for cerebral aneurysms. The paper by Lu et al. focusses on the comparison of
constitutive models for the aneurysm wall. No attempts were made in this earlier
publication to investigate the importance of the alternative modelling approach by
a comparison to the classical approach.

The method presented in this chapter provides a means to obtain an approxima-
tion of the initial stress in the diastolic geometry by using a backward modelling
approach. Although the application in this chapter is AAA, the method may be
useful for stress simulations for all structures for which only a loaded configuration
can be measured, as is often the case with medical applications. The method has
been tested with simulations on idealised geometries for which the unloaded geom-
etry and the reference configuration are known. We also applied our method on
several realistic, diastolic AAA geometries obtained with cardiac triggered MR and
compared our results with the results from the classical approach. The compari-
son shows that apart from the predicted overestimation of the volume, the classical
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approach also provides an underestimation of the peak systolic wall stress.

4.2 Methods

The constitutive wall model and the finite element formulation that have been used
for the implementation of our method have been previously described in [22, 115,
118]. However, since these papers focus on different applications and because the
implementation is essential for our method, we briefly recapitulate the physics and
the specific finite element method.

4.2.1 Constitutive wall model

For the AAA vessel wall we use the neo-Hookean model describing an isotropic elas-
tic medium with large deformations. We consider an incompressible elastic medium
in the time dependent domain Ω(t) ⊂ R

3, bounded by Γ(t) = ∂Ω(t), with outward
normal n. Let F be the deformation gradient tensor

F =
∂x

∂X,
(4.1)

with X the reference configuration and x = x(X, t) the current configuration. In
the absence of body forces, the equations of motion and continuity from continuum
mechanics theory are

div(σ) = 0 in Ω, (4.2)

det(F ) = 1 in Ω. (4.3)

The Cauchy stress for an incompressible elastic medium reads

σ = −pI + τ , (4.4)

with p the hydrostatic pressure, I the identity and τ the extra stress resulting from
deformations. For a neo-Hookean material, we have τ = G(B − I), with G the
shear modulus and B = F ·F T the left Cauchy-Green strain tensor (also known as
Finger tensor).

The set of equations is completed with boundary conditions on each part of the
domain boundary Γk(t), with

⋃

k Γk(t) = Γ(t), and Γk(t)
⋂

Γl(t) = ∅, ∀k 6= l.
The Dirichlet boundary conditions, which explicitly fix the displacement on the
boundary read

x · n = xn, (4.5)

x · ti = xti
, n · ti = 0, i ∈ {1, 2}, (4.6)

where t1 and t2 are linearly independent vectors. The Neumann boundary condi-
tions, in which the surface traction (σ ·n) in the normal and tangential direction is
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prescribed read

(σ · n) · n = sn, (4.7)

(σ · ti) · t = sti
, n · ti = 0, i ∈ {1, 2}, (4.8)

A special case occurs when sn = 0. This situation is referred to as a stress-free
boundary condition.

4.2.2 Weak formulation

Let W =
{

w ∈
[

H1
o (Ω)

]3
}

, with H1
o (Ω) the functional Hilbert space of functions

f that satisfy the Dirichlet condition f |Γ = 0 and let Q =
{

q ∈ L2 (Ω)
}

. With
substitution of the Neumann boundary conditions and partial integration, the weak
formulation of equations (4.2) and (4.3) becomes

∫

Ω(t)

(∇w)
T

: σdΩ =

∫

Γ(t)

w · (σ · n)dΓ, ∀w ∈ W, (4.9)

∫

Ω(t)

q(det(F ) − 1)dΩ = 0, ∀q ∈ Q. (4.10)

The notation ” : ” is used to denote the 3D double dot product A : B = tr(A · B).
Let Ωn := Ω(tn) and Γn := Γ(tn). To evaluate the integrals in (4.9) and (4.10)

over the domain (Ωn,Γn), we use the updated Lagrange approach, which implies
that the previous configuration (Ωn−1,Γn−1) is taken as the reference configuration
for (Ωn,Γn). The gradient operator is also interpreted with respect to the previous
configuration. With F n

i we will denote the deformation tensor from the domain Ωi

to the domain Ωn. Similarly, we will denote the gradient operator with respect to
the domain Ωi with ∇i. This way the total transformation from Ωo to Ωn becomes

F n
o = F n

n−1 · F n−1
o = (∇n−1xn)

T · (∇oxn−1)
T

. (4.11)

It is customary in the updated Lagrange method to take the displacement field
of the material points as the unknown. At time tn, this field is defined through
ui(tn) = xi(tn) − xi(tn−1), where xi(tn) and xi(tn−1) denote the position of a
material point at two subsequent points in time. The updated Lagrange method is
schematically depicted in figure 4.1.

When writing ∇n =
(

F n
n−1

)−T · ∇n−1 the weak form of the system (4.9,4.10)
becomes

∫

Ωn−1

(∇n−1w)
T

:
(

F n
n−1

)−1 · σJn
n−1dΩn−1 =

∫

Γn−1

w · sJ̃n
n−1dΓn−1, (4.12)

∫

Ωn−1

q(J − 1)Jn
n−1dΩn−1 = 0, (4.13)

where Jn
n−1 and J̃n

n−1 are defined through dΩn = Jn
n−1dΩn−1 and dΓn = J̃n

n−1dΓn−1.
In equation (4.12), s is defined by equations (4.7) and (4.8).
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Figure 4.1: The updated Lagrange method.

4.2.3 Finite-element formulation and solution strategy

To obtain a finite-element formulation of the system (4.12,4.13) the domain (Ω,Γ)
is divided into non-overlapping discrete elements. The discretised domains will be
denoted by (Υ,Ψ), with Υ = {xi}m

i=1 the complete collection of m finite element
nodes and Ψ ⊂ Υ the collection of finite element nodes on the boundary of Υ. Within
each element, the physical unknowns are approximated with Lagrange interpolation
polynomials.

At each time step, the non-linear algebraic system rendered from (4.12,4.13) is
linearised with Newton’s method and we iterate to obtain a converged solution.
The linearised system at each iteration step is preconditioned with an incomplete
LU decomposition and solved with the Bi-CGSTAB method [117].

4.2.4 Notation conventions

To avoid any confusion about terminology that may have different meanings in the
classical approach and the backward approach, we adopt a few conventions. With
the initial geometry Υo we will always refer to a configuration in which the pressure
is zero. In our model this configuration is assumed to be unloaded. With the
reference geometry Υr, we will denote the geometry as it would be measured in
a medical image, loaded with a non-zero pressure Pr. The geometry at maximum
load Pm(> Pr), Υm will be referred to as the maximum loaded geometry . If we
write Υ with an index other than o, r or m, this index is related to the time series
Υi := Υ(ti).

The deformations between two consequent time steps can be described by the
collection of vectors describing the translations of the individual domain points
Vi = {vj = xj(ti)−xj(ti−1) : xj(ti) ∈ Υi,xj(ti−1) ∈ Υi−1}. The total deformation

from Υo to Υi can now be described by Ui = {ui : ui =
∑i

j=0 vj}. If a load is
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Figure 4.2: Backward incremental modelling approach.

applied on Υo, at time ti the wall stress depends on the current shape, the pressure
Pi, the deformations to the current configuration Ui and the shear modulus G, thus
we can write

σi = σ(ti) = σ (Υi, Pi, Ui, G) (4.14)

to fully describe this configuration.

4.2.5 Backward incremental method

Our backward method is based on the backward application of computed forward
deformations. At every iteration i, Vi is computed as before, but instead of taking
σi = σ(Υi, Pi, Ui, G) as the next configuration, we take σi = σ(Υr, Pi, Ui, G), by
which we implicitly update Υo by interpreting the computed forward deformations
on the fixed reference domain. Clearly, the forward domain that can be computed
by applying Vi on Υr will be different at every iteration. We will denote this domain
by Υi

r̃ and the corresponding deformation with F r̃,i
r , thus explicitly indicating the

dependence on i. The i-th approximation of Υo will be denoted by Υi
o, and the

deformation from Υr to Υi
o with F o,i

r . The principle of the backward modelling is
schematically depicted in figure 4.2. Since the computed forward deformations do
generally not lead to an equilibrium between the stress and the pressure when these
deformations are interpreted as deformations leading to the fixed reference domain,
the system is not balanced at the start of each time step. However, if the next
pressure increment would be extremely small, convergence of the iteration process
at this next step will lead to an update Vi of Ui which ensures balance between
the stresses and the pressure on a domain Υi

r̃ that is very close to Υr. In the
backward incremental approach, the iteration process thus serves not only to deal
with the nonlinear nature of the system, but also to correct the error introduced in
the previous incremental step.
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Figure 4.3: Cube geometry and cylinder geometry.

In the simulations we gradually increase the pressure on Υr in n steps to Pr, using

Pj = Pr sin

(

jπ

2n

)

, 0 ≤ j ≤ n, (4.15)

thus applying large pressure increments at the beginning, and small pressure in-
crements at the end of the process. The exact shape of the pressure-time curve
is not essential as long as the final pressure increment is small and convergence is
established at each step. Since vj → 0,∀vj ∈ Vi as Pi − Pi−1 → 0, the process
converges to a fixed collection U = {ui} as n → ∞. Also, since the process con-
verges to an equilibrium at iteration n − 1, the error in Υn

r̃ , for a finite number of
increments n, will be proportional to |Pn − Pn−1|. Since the deformations and the
stresses in the final solution are in equilibrium, we can compute the approximation
for the unloaded geometry by applying the opposite of U on Υr to obtain Υo.

4.2.6 Simulations

We performed two simulations on the initial geometries depicted in figure 4.3. For
both geometries, we first loaded the initial geometry Υo with a pressure Pr to obtain
a deformed reference geometry Υr. Next, we assumed the initial geometry unknown
and we applied the backward incremental method with 16 increments to reproduce
it. For the cylinder (height 80 mm, inner radius 20 mm, wall thickness 2 mm) the
upper and lower cross-sections (I and II) were fixed in the plane normal direction.
To avoid further horizontal motion, two distinct points on face I were fixed in the
x and y direction respectively. For the shear modulus we again chose a value of
G = 3.3 MPa. The maximum load applied on face III was 1.0 MPa. The test
criterion was the error in the approximation of Υo. To test the assumption that
applying more increments in the backward method leads to an improved accuracy,
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(a) 3D projection view (b) Cross-section on an
image slice

Figure 4.4: Segmentation of an aneurysm from an end-diastolic MR 2D B-TFE volume.
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Figure 4.5: Approximation of the initial geometry of a cylinder, the colours represents the
Von Mises stress in kPa. The pressures (P) are in mm Hg.
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Figure 4.7: Von Mises stress (kPa) for aneurysm 2 at 120 mm Hg.
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we also varied the number of increments in the simulation for the cube. The length
of the principal axis of the cube is 0.5 mm. The cube’s faces that coincide with the
coordinate planes (I,II and III in the figure) were clamped in the normal direction.
On the upper face of the cube (IV) a maximum pressure of Pr = 1.0 MPa was
applied. The shear modulus of the material was taken as G = 3.3 MPa.

For the simulations on real AAAs the outer vessel wall has been segmented from
the images for the end-diastolic phase from three gated 2D B-TFE MR image ac-
quisitions using 3D active objects [25]. An example of a segmented AAA in the
MR image is depicted in figure 4.4. Further details about the imaging protocol, the
segmentation method and the meshing may be found in [23] (chapters 2 and 3).
The assumed wall-thickness for the AAAs was 2 mm. The upper and lower cross
sections of the aneurysm were clamped in all directions. For the shear modulus we
used a value of 1.0 MPa, which is closely related to the measured realistic value for
the Young’s modulus for aneurysmal tissue of 2.7 MPa used by Di Martino et al. [28]
for the working area of the stress-strain curve. For the first geometry (AAA1) we
first applied the backward incremental method and computed the initial, unloaded
geometry. Next, we re-applied the diastolic pressure on this geometry and checked
that we obtained an accurate approximation of the measured diastolic geometry.
In addition, we also compared the backward approach with the classical approach
for all three AAAs. For this, we applied the backward incremental method with
a reference pressure of 10.7 kPa (80 mm Hg) on the inner aneurysmal wall. Next,
we increased the pressure to 16 kPa (120 mm Hg) to obtain Υm and compared the
results with direct application of 16 kPa on the diastolic geometry. The number
of increments for the backward modelling procedure in these simulations was 64,
which proved sufficient for a high accuracy.

For the idealised simulations we used a Q+
2 P1 hexahedral Crouzeix-Raviart el-

ement (27 nodes). The wall stress simulations on realistic AAAs were performed
with a Q+

2 P1 tetrahedral Crouzeix-Raviart element (15 nodes). All of the simula-
tions have been performed with the finite element code SEPRAN (Sepra analysis,
Delft, The Netherlands).

4.3 Results

The initial geometries were well reproduced in the tests on the ideal geometries. The
maximum displacement for the cube was 6.3·10−2 mm, which is 13% of the principal
length of the cube. The relative error of the reference diastolic maximum Von Mises
stress with regard to the analytical solution was below 0.1%. The maximum mesh
error in the approximated equilibrium was found to be 3.3 · 10−5 for 16 iterations,
which is 7 ·10−3% of the principal size of Υo. The results in figure 4.8 illustrate that
this error may be significantly diminished by increasing the number of increments
in the backward method. Direct application of the approximated displacement field
on the reference diastolic geometry gave an error of 3.7 · 10−5 mm with respect to
Υo, which is less than 0.01% of the cube’s principal length.
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Figure 4.8: Maximum error of the approximated reference geometry against the number of
iterations for the uniaxial deformation of a cube.

Maximum Maximum Maximum Maximum error
Von Mises Von Mises displacement reference

Simulation stress (kPa) strain (mm) geometry (mm)
AAA1 backward 379 0.30 2.9 1.8 · 10−3

AAA1 direct 283 0.23 1.8
AAA2 backward 539 0.50 7.3 2.1 · 10−2

AAA2 direct 405 0.40 3.0
AAA3 backward 652 0.62 8.5 2.0 · 10−2

AAA3 direct 470 0.45 2.6

Table 4.1: Simulation results for the realistic aneurysm shapes as segmented from MR.

The several stages for the simulation on the cylinder are depicted in figure 4.5.
The maximum displacement in this test was 4.3 mm. The maximum error in the
approximation of the equilibrium reference geometry was 4.0 · 10−3 mm. The error
in the approximation of the original unloaded geometry was 7.3 · 10−3. Both values
are well below 5 ·10−2% of the cylinder’s radius, and they represent less than 0.17%
of the maximum displacement.

The results of the simulation in which we used the backward incremental method
to compute the initial geometry of AAA1 are depicted in figure 4.6. The maximum
displacement between the diastolic and the computed reference geometry was 2.3
mm. The maximum error between the measured geometry and the reproduced
geometry was 1.8 · 10−3 mm. For all three realistic AAAs, the computed peak wall
stress was higher when the initial diastolic loads were taken into account via the
backward incremental method. Table 4.1 lists the simulation results for all three
AAAs for both our backward modelling and the classical modelling of systolic wall
stress. Comparisons between the Von Mises stress for AAA2 and AAA3 are shown
in figures 4.7 and 4.9.
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Figure 4.9: Von Mises stress (kPa) for aneurysm 3 at 120 mm Hg.

4.4 Discussion

The peak wall stress and strain via the backward modelling approach were signifi-
cantly higher than in the classical approach for all three tested AAAs. The expla-
nation is that the geometry tends to become locally smoother when a higher load is
applied. In our method, the extra load applied to the measured diastolic geometry
after computing the initial stress is only 40 mm Hg, whereas it is 120 mm Hg in
the classical approach. This means that the high-curvature areas in the measured
diastolic geometry will better retain their curvature in the backward approach than
in the classical approach. It has been shown that high local curvature may lead to
an elevation in the local wall stress [32, 91]. Therefore, it is likely that the higher
peak wall stress with the backward approach is at least partially due to this higher
curvature.

There are still several simplifications in our model. First of all, we assume that
there is no residual wall stress in the unloaded AAA geometry. As yet, there is
no method known that computes these residual stresses for a realistic AAA. High
residual stresses might affect the accuracy of our method. We used idealised values
for the material properties, the pressure and the wall thickness and we neglected
the influence of the intra-luminal thrombus, which is still rather controversial.

We used a constitutive model for the AAA wall which assumes a linear stress-
strain relation, while it has been reported that the true behaviour of the AAA wall
is both geometrically and materially non-linear [85, 111, 119]. Other publications
on material models for vascular structures have investigated the non-linear influence
of fiber distributions, which may also be important for the AAA wall [30, 31, 118].
The shear modulus we used is based on the working area of the stress-strain curve
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and thus to the stiffness of the deformed geometry at the diastolic pressure. With
a material model with a nonlinear stress-strain relation the tissue becomes stiffer
when it experiences strain. This means that the deformations that we compute be-
tween the initial geometry and the reference geometry are most probably too small,
since a non-linear stress-strain relation would cause the material to be weaker in the
regime between the unloaded and the reference geometry. Thus, using a more so-
phisticated material model would most likely lead to a smaller initial geometry. The
interesting configuration is, however, the maximally loaded geometry from which the
peak pressure is derived, which is the clinically important parameter for AAA. It is
unlikely that the equilibrium stress in the loaded reference configuration is affected
very much by the assumption of the linear stress-strain relation, since the stress
for this relatively thin-walled structure will mainly be dictated by the pressure and
the shape of the AAA. The displacements between the measured diastolic reference
geometry and the maximally loaded systolic geometry will generally be smaller than
the displacements between the reference geometry and the initial geometry. Also,
in this part of the regime, the assumption of linearity of the stress-strain curve is
more valid. Therefore, the expected influence of using the neo-Hookean model for
the predicted peak stress is expected to be limited.

Even with the neo-Hookean material model, the influence of incorporating the
initial loads will depend on the material stiffness, which inhibits a large amount of
uncertainty and which is most likely not the same everywhere in the diseased vessel
wall [111]. If a model based on a nonlinear stress-strain relation is employed or if
fibers are included, there are even more parameters for which the exact values are
unknown, which makes the outcome less predictable and less transparent. It is likely
that the precise influence of incorporating the initial loads will be more dependent
on the compliance of the AAA, which may vary from patient to patient, than on
the material model used for the AAA wall.

Raghavan et al. [87] have previously investigated the influence of using a more
realistic unloaded geometry of AAA for the wall stress. However, their model is
based on the assumption that the backward deformation field is linearly related
to the forward deformation field through a single factor. In our simulations we
do not make such a simplification and the computed deformation fields are in fact
not linearly related. Furthermore, their previous study is based on a single AAA
geometry which has been obtained with ungated CT instead of a gated method,
which is essential to obtain the correct diastolic geometry. Also, the volume ratio
between the zero pressure configuration in this work of Raghavan et al. is a fixed
input parameter of the model, which is based on a cadaver study of two AAAs. In our
method we can use the patient-specific blood pressure to predict the initial geometry,
so we do not rely on population means. On the other hand, the constitutive model
employed in the paper of Raghavan et al. is more advanced than the linear stress-
strain relation that we have assumed. The increase of the peak wall stress reported
in this previous work is only 3.5%, which is less than the increase that we have
witnessed in our simulations. These differences could be due to the constitutive
model, the different method to approximate the initial geometry or differences in
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the imaging and segmentation method. Since it appears that the local curvature
becomes more important when the true initial geometry is used, the segmentation
method and the amount of smoothing applied may be important for the predicted
peak wall stress.

Another similar study has been presented by Lu et al. [67]. In that work the
focus is on cerebral aneurysms, which is a different application area, and there is
no comparison between the peak wall stress with the traditional approach and with
the correct initial geometry.

A possible alternative method to compute the equilibrium stress on the diastolic
geometry might be to first assume a high shear modulus and then compute the stress
at the reference diastolic pressure, σ̂. Because of the high stiffness the pressurised
geometry will stay approximately the same as the reference geometry. The equation
of motion in the presence of body forces reads

div(σ) = f . (4.16)

The computed initial stress σ̂ can be introduced in the simulation for the maximum
load, with normal stiffness, by continuously applying a body force of f = −div(σ̂).
We have also used this approach and performed the simulations for the uniaxial
deformation of a cube and the inflation of a cylinder. The resulting stress fields were
found to be similar to the stress computed with the backward incremental method,
but convergence was generally poor. Because of the additional disadvantage that
this method does not directly provide a deformation field to Υo, and therefore also
does not provide a simple approximation of the wall strain, we did not pursue this
approach any further.

For all the test simulations that we performed, the initial geometry could be
well replicated by application of the backward method on the reference geometry,
indicating that this method is suitable for an improved modelling of AAA wall stress.
The classical modelling approach does not only lead to an overestimation of the
maximum aneurysm volume, but also to an underestimation of the wall curvature
and the wall stress. The backward incremental approach overcomes these problems
and leads to a more realistic systolic geometry and an assumably better estimate of
the peak wall stress, which might lead to a better rupture predictor.



Chapter 5

Sensitivity of peak wall stress in

abdominal aortic aneurysm to

geometrical variations

Abstract

Finite element method based simulations of patient-specific wall stress in abdom-
inal aortic aneurysm (AAA) may provide a more accurate rupture risk predictor
than the currently used maximum transverse diameter. For these simulations, the
patient-specific AAA shape must be reconstructed from medical images, which
may lead to uncertainties with respect to the exact geometry. In this study, we
have investigated the sensitivity of the wall stress in AAA with respect to these
aspects. We have acquired MR and CT images for four patients with AAA. Three
individual users have delineated the AAA outer wall contours on the image slices,
which were used to generate new synthetic images with ideal features for segmen-
tation. We generated multiple segmentations based on the manual contours from
one single user with a 3-dimensional active object (3DAO) at various parameter
settings to estimate the influence of segmentation inaccuracies on the wall stress.
The synthetic images for the different users were segmented with parameter set-
tings allowing a sufficient level of reproducibility to investigate the influence of the
user variability. We also investigated whether the variations we observed could be
diminished by applying subsequent smoothing on the segmented AAA surfaces.
For sufficiently smooth models of the AAA wall, the peak wall stress is repro-
ducible for three out of the four AAA geometries. The 0.99 percentiles of the wall
stress show excellent reproducibility. The variations induced by user variability
are larger than the errors caused by the segmentation variability. Also, these
errors can no longer be accounted to very local effects only. Although subsequent
smoothing may reduce the variations caused by uncertainties in the geometry, this
may also lead to new, systematic errors. We conclude that the peak wall stress
in AAA is sensitive to small geometrical variations. To increase reproducibility it
appears to be best not to allow too much detail in the simulations. This could be
achieved either by using a sufficiently smooth geometry representation or by using
a more robust statistical parameter derived from the wall stress distribution.

61
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5.1 Introduction

Wall stress simulations on abdominal aortic aneurysms (AAA) have been widely
recognised to provide an indication of rupture risk on a patient-specific basis [37,
38, 86, 110, 120, 125]. Fillinger et al. [38] have actually shown that wall stress can
have a higher discriminatory value than the currently used maximum transverse
AAA diameter.

The aneurysm shape, particularly the local curvature, has an important influence
on the wall stress distribution [32, 123]. Other potentially important parameters
are the patient’s blood pressure, the local wall thickness and variations in the wall
material properties. The correct approach for modelling the influence of intra-
luminal thrombus is still controversial. Modelling the thrombus as an elastic medium
leads to a diminished load on the vessel wall [27]. Clinical studies, however, indicate
that the pressure at the aneurysmal wall is not affected by the presence of thrombus
[95, 112].

Non patient-specific values are often used for the wall thickness and the material
properties, since these model parameters cannot easily be assessed on a patient-
specific basis. The value used for the maximum pressure is either the monitored
systolic pressure [37, 38, 86, 120, 125] or a non patient-specific systolic value [110].

For patient-specific wall stress simulations, the shape has to be reconstructed
from medical images. So far, most studies have been based on non-cardiac triggered
CTA, which implies that the geometry is a non-trivial average of the systolic and the
diastolic configuration. In chapter 4 of this thesis, we have shown the importance
of using the correct unloaded geometry from cardiac gated images for accurate
peak wall stress estimates. Since cardiac triggered CT is not yet widely available,
this method so far relies on MRA. The segmentation method and the modelling
method we use for the construction of the computational model of AAA is based on
deformable models and has been described in chapters 2 and 3.

In this chapter we investigate the geometrical sensitivity of the computed peak
wall stress in AAA. Previous work on reproducibility and sensitivity of computa-
tional methods on patient-specific data has mostly focussed on flow and wall shear
stress. Thomas et al. [108] have investigated the reproducibility of the geometry,
flow rates and wall shear stress in MR-based models of the human carotid bifurca-
tion. The results of this work indicate that even though the geometrical variation
is limited, the variation in the computed time averaged wall shear stress is consid-
erable, up to 37%. Other flow-related sensitivity studies based on MR have been
conducted by Moore et al. In [71] and [73] the main conclusion is that smoothing
may be essential for accurate estimation of wall shear stress. In [72] an error of
up to 35% is reported in the computed wall shear stress for MR-based models of
aortoiliac bifurcations in rabbits.

There are several sources for geometrical variation in reconstructed finite element
meshes based on image data. First of all the choice of imaging modality and the
imaging parameters can influence an object’s appearance on medical images. In
general, CTA has superior contrast and resolution, but suffers from a poor feature
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for the outer AAA wall [79, 104]. The resolution and signal-to-noise ratio of MR is
limited, resulting in significant partial volume and feature uncertainty for complex
shapes such as AAAs.

A second cause of geometrical errors is the method used to segment the image and
to reconstruct the object from the segmentation result. An often employed method
to reconstruct computational domains from images is to first segment contours on
the image slices and to fit a model of the object through these contours [37, 84, 94].
A drawback of this approach is that the influence of variations in the image features
or delineated contours in the segmentation on the wall stress is affected, usually
dampened, by the model representation making it impossible to truly measure the
influence of these variations. To overcome this problem in our study, we have used
deformable models to segment the images. This approach allows us to generate
finite element meshes that are very close to the segmented object, without using
any specific prior shape assumptions about the object that is being reconstructed,
apart from those resulting directly from the parameter settings of the deformable
surface.

The third source of variation is the uncertainty of the objects representation in the
medical image, which may be judged differently by different observers. Automatic
methods often use shape assumptions and operate on a limited set of features, which
may also lead to errors with respect to the human observers.

Hardware phantoms can only provide realistic bounds for variations if the issues
and inaccuracies involved in the segmentation, reconstruction and numerical sim-
ulations for these phantoms are similar to the ones encountered in practice. To
overcome this limitation we have based our study on four realistic, very different
AAA shapes by generating software phantoms based on the manual delineations of
medical images by three users.

5.2 Methods

5.2.1 Curvature

First, we will briefly revisit the basic principles of the definition of a surface’s curva-
ture. The geometrical interpretation of this definition is depicted in figure 5.1. Let
S be a smooth 2D manifold embedded in R

3. For any point p ∈ S, with coordinates
xp and normal np, a family of planes Π(np, θ) can be constructed such that np lies
within Π. The parameter θ can be interpreted as the angulation of Π around np

with respect to a fixed reference point that is not on np. Every plane qθ ∈ Π defines
an intersection contour αθ = qθ

⋂

S, for which p ∈ αθ. With the contour αθ we
can construct an arc βθ(s) such that βθ(0) = xp and d/ds(βθ(s))|s=0 = tθ, with
‖ tθ ‖= 1. The normal curvature in the direction of tθ, κp(tθ) can now be defined
through

d2βθ(s)

ds2

∣

∣

∣

∣

s=0

= κp(tθ)np. (5.1)
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The principal curvatures κ1
p and κ2

p are defined as the minimum and maximum nor-
mal curvature at p. The principal directions related to these respective curvatures,
t1p and t2p, form an orthonormal basis for the tangent space to S at p [40, 81, 106, 109].
The principal curvatures are equal to the reciprocals of the maximum and minimum
radii of the circles described by the arcs βθ. The Gaussian curvature is defined as
the product of the two principal curvatures and the mean curvature is defined as
their average.
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Figure 5.1: Definition of the normal curvature on a smooth manifold.

5.2.2 Images

CT and MR images have been acquired for four patients with AAA who were await-
ing surgery. The time periods between the MR and CT scans were 0 days, 40 days,
16 days, and 25 days, respectively. The relevant MR imaging parameters have been
described in chapter 2, section 2.2. The contrast-enhanced CT images have a resolu-
tion of 0.6× 0.6× 3 mm3. Three users have manually delineated the contours of the
outer vessel wall between the branching with the renal arteries and the bifurcation
into the iliac arteries on both the MR and the CT images. The manual contours
have been used to generate new synthetic images with a pixel value of 100 for the
AAA region and 0 for the background. The partial volume effect was mimicked by
first generating these synthetic images at a five times higher resolution and down-
sampling these images to the original resolution by taking the average grey value
of the high resolution voxels enclosed in the low resolution voxels. An example of
a manual contour and a synthetic image for the MR acquisitions is shown in figure
5.2.

5.2.3 Deformable model

The 3D active objects (3DAO) implementation we used for the segmentation sim-
ulations is based on the work by Delingette [24] and has been previously used for
segmentation of vascular structures, including AAA [23, 41, 79]. The 3DAO is
a collection of connected non-planar simplex faces in which every 3DAO simplex
node has exactly three neighbour vertices. The surface can be iteratively deformed
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Figure 5.2: Generation of synthetic MR feature images based on manual segmentations of
the AAA outer wall.

based on fictitious forces computed from the image features and shape regularisa-
tion forces. The new position for a node is determined at every iteration from the
current position via a time-discretised second-order Newtonian-evolution equation

P t+1
i = P t

i + (1 − γ)
(

P t
i − P t−1

i

)

+ αF int + βF ext, (5.2)

where P t
i denotes the position of the i-th simplex node at iteration t. With F int

and F ext we denote the internal force (ensuring smoothness) and the external force
(fitting the node to image features) respectively. The parameters α and β denote
the respective weighting coefficients of these forces and γ is a damping coefficient
used to stabilise the deformation process. In the segmentations presented in this
chapter we used γ = 0.8.

The synthetic images described in section 5.2.2 have been segmented with 3DAO
using a threshold force, which pushes a 3DAO node outwards when the local intensity
value is higher than the threshold and inwards when the local intensity value is below
the threshold value. To account for the highly orthotropic voxel size in the image
data, the external forces are only imposed on vertices that are within a user defined
distance of an imaging plane. In the segmentations presented in this chapter, this
distance criterion was set to 0.25 times the slice distance. For the approximation of
the local image intensity at the 3DAO vertices we used bi-linear interpolation in the
closest imaging plane, thus obtaining sub-pixel accuracy. For these segmentations
we used the full-width at half maximum criterion [51], resulting in a threshold of
50.

The internal forces we used for the segmentation are based on a regularisation
approach that is aimed at making the estimated local surface curvature at a vertex
equal to the curvatures of the three neighbouring vertices [24]. Let vi be a simplex
node with neighbours n1

i , n2
i and n3

i , as depicted in figure 5.3. These four nodes
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Figure 5.3: Computation of the simplex angle φi for the internal force calculation in the
deformation process of the 3DAO.

uniquely define a sphere s, with radius rs and center os. Let Pi denote the plane
defined by the neighbour nodes, with normal ni, and let c = Pi

⋂

s denote the
intersecting circle of this plane and the sphere, with center oc. The radius of this
circle will be denoted by rc. Let di denote the vector from os to oc. Let the vector
from vi to n1

i be denoted by xi. The simplex angle φi is defined through the relations

sin (φi) =
rc

rs

sign(xi · ni), cos (φi) =
‖ di ‖

rs

sign(di · ni), −π ≤ φ ≤ π. (5.3)

The mean curvature hi may be estimated from the simplex angle as

hi =
sin(φi)

rc

. (5.4)

The 3DAO is initialised with a small tubular simplex mesh around an automat-
ically tracked centre line in the feature image. To allow for the shape changes
necessary to come from this initial shape to the larger AAA shape, the mesh is
refined during the deformation process by splitting faces based on a size criterion.
For the termination of the segmentation process we used the relative change of the
enclosed volume of the 2-simplex surface. The deformation process is halted if the
relative change in volume is below 0.001 for two subsequent iteration steps. The
resampling of the faces in the iteration process may destabilise the deformation pro-
cess. To come to a stable deformation in the final stages, the deformation process
is restarted after the initial convergence without the refinement option until the
convergence criterium is matched again.
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5.2.4 Normal vector voting

For the approximation of the curvature of the segmented AAAs we have used the
normal voting approach of Page et al. [81] on the curvature corrected dual triangu-
lation of the 2-simplex mesh (see Section 3.2.3). For completeness’ sake we briefly
describe the essentials of this approach and our implementation choices. For a full
description the reader is referred to the original article. Let n denote the number of
edges in the mesh and let lk, 1 ≤ k ≤ n denote the length of the k-th edge. For each
vertex v in the triangulation, with coordinates xv, a geodesic neighbourhood Nv is
determined with a fast-marching approach. The size of the geodesic neighbourhood
is based on a user-defined factor f and the average edge length through

Sg =
f

n

n
∑

k=1

lk. (5.5)

A triangle is considered to be part of Nv if the geodesic distance of all triangle
vertices is smaller than Sg. Let the triangles in Nv be denoted by ti, 1 ≤ i ≤ m, the
triangles centers of gravity by ci, with coordinates ci, and the triangle normals by
ni. For each plane pi = pi(xv, si,v), with si,v = ni × (xv − ci), the in-plane circular
arc ai is constructed, connecting ci and v such that the tangent of ai at ci is normal
to ni. The normal vote wi for the estimated normal at v of triangle ti is the vector
that is normal to ai at v and lies within pi, as depicted in figure 5.4. The l votes
wi for the normal at v are collected in a weighted sum of covariance matrices

V =

l
∑

i=1

hiwiwi, (5.6)

where the weight hi is based on an exponential decay with the geodesic distance gi

between ci and v

hi =
Ai

Am

e−
gi
σ , (5.7)

with Ai the area of triangle ti, Am the maximum triangle area in the mesh, and
σ a parameter controlling the rate of decay. For the curvature estimates on the
triangulated meshes we have used σ = Sg/3 resulting in a negligible influence of
points over the geodesic boundary. The estimate for the normal nv at vertex v is
the eigenvector of V corresponding to the largest eigenvalue. The original design in
Page et al. [81] uses saliency maps to classify the mesh vertex in order to correctly
deal with corners and creases. However, in our application we only calculate the
curvature at regular parts of the AAA wall, where these structures are not expected.
For the final estimation of the curvature, Page et al. have adapted the method
proposed by Taubin [106] by extending it to geodesic neighbourhoods instead of
1-ring neighbourhoods. Let Mp denote the symmetric matrix defined through

Mp =
1

2π

∫ π

−π

κp(tθ)tθtθdθ. (5.8)
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Figure 5.4: Normal voting scheme.

The eigenvectors for the non-zero eigenvalues of this matrix are in fact the principal
directions t1

p and t2p, and the eigenvalues m1 and m2 are related to the principal
curvatures through

κ1
p = 3m1 − m2, (5.9)

κ2
p = 3m2 − m1. (5.10)

Let v be a vertex of the triangulated representation of S, with coordinates xv. For
each vertex vi, with coordinates xi in the geodesic vertex neighbourhood Nv of
vertex v the vector vi = xi − xv is projected onto the tangent plane of S at p and
the result is normalised through

ki =
li

‖ li ‖
, li = vi − nv · vinv. (5.11)

To incorporate the distance of vi to v in the vote, again the exponential decay from
(5.7) is used, but now without the area factor Ai/Am. Furthermore, the weights wi

are constrained with
∑

i:vi∈Nv
wi = 2π, in order to maintain translation invariance.

The computation of the normal curvatures κi is based on the ratio of the changes
in turning angle τi and the changes in arc length, which are approximated with the
geodesic distance gi between v and vi

κi =
τi

gi

. (5.12)

The changes in turning angle τi are based on the changes of the normal when
traversing the surface over the normal curve. Let pi = np × ki and let

ni
p =

ni − pi · nipi

‖ ni − pi · nipi ‖
. (5.13)

Now the change in turning angle is computed from τi = arccos(np ·ni
p). Finally the

curvature at vertex is computed by approximating the matrix from (5.8) by

Mv =
1

2π

∑

i:vi∈Nv

wiκikiki. (5.14)
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With an eigen analysis of Mv, providing estimates for m1 and m2, the curvature
estimate can be computed using (5.9,5.10).

5.2.5 Smoothing scheme

For the smoothing and regularisation of the 2-simplex meshes resulting from the
segmentation process we have used the method proposed by Tohka [113]. This
approach is based on the unique dependency of the position of a node in an ideal
spherical 2-simplex mesh on the position of its three neighbours. Let si, 1 ≤ i ≤ n
denote the vertex positions in a spherical 2-simplex mesh So, and let ŝi = si −
1/n

∑n

j=1 sj . In this mesh, every vertex satisfies

ŝi = α
∑

j∈Ni

ŝj , (5.15)

with

α =

(

3 cos

(

2 arctan

(

2
√

π
√

3

3
√

n

)))−1

. (5.16)

Based on this relation the smoothing process can be represented as the minimisation
of a cost function based on the initial shape and the deviation from (5.15)

f(S|So) =

n
∑

i=1



‖ si − so
i ‖2 +λ ‖ ŝi −

∑

j∈Ni

ŝj ‖2



 , (5.17)

where λ balances the amount of smoothing and the accuracy of the approximation
of the original shape. The minimisation problem is solved with a gradient-descent
method with learning parameter η. For all the examples presented in this text we
used a learning rate of η = 0.4/λ, providing robust convergence.

5.2.6 Wall model

Constitutive wall model

For the AAA wall we use the neo-Hookean model describing an isotropic elastic
medium with large deformations. We consider an incompressible elastic medium in
the time dependent domain Ω(t) ⊂ R

3, bounded by Γ(t) = ∂Ω(t), with outward
normal n. Let F be the deformation gradient tensor

F =
∂x

∂X,
(5.18)

with X the reference configuration and x = x(X, t) the current configuration. In
the absence of body forces, the equations of motion and continuity from continuum
mechanics are

div(σ) = 0 in Ω, (5.19)

det(F ) = 1 in Ω. (5.20)
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The Cauchy stress for an incompressible elastic medium reads

σ = −pI + τ , (5.21)

with p the hydrostatic pressure, I the identity and τ the extra stress resulting from
deformations. For a neo-Hookean material, we have τ = G(B − I), with G the
shear modulus and B = F · F T the Finger tensor.

The set of equations is completed with boundary conditions on each part of the
domain boundary Γk(t), with

⋃

k Γk(t) = Γ(t), and Γk(t)
⋂

Γl(t) = ∅, ∀k 6= l.
The Dirichlet boundary conditions, which explicitly fix the displacement on the
boundary read

x · n = xn, (5.22)

x · ti = xti
, n · ti = 0, i ∈ {1, 2}, (5.23)

where t1 and t2 are linearly independent vectors. The Neumann boundary condi-
tions, in which the surface traction (σ ·n) in the normal and tangential direction is
prescribed read

(σ · n) · n = sn, (5.24)

(σ · ti) · t = sti
, n · ti = 0, i ∈ {1, 2}, (5.25)

A special case occurs when sn = 0. This situation is referred to as a stress-free
boundary condition.

Weak formulation

Let W =
{

w ∈
[

H1
o (Ω)

]3
}

, with H1
o (Ω) the functional Hilbert space of functions

f that satisfy the Dirichlet condition f |Γ = 0 and let Q =
{

q ∈ L2 (Ω)
}

. With
substitution of the Neumann boundary conditions and partial integration, the weak
formulation of equations (5.19) and (5.20) becomes

∫

Ω(t)

(∇w)
T

: σdΩ =

∫

Γ(t)

w · (σ · n)dΓ, ∀w ∈ W, (5.26)

∫

Ω(t)

q(det(F ) − 1)dΩ = 0, ∀q ∈ Q. (5.27)

The notation ” : ” is used to denote the 3D double dot product A : B = tr(A · B).
Let Ωn := Ω(tn) and Γn := Γ(tn). To evaluate the integrals in (5.26) and (5.27)
over the domain (Ωn,Γn), we use the updated Lagrange approach, which implies
that the previous configuration (Ωn−1,Γn−1) is taken as the reference configuration
for (Ωn,Γn). The gradient operator is also interpreted with respect to the previous
configuration. With F n

i we will denote the deformation tensor from the domain Ωi

to the domain Ωn. Similarly, we will denote the gradient operator with respect to
the domain Ωi with ∇i. This way the total transformation from Ωo to Ωn becomes

F n
o = F n

n−1 · F n−1
o = (∇n−1xn)

T · (∇oxn−1)
T

. (5.28)
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It is customary in the updated Lagrange method to take the displacement field
of the material points as the unknown. At time tn, this field is defined through
ui(tn) = xi(tn) − xi(tn−1), where xi(tn) and xi(tn−1) denote the position of a
material point at two subsequent points in time.

When writing ∇n =
(

F n
n−1

)−T · ∇n−1 the weak form of the system (5.26,5.27)
becomes

∫

Ωn−1

(∇n−1w)
T

:
(

F n
n−1

)−1 · σJn
n−1dΩn−1 =

∫

Γn−1

w · sJ̃n
n−1dΓn−1, (5.29)

∫

Ωn−1

q(J − 1)Jn
n−1dΩn−1 = 0, (5.30)

where Jn
n−1 and J̃n

n−1 are defined through dΩn = Jn
n−1dΩn−1 and dΓn = J̃n

n−1dΓn−1.
In equation (5.29), s is defined by equations (5.24) and (5.25).

Finite-element formulation and solution strategy

To obtain a finite-element formulation of the system (5.29,5.30) the domain (Ω,Γ) is
divided into non-overlapping discrete elements. Within each element, the physical
unknowns are approximated with Lagrange interpolation polynomials.

At each time step, the non-linear algebraic system rendered from (5.29,5.30) is
linearised with Newton’s method and we iterate to obtain a converged solution. The
linearised system at each iteration step is preconditioned with an incomplete LU
decomposition and solved with the Bi-CGSTAB method [117]. For the simulations
we used Q+

2 P1 tetrahedral elements (15 nodes), yielding a quadratic approximation.
All of the simulations have been performed with the finite element code SEPRAN
(Sepra analysis, Delft, The Netherlands).

5.2.7 Simulations

Model validation

To validate the wall modelling approach we have performed a number of wall stress
simulations for a cylindrical shape with an outer radius of 20 mm, a length of 100 mm
and a wall thickness of 2 mm. First, we generated a mesh with the SEPRAN native
mesh generator, resulting in an ideal cylindrical shape. This model was considered
the golden standard. Next we started from a regular 2-simplex representation of a
cylinder and generated a wall mesh employing the modelling and meshing techniques
described in chapter 3. This model is considered as a test for the modelling and
the meshing scheme, without taking into account segmentation errors. The final
model is based on a 2-simplex representation of a cylinder generated by segmenting
a feature image of the cylindrical shape with the deformable model. The average
mesh resolution was 18 mm2 and the internal and external force weights were equal.
The shear modulus for all of these models was taken as 1.0 MPa and the upper and
lower cross-sections were clamped in all directions. All models were loaded from
the inside with a pressure of 16 kPa (120 mm Hg). We also applied the backward
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Figure 5.5: Realisation of smoothness levels through variation of the force weights balance
and the mesh resolution. The external force weight equals one minus the internal force
weight.

incremental method described in chapter 4 using a reference pressure of 10.7 kPa (80
mm Hg) and a final pressure of 16 kPa. Although the cylindrical shape is very basic
in comparison to AAA geometries, this is a challenging test since the 2-simplex mesh
structure is not well suited to approximate surfaces with a zero Gaussian curvature.
To test the influence of the mesh we generated meshes at several resolutions for
aneurysm 2. All resulting meshes were again used for simulations with and without
the backward incremental scheme with the same settings as for the cylinders. In
all representations of the results we have set the stress values to zero in a region of
within 5 mm of the boundary planes to avoid any disturbance caused by unrealistic
effects caused by the boundary conditions that we imposed.

Influence of segmentation inaccuracies

For the synthetic feature images, the segmentation process is performed at 14
smoothness levels, ranging from irregular simplex meshes to smooth simplex meshes.
These smoothness levels were created by varying the force weight balance of the de-
formable surface model and the mesh resolution, as depicted in figures 5.5 and
5.6. For each of these smoothness levels, an initial segmentation has been created
from the automatically tracked centre line by deforming with a threshold of 50 un-
til the stopping criterium was met. Next we let the geometry shrink by adjusting
the threshold to 95 and letting the model deform until the stopping criterion was
matched again. Then, we re-segmented the AAA shape by setting the threshold
to 50 again and letting the model deform again until the stopping criterion was
matched. In the final stage of this last segmentation step, no mesh refinements were
used to stabilise the deformation process. This shrinking and re-segmentation pro-
cess was performed 10 times at each smoothness level, resulting in 140 segmentations
for each of the four AAAs.
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(a) level 1 (b) level 4 (c) level 7 (d) level 10 (e) level 13

Figure 5.6: Segmentation examples for aneurysm 1 at several smoothness levels. See also
figure 5.5.

We performed this variability estimation scheme for the feature images based on
the manual segmentations of user 2. For each of the resulting segmentations, the
2-simplex surface was transformed to a triangulation with the curvature correction
method presented in section 3.2.3. We computed the minimum and the maximum
Gaussian curvature in the region delimited by the lowest and highest manually seg-
mented slice in the feature images with the methods from Page et al., see section
5.2.4, using a geodesic distance of 2.5 times the average triangle edge length in the
triangulated surface. For smoothness levels 5, 8 and 11 we selected the two seg-
mentations with the highest variation in the Gaussian curvature, and we performed
wall stress simulations both with the backward incremental method and with direct
application of the maximum systemic pressure.

User-induced variability and modality induced variability

The results from the segmentation variability scheme indicated that the maximum
variation in the peak wall stress was 11% for aneurysms 1, 3 and 4 at smoothness
level 8, and that the variation in the 0.99 percentiles of the distribution of the
stress values was small for all four aneurysms. A more detailed description of these
results is provided in subsection 5.3.2. Here, these results are merely referred to as
a motivation for the further methodology. We generated segmentations with these
parameter settings for the input contours of the three different users both for the CT
and the MR images and simulated the wall stress distribution with the backward
incremental approach, again using a diastolic pressure of 80 mm Hg and a systolic
pressure of 120 mm Hg.

The effect of sphere-shape based smoothing

To test the effect of subsequent smoothing of segmented simplex surfaces on the vari-
ations in the wall stress, we applied the smoothing method from [113] on aneurysms
1 and 2 at smoothness level 5 and on the image based cylinder model used for the
model validation with λ ∈ {50, 100, 150}.
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Load method
Direct application Backward incremental
Peak wall Peak wall

Geometry source stress Error stress Error
Native SEPRAN 160 154
Model simplex mesh 166 4 166 8
Image-based simplex mesh 199 24 210 36

Table 5.1: Comparison of results of a load sequence on a cylinder. Maximum Von Mises
wall stress in kPa and the errors as a percentage. For the model simplex mesh the errors
in the estimated wall stress are limited. For the image based cylinder model, however, the
errors in the peak wall stress are high.

Average face area
10 mm2 8 mm2 6 mm2

Backward incremental method 465 482 481
Direct pressure application 413 418 424

Table 5.2: Peak wall stress (Von Mises, kPa) in a segmented model of aneurysm 2 at several
mesh resolutions. The influence of the mesh resolution is quite limited in this range.

The resulting geometries were used for wall stress simulations with the backward
incremental method with parameters that were identical to those of the previous
simulations.

5.3 Results

5.3.1 Model validation

Table 5.1 shows the maximum wall stress in a native SEPRAN model of a cylinder, in
a 2-simplex model cylinder which has been transformed to a triangulated wall model
and meshed with the methods from chapter 3, and in an image-based 2-simplex
segmentation which has been modelled and meshed with the same techniques. The
error in the peak wall stress for the model 2-simplex cylinder is 4% with direct
application of the maximum pressure and 8% when the initial loads are taken into
account. These results indicate that the errors that are directly related to the
modelling approach are limited. The errors related to the geometrical errors in
the segmentation of an image of a cylinder are, however, much larger. With direct
application of the pressure the error is 24% and when the initial loads are taken into
account, the error becomes 36%. Figure 5.8 shows the wall stress distribution on
the inner cylinder wall for the three approaches. With the model 2-simplex cylinder
the wall stress distribution is uniform as in the golden standard model. With the
segmented cylindrical shape there are pronounced stress peaks that are most likely
related to small irregularities in the segmented cylinder surface.
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Figure 5.7: Curvature variations observed when segmenting four AAA geometries 10 times
at several distinct parameter settings. The bars indicate the average minimum and maxi-
mum Gaussian curvatures. The whiskers indicate the greatest variation in the minimum
and the maximum Gaussian curvature. The circles indicate segmentations that have been
used for wall stress simulations.

5.3.2 Influence of segmentation inaccuracies

Table 5.2 shows the peak wall stress in a segmented model of aneurysm 2 at several
mesh resolutions. The wall stress distribution on a part of the outer wall at the
minimum and maximum mesh resolution is depicted in figure 5.9. The maximum
variation in the peak wall stress is 4%, indicating that the mesh resolutions is suffi-
cient, and moreover, that the mesh refinement methods and the element distribution
have a very limited influence on the peak wall stress. For all of the simulations pre-
sented hereafter, we used a mesh resolution corresponding to an average face area
of 6 mm2.



76 Sensitivity

Smoothness level
Geometry 5 8 11
Aneurysm 1 1.6 1.1 1.8
Aneurysm 2 1.0 1.2 2.0
Aneurysm 3 1.7 2.1 2.0
Aneurysm 4 1.9 1.0 -

Table 5.3: Maximum distances between the geometries used for the wall stress simulations
for the segmentation variability study in mm.

Figure 5.7 shows the variations in the minimum and the maximum Gaussian cur-
vature for the segmentation variability simulations. The bars represent the average
curvatures and the whiskers indicate the largest variation. For aneurysms 1 and 2
we performed the variability experiment at all 14 smoothness levels. However, for
the lowest smoothness levels the resulting geometries could not be successfully used
for wall stress simulations because of the highly irregular surface meshes. Therefore,
for aneurysm 3 and 4 we did not perform the simulations at the lowest smoothness
levels. Moreover, for aneurysm 4, the segmentation process failed for smoothness
levels 11 and higher. The reason for this failure is that aneurysm 4 is smaller than
the other geometries, implying that the mesh resolution is inadequate to follow the
shape at this lower resolution level. The general trend for all geometries is that both
the mean maximum and mean minimum Gaussian curvature, as well as the variation
in these curvatures, decrease, even though this decrease is not always monotonous.
In most cases the largest variation occurs in the minimum Gaussian curvature. Only
for aneurysm 3 at smoothness level 8 the maximum Gaussian curvature inhibits the
most variation.

Table 5.3 shows the distances between the segmentations that were selected from
the segmentation variability experiment. These distances were computed by taking
the distances from the nodes in one mesh to the faces in the other mesh and vice-
versa. The maximum distances between the segmented surfaces are small, mostly
below 2 mm, which is one third of the slice thickness.

Tables 5.4 and 5.5 respectively show the maximum and the 0.99 percentiles of
the Von Mises wall stress. The 0.99 percentiles were computed by considering the
distribution of the wall stress values in the mesh nodes themselves. Since the element
sizes are similar over the entire wall geometry, this results in a uniform sampling of
the stress values in the geometry. For aneurysms 1, 3 and 4, the variation in the
computed peak wall stress diminishes as the smoothness level increases. At level 8,
the variations for these geometries are 1%, 11% and 0% respectively when taking
the initial loads into account and 2%, 5% and 3% respectively when not taking the
initial loads into account. At smoothness level 5 these variations are significantly
larger, up to 27%. The variation in the 0.99 percentile value of the Von Mises wall
stress is remarkably stable. For all four AAA geometries at all three smoothness
levels, the variation in this parameter is limited to 6% with both methods.

For aneurysm 2, the variations in the maximum wall stress are large at all smooth-
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Smoothness level / segmentation number
5/1 5/2 8/1 8/2 11/1 11/2

Aneurysm 1 441 435 414 417 392 414
Aneurysm 2 470 595 465 601 475 716
Aneurysm 3 359 493 391 351 316 284
Aneurysm 4 238 219 191 190 - -

(a) Maximum wall stress with the backward incremental method

Smoothness level / segmentation number
5/1 5/2 8/1 8/2 11/1 11/2

Aneurysm 1 324 399 293 298 292 295
Aneurysm 2 423 485 475 371 433 370
Aneurysm 3 279 349 279 264 237 240
Aneurysm 4 193 209 178 184 - -

(b) Maximum wall stress with direct application of pressure

Table 5.4: Simulated maximum Von Mises stress in kPa from the segmentation repro-
ducibility study for four AAAs. For aneurysm 1, 3 and 4 the stresses are reproducible at
smoothness level 8, within 11% variation. At smoothness level 11, this variation is even
less. For smoothness level 5, the variations are larger. For aneurysm 2, no reproducibility
could be established at any smoothness level (see also figure 5.10). The variation in the 0.99
percentiles of the wall stress distribution is very limited for all four AAAs. The sensitivity
with the backward incremental method is generally slightly worse than with direct, forward
application of the maximum pressure.

ness levels both with and without the initial loads method. This aneurysm has an
uncommon shape, as can be observed in figure 5.10. The vessel has kinked in the
middle section, thus creating an inward folded region with strong negative Gaussian
curvature, i.e. a saddle point. This region is also the region where the maximum in
the wall stress occurs for all segmentations of this aneurysm, and it is also a region
with relatively large segmentation errors, as indicated in figure 5.10(a). Although
the saddle point region has high wall stress for all segmentations, the nature of this
maximum differs for the different segmentations. In figure 5.10 we have plotted
the wall stress distributions for both simulations at smoothness level 11. In figure
5.10(c), there is one single maximum with a high stress value. In figure 5.10(b) high
wall stress occurs in the same region, but this time there are three distinct spots
with a similar high value, which is lower than for the other segmentation. Similar
behaviour occurs for the other smoothness levels.

Table 5.6 shows the distance between the location of the maxima for the different
segmentations. For high smoothness levels, large distances occur between the loca-
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Smoothness level / segmentation number
5/1 5/2 8/1 8/2 11/1 11/2

Aneurysm 1 309 297 280 277 276 277
Aneurysm 2 270 284 279 293 338 319
Aneurysm 3 232 238 230 221 218 215
Aneurysm 4 171 168 156 158 - -

(a) 0.99 percentiles of wall stress with the backward incremental
method

Smoothness level / segmentation number
5/1 5/2 8/1 8/2 11/1 11/2

Aneurysm 1 263 258 249 251 249 249
Aneurysm 2 255 265 263 265 272 268
Aneurysm 3 212 213 203 203 196 195
Aneurysm 4 160 162 154 153 - -

(b) 0.99 percentiles of wall stress with direct application of
pressure

Table 5.5: Simulated 0.99 percentiles of the Von Mises stress in kPa from the segmentation
reproducibility study for four AAAs. The variation in the 0.99 percentiles of the wall
stress distribution is very limited for all four AAAs. Also with this measure the sensitivity
with the backward incremental method is generally slightly worse than with direct, forward
application of the maximum pressure.

tions of the maxima, especially when the values of the overall maximum wall stress
are similar for the two segmentations. For all cases this behaviour corresponds to
situations where there are several distinct maxima with similar values. Remarkably,
aneurysm 2, which shows the largest variation in the approximated maximum stress
value, shows the least variation in the location of the maximum.

5.3.3 User-induced variability and modality-induced variability

Table 5.7 shows the maximum distance between the manual delineations of the
different user pairs for each of the AAAs. These distances have been computed
with the average contouring method [13]. In table 5.8 we have listed the maximum
distances between the surfaces based on these contours and the distance between
the MR and the CT based AAA surface per user. The distance between the surfaces
based on the different user delineations is smaller than the distances between the
contours. This could be expected because the 3D segmentation tends to diminish
some of the local variations in the contours that are not in correspondence with
the contours on the adjacent slices. The distances between the user based surfaces
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Smoothness level
5 8 11

Aneurysm 1 11 20 47
Aneurysm 2 1 1 2
Aneurysm 3 30 4 31
Aneurysm 4 36 3 -

(a) Distance between maxima with
direct application of pressure

Smoothness level
5 8 11

Aneurysm 1 11 2 47
Aneurysm 2 1 4 11
Aneurysm 3 8 5 30
Aneurysm 4 35 2 -

(b) Distance between maxima with
the backward incremental method

Table 5.6: Distances (mm) between the maximum stress locations in the wall stress simu-
lations based on the different segmentations of the four aneurysms.

Expert combination
1/2 1/3 2/3

Aneurysm 1 3.4 2.4 2.3
Aneurysm 2 5.3 4.1 5.3
Aneurysm 3 5.8 3.5 5.6
Aneurysm 4 3.8 3.1 3.9

(a) MR

Expert combination
1/2 1/3 2/3

Aneurysm 1 3.6 3.8 3.5
Aneurysm 2 4.5 4.2 3.6
Aneurysm 3 6.6 3.2 5.9
Aneurysm 4 5.1 6.2 4.0

(b) CT

Table 5.7: Maximum distances (mm) between the manually delineated outer AAA wall
contours for the different expert combinations.

are, however, generally larger than the distances that we found between the several
segmentations for user 2 (see table 5.3). The variations between the CT and MR
based segmentations per user are again larger than the variations induced by the
segmentation method. Also these distances are markedly higher than the variations
in the segmentations based on the different users.

Figure 5.11 shows the variation between the computed wall stress for the four
aneurysms with MR and CT for the three different manual delineations of the outer
vessel walls. The variation in the maximum wall stress, when not taking into account
aneurysm 2 for which no reproducibility could be established, is 32% for the CT
images and 23% for the MR images (aneurysm 2: 42% both on MR and CT). In
both cases this is higher than the variation observed in the segmentation variability
study with these parameter settings, which was only 11%. Moreover, the variation
in the 0.99 percentiles of the stress is now also markedly higher, 20% on CT and
18% on MR while this variation was very limited for the segmentation variability
experiments (6%). The average variability in the 0.99 percentiles for the vessel wall
stress is 12%, both for MR and CT.
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(a) Native
SEPRAN

mesh

(b) Model
cylinder mesh

(c)
Image-based

cylinder mesh

2 0 0

0

Figure 5.8: Simulation results for modelled and image-based cylinder geometries. Stress
distribution (kPa) on the inner cylinder surface. For the golden standard model (a) and
the 2-simplex model (b) the stress distribution in the cylinder wall is uniform. For the
segmented geometry (c), local maxima occur.

(a) average face

area: 10 mm2,
10000 elements

(b) average face

area: 6 mm2,
17000 elements

4 8 1

0

Figure 5.9: Von Mises wall stress (kPa) for the highest and the lowest mesh resolution for
aneurysm 2. The wall stress distribution is similar in both cases.
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Figure 5.10: Von Mises wall stress (kPa) for the two segmentations of aneurysm 2 used in
the variability study at smoothness level 11.

Maximum Maximum Maximum
distance distance distance
between between between MR and
segmentations segmentations CT based
for different for different segmentations
users on MR users on CT User 1 User 2 User 3

Aneurysm 1 3.5 2.0 6.5 3.8 6.6
Aneurysm 2 2.6 3.5 3.3 3.5 3.0
Aneurysm 3 2.7 4.5 4.6 4.2 5.2
Aneurysm 4 3.2 2.4 7.6 7.0 7.7

Table 5.8: Maximum distances (mm) between the various segmented 3D surfaces for the
different users on CT and MR. The maximum distances between the different users are
generally larger than the distances induced by the variations in the segmentations. The
variations between the MR and CT based segmentations are generally larger than the dis-
tances induced by the user variability.
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λ
0 (No smoothing) 50 100 150

Image-based cylinder 36 38 47 54
Aneurysm 1 1 8 4 2
Aneurysm 2 21 12 6 9

Table 5.9: Difference, as a percentage, in the peak wall stress for a cylinder, and two AAA
shapes. For the cylinder shape the difference is computed with respect to the exact solution.
For the AAA shapes the two segmentations at smoothness level 5 with maximum curvature
variation were used.

The ordering of the patients with respect to the estimated maximum wall stress is
the same for MR and CT for users 2 and 3 and for the average over the three users
(from large to small: aneurysm 2, aneurysm 1, aneurysm 3, aneurysm 4). Only
for user 1 the order of aneurysms 1 and 3 is interchanged. Although the orders
are mostly similar for the two modalities, the maximum wall stress for aneurysm 4
is highest when estimated from CT for all three users. Also, this is the aneurysm
inhibiting the least variation over the users.

Figures 5.12 and 5.13 show the variations in the wall stress distributions on MR
and CT for the different users. In figure 5.12 we have also plotted the differences
caused by the segmentation variability for user 2. Both for MR and for CT, there
are important differences between the wall stress distribution for the different man-
ual delineations. The most notable difference is that the location and presence of
local maxima tends to vary. This behaviour is also observed for the segmentation
variability for user 2 on the MR images, but to a far lesser extent. This last obser-
vation is in agreement with the lower variations in the computed maximum stress
for the variability experiments.

In figure 5.12, we have also plotted the maximum and the 0.99 percentiles of the
wall stress computed with the automatic segmentation method previously described
in chapter 2. Although the computed stresses with this model are not always within
the user variability bounds, the trends are very similar, especially in the 0.99 per-
centiles of the wall stress. Also, the ordering of the aneurysms with respect to their
maximum wall stress would be similar to the ordering derived from the other users,
when aneurysm 2 is excluded. The difference in the automatically estimated wall
stress for aneurysm 1 and 2 is, however, less than 1%.

5.3.4 The effect of sphere-shape based smoothing

Tables 5.9 and 5.10 show the effect of smoothing of the 2-simplex mesh on the
approximated wall stress. Although the results for the AAA are not fully conclusive,
it appears that smoothing does diminish the variations in the wall stress, especially
for the 0.99 percentiles. On the other hand, the errors for the cylinder model increase
for higher levels of smoothing.
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Figure 5.11: Variation in the simulated wall stress for three different manual delineations
of the outer vessel wall on CT and MR images of four AAA patients.

5.4 Discussion and Conclusions

We have presented a study for the influence of segmentation errors, user variability
and modality choice for wall stress simulations in abdominal aortic aneurysm. We
have validated the model using a cylinder model, which is particularly challenging
for the two simplex description which cannot locally accurately match a surface with
zero Gaussian curvature. We have excluded the influence of the meshing methods
and the mesh resolution using an aneurysm model.

The results of the segmentation variability experiment indicate that our segmen-
tation method leads to reproducible results for the maximum wall stress for three
of the four aneurysms when the influence of the internal forces in the deformable
surface segmentation process is sufficiently high. The location of the maximum
may shift especially when the absolute value of the maximum stress is reproducible.
The influence of the segmentation error appears to be a local effect since the vari-
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Figure 5.12: Approximated Von Mises wall stress (kPa) for the segmentations based on the
different manual user delineations of the MR images. From left to right: user 1, user 2
segmentation 1, user 2 segmentation 2 and user 3. There are differences in the presence,
the value and the location of the maxima, both for different segmentations and for different
manual delineations. The variability caused by the user variation appears to be larger than
the variability caused only by the segmentation errors.
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Figure 5.13: Approximated Von Mises wall stress (kPa) for the segmentations based on the
different manual user delineations of the CT images. From left to right: user 1, user 2,
and user 3. There are differences in the presence, the value and the location of the maxima
for the different manual delineations.
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λ
0 (no smoothing) 50 100 150

Image-based cylinder 18 18 21 23
Aneurysm 1 4 1 0 0
Aneurysm 2 13 6 6 8

Table 5.10: Difference, as a percentage, in the 0.99 percentile of the wall stress for a
cylinder, and two AAA shapes. For the cylinder shape the difference is computed with
respect to the exact solution. For the AAA shapes the two segmentations at smoothness
level 5 with maximum curvature variation were used.

ations caused by the segmentation errors in the 0.99 percentiles of the wall stress
are very small for all four aneurysms. The reproducibility is slightly worse with
the backward incremental method, in comparison to the classical forward approach.
However, these variations are still of the same order as with the forward model.

The influence of the user variability is markedly higher than the influence of the
variations in the segmentation. Also, the observed differences can no longer be
accounted to very local effects, since the variation in the 0.99 percentiles of the
wall stress distribution also increases. The influence of the user variability appears
to be similar both on MR and CT. Smoothing with a sphere-shape based model
might lead to better reproducibility, but, it can also introduce systematic errors as
is indicated by the application of this model on a cylindrical model.

In this study, we made several assumptions. The selection of the geometries used
to investigate the influence of the segmentation errors for the wall stress is based on
the maximum variation in the curvature for these geometries. It has been pointed
out repeatedly in literature that the main effect for the wall stress in the AAA
wall, apart from the AAA size, is the local curvature caused by the specific shape
of the aneurysm [32, 91]. Therefore, the assumption that the largest variation in
the robustly estimated surface curvature will lead to the maximum variation in
the wall stress seems reasonable. The simulation times necessary to perform wall
stress simulations for all ten segmented geometries for several parameter settings
are prohibitive, so this assumption was necessary in this study.

We assume that there is no residual wall stress in the unloaded AAA geometry.
As yet, there is no method known that computes these residual stresses for a realistic
AAA. We used non patient-specific values for the material properties, the pressure
and the wall thickness and we neglected the influence of the intra-luminal thrombus,
which still is rather controversial. We used a geometrically nonlinear but materially
linear constitutive model for the AAA wall, while it has been reported that the
true behaviour of the AAA wall is both geometrically and materially non-linear
[85, 111, 119]. Although these assumptions may affect the accuracy of the wall
stress approximation with respect to the real situation in the patient, they do not
impose any limitations on the investigation of the sensitivity of the wall stress to
geometrical errors, which was the main goal in this study.

In the segmentation for the AAA shape, we did not include the bifurcation of the
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aorta into the iliac arteries. The slice distance and the slice thickness in the MR im-
ages (both 6 mm) are too large for an accurate reconstruction of the geometry in this
region. We investigated only one single segmentation method. Although we can-
not fully exclude that a different segmentation scheme would influence the results,
the segmentation error of 2 mm found on MR is small with respect to the voxel
size, making it unlikely that a different segmentation method would significantly
outperform the method we used now.

It cannot be completely ruled out that a certain amount of the variation that
we observed should be accounted to the limited resolution for the discretisation
of the AAA surface and to inaccuracies in the geometrical modelling and mesh
generation process. However, the results of the validation simulations indicate that
the influence of the modelling approach on the final result is less than the variations
we observed due to other influences. Also, the fact that the variations in the 0.99
percentiles of the wall stress with different manual delineations are much larger
than the variations we observed in the reproducibility study indicates that these
variations are most likely not caused by the modelling process.

A clear limitation of this work is that we used only four patients in this study and
only had three manual delineations per patient. These numbers are too low to allow
for an extensive statistical evaluation. The motivation for using only four patients
is that we could not obtain more combined CT and MR data for AAA patients
for whom the MR and CT scan dates were sufficiently close. The accurate manual
delineation of the outer vessel wall on difficult data sets such as the ones used in this
study is a time-consuming task. However, even with this small number of patients
the results show that the uncertainty in the geometry may be a significant source
of variation that must be taken into account even if this result does not generalise
to all AAAs.

The 3DAO segmentation method that we employed has a large number of param-
eters. Also, different internal forces may be used to control the smoothness of the
surface during the segmentation process [24]. In our study we focussed on the inter-
nal and external force weighting balance, since this directly influences the amount
of variation in the curvature in the final segmentation result. We used the curvature
based internal force implementation because it is directly related to the influence
that is believed to dominate the local wall stress. Varying all parameters and im-
plementation choices would have led to prohibitive simulation times. However, it
may be that a different choice may lead to a less stable or more stable model.

To our knowledge there have been no previous studies on the sensitivity of the
simulated wall stress in patient-specific abdominal aortic aneurysm. Therefore, we
cannot compare our results to literature. Furthermore, from our results it appears
that the sensitivity is highly influenced by the amount of geometrical detail allowed
in the segmentation process and the geometrical modelling process. This makes it al-
most impossible to compare results between different simulations when the methods
to approximate the AAA geometry are different. Although the wall stress caused by
pressure load on the vessel wall and wall shear stress caused by the flow variations
close the vessel wall do not originate from the same process and are of a completely
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different order, these are both very local effects that are highly related to the local
geometry. The high errors reported for patient-specific wall shear stress in vascular
structures [71, 72, 73, 108] may indicate that the high sensitivity of the wall stress we
observed are intrinsic for highly geometry dependent quantities derived from finite
element simulations on complex domains inhibiting a certain level of uncertainty.

In conclusion, we have shown that the wall stress in patient-specific models of
AAA is sensitive to geometrical variations caused by both automatic and manual
segmentation errors. In most cases the variations in the estimated maximum stress
caused by variations in the automatic segmentation result may be diminished by
limiting the amount of variation allowed in the geometrical model, but this will not
work for every AAA. The influence of the user variability in the manually delineated
contours on the stress is considerable, and of a higher order and less localised than
the variations caused only by the automatic segmentation errors.

For robust rupture risk prediction it appears to be best not to focus on very local
geometrical effects. This may be achieved by either using a less detailed representa-
tion of the geometry or by using more stable statistical predictors derived from the
overall wall stress distribution.

For future research it is important to test the influence of the segmentation
method, the geometrical representation of the AAA and the user variability on
larger number of data sets, preferably with known rupture history, to find the op-
timal balance between robustness and sensitivity for patient-specific rupture risk
prediction based on AAA wall stress.



Chapter 6

Models for local wall stress analysis

in the calcified abdominal aortic

aneurysm wall

Abstract

Finite element wall stress simulations on patient-specific models of abdominal
aortic aneurysm (AAA) may provide a better rupture risk predictor than the
currently used maximum transverse diameter. Calcifications in the wall of AAA
lead to an elevated maximum wall stress. Both the reported material properties
for calcifications and the material properties used for simulations show great vari-
ation. Previous studies have focussed on simplified modelling of the calcification
shapes within a realistic aneurysm shape. The objective of this study is to in-
vestigate the influence of the calcification geometry, the material properties and
the modelling approach for the computed peak wall stress. We scanned micro-CT
images of calcified AAA wall specimens and investigated the influence of the clin-
ical CT resolution limitations on the appearance of the calcifications. For four
realistic calcification shapes from standard clinical CT images of patients with
intact AAA, we performed simulations with three distinct modelling approaches,
at five distinct elasticity settings. The results show how the peak wall stress is
sensitive to the material properties of the calcifications. For relatively elastic cal-
cifications, the results from the different modelling approaches agree. For stiffer
calcifications, however, large deviations are observed. Also, for relatively elastic
calcifications the computed wall stress in the non-calcified tissue surrounding the
calcifications shows to be insensitive to the exact calcification geometry. Based
on the combination of the information from the micro-CT images and the sim-
ulation results we conclude that wall stress simulations for AAA incorporating
calcifications should focus on the stress in the healthy tissue, resulting from the
presence of the calcifications, and not on the stress in the calcification or on the
material interface. Furthermore, we conclude that also for the proper choice of
the modelling approach an important challenge for future research is the accurate
estimation of the material properties of the calcifications. Only then stress anal-
ysis will enable assessment of the rupture potential of the AAA wall including
calcifications.

89
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6.1 Introduction

Wall stress simulations on abdominal aortic aneurysms (AAA) have been widely
recognised to provide an indication of rupture risk on a patient-specific basis [37,
38, 86, 110, 120, 125]. Fillinger et al. [38] have shown that wall stress can have a
higher discriminatory value than the maximum transverse AAA diameter, which is
currently used as a clinical decision parameter. The aneurysm shape has an impor-
tant influence on the wall stress distribution [32, 123]. Other potentially important
influences are the patient’s blood pressure, the local wall thickness, variations in the
wall material properties and intra-luminal thrombus formation. The value used for
the maximum pressure is either the monitored systolic pressure [37, 38, 86, 120, 125]
or a non patient-specific systolic value [110]. The correct approach for modelling the
influence of intra-luminal thrombus is still controversial. Modelling the thrombus
as an elastic medium leads to a diminished load on the vessel wall [27]. Clinical
studies, however, indicate that the pressure at the aneurysmal wall is not affected
by the presence of thrombus [95, 112].

The AAA vessel wall differs from the healthy vessel wall because the extracellular
matrix has been degraded [9]. The inflammation and plaque formation processes
related to the aorta expansion may lead to a heterogeneous wall composition. Al-
though the constitutive models employed in the previously mentioned studies vary,
these models do not take into account this heterogeneity. With an idealised model
for the AAA wall the computed wall stress may provide a more advanced predictor
based on the AAA geometry and the monitored pressure, but this will not neces-
sarily be an accurate reflection of the actual stresses in the vessel wall. The local
constituency of the vessel wall material may not only affect the stress values, but it
is also likely to affect the amount of stress that the wall can bear locally.

Only recently, it has been shown that the presence of calcifications in the AAA
wall may have a significant influence on the wall stress [69, 100]. These studies use
very different assumptions for the elasticity of the calcifications. The approach in
both studies is to model the influence of the calcifications by altering the material
properties in a pre-defined finite element mesh of interpolation points representing
the AAA wall. This will not allow an accurate representation of the local influence
of the shape of the calcification geometry. Speelman et al. [100] have suggested that
the material properties and the local shape of the calcifications may be of great
importance.

Although there is some ongoing research that investigates the potential of imag-
ing techniques to provide the local material properties in tissue [8, 14, 133], AAA
material properties cannot yet be assessed accurately with clinical scanners. The
majority of reports on material properties for calcified tissue are for the coronary
arteries and the iliac arteries [50, 52, 62, 90, 129]. Reports for the material prop-
erties of calcifications in AAA are more scarce. The measured elasticity coefficient
for calcified tissue in the coronary arteries varies from 1.5 MPa to 19 MPa [52, 129].
For the iliac arteries Holzapfel et al. [50] report values in the range from 7.9 MPa to
17.3 MPa. The elasticity values reported for calcifications in AAA vary from 4 MPa
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[4] to 20 MPa [53]. The elasticity that is actually being used for patient-specific
simulations even varies from 1.5 MPa [100] to 15 GPa [69].

There is strong variation in the material parameters used in the previous studies
to model the influence of calcifications. Furthermore, the low-resolution approach of
the previous studies has not been validated, implying that the results from that work
depend heavily on the validity of the model assumptions. There is an evident need to
investigate the best modelling approach for calcifications in 3D stress simulations for
AAA and to investigate the variations that arise from the uncertainty in the model
settings. In this work we aimed to deduce the best way to model the influence of
calcifications in the AAA wall for wall stress simulations at the different material
parameter regimes reported in literature. We have investigated the meaning of
the appearance of calcification on clinical CT images and we have compared three
different high-resolution modelling approaches. The results have allowed us to draw
conclusions with respect to the best method to model calcifications in AAA.

6.2 Materials and methods

6.2.1 Constitutive wall model

Both for the calcifications and the vessel wall we use the neo-Hookean model that
describes an isotropic elastic medium with large deformations. This is the simplest
constitutive model that allows us to capture the influence of differences in material
properties in the range of deformations we are interested in. We consider an in-
compressible elastic medium in the time dependent domain Ω(t) ⊂ R

3, bounded by
Γ(t) = ∂Ω(t), with outward normal n. Let F be the deformation gradient tensor

F =
∂x

∂X,
(6.1)

with X the reference configuration and x = x(X, t) the current configuration. In
the absence of body forces, the equations of motion and continuity from continuum
mechanics are

div(σ) = 0 in Ω, (6.2)

det(F ) = 1 in Ω. (6.3)

The Cauchy stress for an incompressible elastic medium reads

σ = −pI + τ , (6.4)

with p the hydrostatic pressure, I the identity and τ the extra stress resulting from
deformations. For a neo-Hookean material, we have τ = G(B − I), with G the
shear modulus and B = F ·F T the left Cauchy-Green strain tensor (also known as
Finger tensor).

The set of equations is completed with boundary conditions on each part of the
domain boundary Γk(t), with

⋃

k Γk(t) = Γ(t), and Γk(t)
⋂

Γl(t) = ∅, ∀k 6= l.
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The Dirichlet boundary conditions, which explicitly fix the displacement on the
boundary read

x · n = xn, (6.5)

x · ti = xti
, n · ti = 0, i ∈ {1, 2}, (6.6)

where t1 and t2 are linearly independent vectors. The Neumann boundary condi-
tions, in which the surface traction (σ ·n) in the normal and tangential direction is
prescribed read

(σ · n) · n = sn, (6.7)

(σ · ti) · t = sti
, n · ti = 0, i ∈ {1, 2}, (6.8)

A special case occurs when sn = 0. This situation is referred to as a stress-free
boundary condition.

6.2.2 Weak formulation

Let W =
{

w ∈
[

H1
o (Ω)

]3
}

, with H1
o (Ω) the functional Hilbert space of functions

f that satisfy the Dirichlet condition f |Γ = 0 and let Q =
{

q ∈ L2 (Ω)
}

. With
substitution of the Neumann boundary conditions and partial integration, the weak
formulation of equations (6.2) and (6.3) becomes

∫

Ω(t)

(∇w)
T

: σdΩ =

∫

Γ(t)

w · (σ · n)dΓ, ∀w ∈ W, (6.9)

∫

Ω(t)

q(det(F ) − 1)dΩ = 0, ∀q ∈ Q. (6.10)

The notation ” : ” is used to denote the 3D double dot product A : B = tr(A · B).
Let Ωn := Ω(tn) and Γn := Γ(tn). To evaluate the integrals in (6.9) and (6.10)
over the domain (Ωn,Γn), we use the updated Lagrange approach, which implies
that the previous configuration (Ωn−1,Γn−1) is taken as the reference configuration
for (Ωn,Γn). The gradient operator is also interpreted with respect to the previous
configuration. With F n

i we will denote the deformation tensor from the domain Ωi

to the domain Ωn. Similarly, we will denote the gradient operator with respect to
the domain Ωi with ∇i. This way the total transformation from Ωo to Ωn becomes

F n
o = F n

n−1 · F n−1
o = (∇n−1xn)

T · (∇oxn−1)
T

. (6.11)

It is customary in the updated Lagrange method to take the displacement field
of the material points as the unknown. At time tn, this field is defined through
ui(tn) = xi(tn) − xi(tn−1), where xi(tn) and xi(tn−1) denote the position of a
material point at two subsequent points in time.
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Figure 6.1: A human tissue sample of an abdominal aortic aneurysm wall.

When writing ∇n =
(

F n
n−1

)−T · ∇n−1 the weak form of the system (6.9,6.10)
becomes

∫

Ωn−1

(∇n−1w)
T

:
(

F n
n−1

)−1 · σJn
n−1dΩn−1 =

∫

Γn−1

w · sJ̃n
n−1dΓn−1, (6.12)

∫

Ωn−1

q(J − 1)Jn
n−1dΩn−1 = 0, (6.13)

where Jn
n−1 and J̃n

n−1 are defined through dΩn = Jn
n−1dΩn−1 and dΓn = J̃n

n−1dΓn−1.
In equation (6.12), s is defined by equations (6.7) and (6.8).

6.2.3 Finite-element formulation and solution strategy

To obtain a finite-element formulation of the system (6.12,6.13) the domain (Ω,Γ) is
divided into non-overlapping discrete elements. Within each element, the physical
unknowns are approximated with Lagrange interpolation polynomials.

At each time step, the non-linear algebraic system rendered from (6.12,6.13) is
linearised with Newton’s method and we iterate to obtain a converged solution. The
linearised system at each iteration step is preconditioned with an incomplete LU
decomposition and solved with the Bi-CGSTAB method [117]. For the simulations
we used Q+

2 P1 tetrahedral elements (15 nodes) and hexahedral elements (27 nodes),
yielding a quadratic approximation. All of the simulations have been performed
with the finite element code SEPRAN (Sepra analysis, Delft, The Netherlands).

6.2.4 Simulation of low resolution CT imaging on high resolution CT
images of calcified plaque

Although the spatial resolution of CT scanners is superior to all other 3D imaging
modalities used in the clinical environment, small structures such as calcifications
are still sampled with only a limited number of voxels, possibly eluding important
details. In order to obtain a better understanding of the true geometrical configura-
tion of calcifications in AAA tissue and the effect of CT imaging for these lesions, we
simulated the CT scanning process on ultra-high resolution images of calcifications.
AAA tissue samples were obtained from two patients treated with conventional re-
pair surgery. An example of such a human AAA tissue sample is shown in figure
6.1. Within 24 hours after harvest the tissue was stored in a 4% formalin fixation.
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To exclude motion artefact during CT scanning, the samples were fixed in a 3%
agarose gel. High resolution images were obtained with the Scanco µCT 80 scanner.
The isotropic image voxels were 32µm. The 10% MTF resolution reported for this
scanner is 16µm [93]. With the assumption that the point spread function (PSF)
of the scanner is also a Gaussian [77], we can deduce that the standard deviation of
the PSF is 11µm.

We down-sampled the scanned images to a voxel size of 0.5 × 0.5 × 1.0 mm3,
which is representative of a clinical CT scanner, by taking the average value of the
grey values of the voxels in the high resolution image within the larger voxels of the
down-sampled image.

6.2.5 Comparison and evaluation of the models

To investigate the influence of the modelling approach we have used three different
models. In all models we assume that the surroundings of the calcification are
uniform tissue. In the first model we assume that the calcification geometry is
represented by an iso-intensity surface in the clinical CT images and accurately
model the material interface between the calcification and its surroundings by using
distinct meshes for both areas. In the second model we use the same threshold to
distinguish the calcification from its surroundings, but we model the calcifications
by changing the properties in a pre-defined grid of interpolation points, based on the
intensity in the image voxels, as was done in the earlier publications [69, 100]. In the
third and final model we take a similar approach with a predefined grid, but here we
use a linear relation between the material stiffness and the image intensity, based
on the assumption that the image intensity is representative of the calcification
concentration.

Model 1: iso-intensity surface based geometry

For the first modelling approach we applied the marching cubes algorithm [66] with
a threshold of 200 Hounsfield units to obtain a triangulation of the iso-intensity sur-
face of the calcified plaque. The resulting surface tessellations have been re-meshed
with NETGEN (http://www.hpfem.jku.at/netgen/) to obtain better quality sur-
face meshes. We have generated tetrahedral meshes for the resulting two-material
structures with an in-house mesh generation application. On the material interface
we used a continuous displacement field, i.e. no friction between the calcification
and the tissue was allowed.

Model 2: uniform mesh with material properties based on a threshold
on image intensity

In this approach we generated hexahedral meshes for the bounding box representing
the tissue without taking into account the shape of the calcification for the meshing.
Afterwards, we determined for every interpolation point in the mesh whether the
image intensity of the original CTA images at this location was above or below
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the threshold of 200 Hounsfield units. If the intensity was above this threshold,
the shear modulus in this interpolation point was set to a value corresponding to
calcified tissue, otherwise it was set to a value corresponding to normal AAA tissue.

Model 3: uniform mesh with material properties based on a linear rela-
tionship with the image intensity

In the final modelling approach, we assume that the stiffness of the tissue is directly
related to the image intensity in the CT image. This approach is inspired by the
outcome of the down-sampling of the high resolution images described in section
6.2.4, which showed that what appears as an isotropic high intensity area may
actually be a complex configuration of calcified parts in otherwise normal tissue.
The shear modulus is modelled as a linear function of the image intensity through

G(x) = Gtissue +
I(x) − It

Imax − It
(Gc − Gtissue) , (6.14)

with G(x) the shear modulus assigned to position x, Gtissue the shear modulus
of the non-calcified tissue, and Gc the calcification shear modulus. With I(x) we
denote the intensity at location x, with It the threshold intensity and with Imax the
maximum image intensity.

6.2.6 Simulations

Since the influence of the calcified regions on the wall stress is assumed to be a
local effect, we chose to model only a small section of the AAA wall around every
calcification. The local wall curvature has been neglected and we simulated the
load by applying a stretch in the circumferential direction of the vessel wall. These
assumptions seem reasonable, since the size of the calcifications that we selected is
small with respect to the curvature of the vessel wall. Furthermore, for vascular
structures, the circumferential strain will generally be higher than the axial strain.

We selected four calcifications from two routinely acquired CT data sets of AAA.
For these calcifications, we manually delineated the central axes of the calcifications
along the tangential direction of the vessel wall within the central imaging plane.
The CTA images were then locally resampled, such that the y-axis of the resampled
image corresponds to the manually delineated axis, as depicted in figure 6.2. The
surrounding, non-calcified tissue was modelled as a box with dimensions 6 × 2l ×
2h mm, with l the length of the central axis and h the height of the calcified
region, as shown in figure 6.3. One of the two bounding box planes perpendicular
to the y axis of the calcification was clamped in all directions. On the other of
the perpendicular planes we prescribed a fixed displacement of 6% of the length of
the modelled tissue sample. The sharp corners of the box representing the tissue
sample and the boundary conditions used to keep the tissue in place lead to an
unrealistic solution at the boundary of the mesh. To clear these effects from the
solutions, the stress and strain values have been set to zero in the presentation of
all results in a 0.5 mm thick region inward from the bounding box of the mesh.
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(a) Central axis for the resampling
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z

(b) Resampled image

Figure 6.2: Resampling of a calcification in an AAA wall on a CTA image along the
tangential direction of the intersection contour of the imaging plane and the aneurysm
wall.

Mesh resolution tests have been performed to establish the resolution necessary to
obtain converged solutions. The number of elements in the meshes used in the final
simulations varied from 18000 to 24000. The surface meshes for the calcifications
are shown in figure 6.4. For the shear modulus of the tissue we used a value of
1.0 MPa, which corresponds to the measured realistic value [28]. We performed
experiments for all four calcifications with all three modelling approaches with a
shear modulus for the calcification Gc of 1.5 MPa, 2 MPa, 5 MPa, 20 MPa, and
100 MPa. Stress values were computed both for the calcified region and for the
surrounding, non-calcified tissue. For comparison, we also ran simulations for all
geometries without any calcification present.

6.3 Results

Figure 6.5 shows the effect of the simulation of the resolution of a patient CT
scanner on a high resolution image of a calcified area. It is clearly visible that
the complex configuration of multiple calcified regions in the ultra high resolution
image is transformed into a smaller number of high intensity regions in the normal
resolution image.

The simulations without calcifications resulted in stress distributions with max-
imum stress values limited by 259 kPa and 269 kPa for all four geometries. The
maximum stress values occurred in the center of the geometry.

Figure 6.7 shows the simulation results for the threshold based models with an
iso-intensity surface based mesh and with a uniform mesh (models 1 and 2) for the
lowest and highest value of Gc in an xy-plane through the tissue. In Figures 6.7(a),
6.7(c), 6.7(e) and 6.7(g) we have depicted the overall stress in both the calcification
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Figure 6.3: A segmented calcification placed within a modelled strip of healthy tissue.

z

y
x

Figure 6.4: Surface meshes for the four calcifications, segmented from clinical CT images of
abdominal aortic aneurysm. The y-direction corresponds to the original tangential direction
of the intersection contour of the imaging plane and the outer aneurysm wall.

and the surrounding, non-calcified tissue. Figures 6.7(b), 6.7(d), 6.7(f) and 6.7(h)
show only the stress in the non-calcified tissue. In the figures, the ranges of the
stress values have been adjusted for visualisation purposes. The true maxima can
be read from the graphs in figure 6.6. The results from the model with a linear
relationship between the image intensity and the material stiffness (model 3) look
very similar to the results from model 2, apart for a linear scaling between the ranges
of the stress. Therefore we do not present any images of these stress fields. In table
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(a) Ultra high resolution
image, voxel size 32 µm×

32 µm× 32µm

(b) Normal resolution
image, voxel size 0.5 mm
× 0.5 mm × 1.0 mm

1 0  m m

Figure 6.5: The effect of imposing the resolution of a patient CT scanner on an ultra-high
resolution CT image of calcified tissue. Many of the detailed structures visible on the ultra-
high resolution image are lost on the normal resolution image. Also, the outer contours
of the calcified areas in the low resolution image do not correspond to the shape of the
calcifications as they appear on the high resolution images.

6.1, we have listed the average of the maximum stress over the four geometries for
all different modelling approaches. Figure 6.6 shows the sensitivity of the computed
maximum stress for the material properties of the calcification. Figure 6.6(b) shows
the differences (in percentage) between models 1 and 2.

Clearly, with all models there is a strong relation between the computed stress
and the shear modulus of the calcification. For lower shear moduli, there is a slight
elevation in the wall stress inside the calcified regions. The wall stress in the non-
calcified tissue remains relatively uniform and the maximum stress is not affected
much. With the threshold based models (models 1 and 2) there is a slight elevation
in the stress in the non-calcified tissue, with a linear relationship between image
intensity and material stiffness (model 3) we even witness a slight decrease in the
stress level in the non-calcified tissue. For these less stiff calcifications, the maximum
stress value appears to be insensitive to the exact shape of the calcification, as can be
clearly observed in figure 6.6. For stiffer calcifications, all models show pronounced
stress peaks at the distal ends of the calcification inside the surrounding tissue.
These stress peaks also occur inside the calcification itself and on the material
interface, as can be clearly observed in figures 6.8 and 6.9. The values of these
stress peaks are higher than the stresses for the less stiff calcifications.
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(c) Overall maximum stress with model 2
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(d) Overall maximum stress with model 3
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(e) Maximum stress in the non-calcified
tissue with model 2
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(f) Maximum stress in the non-calcified
tissue with model 3

Figure 6.6: Maximum stress results with the three different models for the four calcifica-
tions. The categories of the shear modulus correspond to a respective calcification shear
modulus of 1.0 MPa, 1.5 MPa, 2 MPa, 5 MPa, 20 MPa and 100 MPa. With models 1
and 2, for lower values of Gc, the exact calcification shape is of minor importance for the
maximum stress in the non-calcified tissue surrounding the calcification, as can be observed
in sub-figures (e) and (f).
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Figure 6.7: Von Mises stress (kPa) for calcification geometry 1 on an xy cross section
with the iso-intensity surface based mesh (model 1) and the uniform mesh with threshold
based material properties (model 2) for the minimum and maximum values of Gc. The
stress distributions with the model with a linear relationship between image intensity and
Gc (model 3) are similar to the results from model 2, although the stress values are lower
(see also figure 6.6).
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Figure 6.8: Von Mises stress with an iso-intensity surface based mesh (model 1) for geom-
etry 2 on the calcification surface. For lower ratios of the calcification shear modulus and
the tissue shear modulus the stress distribution on the material interface is uniform. For
higher ratios, pronounced areas with high stress concentrations occur.
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Figure 6.9: Stress distribution on an xy cross section through calcification number 2, with
the iso-intensity surface based mesh (model 1) for increasing stiffness of the calcification.
From left to right: Gc = 1.5 MPa, Gc = 2.0 MPa, Gc = 5.0 MPa, Gc = 20 MPa, and
Gc = 100 MPa. It can be observed that also inside the calcification the stress distribution
becomes less uniform for high ratios of Gc/G.
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Shear modulus calcification (MPa)
Model 1.5 2.0 5.0 20.0 100.0
1, overall stress 396 528 1210 3050 5710
2, overall stress 410 561 1440 4750 15100
2, stress in non-calcified tissue 299 317 415 589 735
3, overall stress 274 354 828 2690 8510
3, stress in non-calcified tissue 223 232 292 415 525

Table 6.1: Average maximum Von Mises wall stress (kPa) for the four calcifications.

6.4 Discussion

Inclusion of calcified regions in AAA wall stress simulations leads to elevated overall
maximum stress values with all modelling approaches and all geometries that we
considered. For small values of the ratio between the calcification shear modulus and
the shear modulus of the non-calcified tissue, all models predict a uniform, slightly
elevated stress within the calcified regions. Already for simulations with Gc/G =
5, however, the stress distribution inside the calcification becomes less uniform and
stress peaks occur at the distal tips both inside the calcification and inside the
non-calcified tissue. When the stress inside the calcifications and on the material
interfaces is discarded, there is no strong effect on the stress for relatively compliant
calcifications. For stiffer calcifications, stress peaks occur in the non-calcified tissue
as well.

There are a number of differences between the results from the different mod-
els. For relatively elastic calcifications, the results from the threshold based models
(model 1 and model 2) for the overall wall stress are similar. For stiffer calcifications,
there are large deviations in the predicted maximum stress for these two modelling
approaches which are most likely caused by the different calcification geometry rep-
resentations. The model based on a uniform mesh with a linear relationship between
the material stiffness and the image intensity (model 3) provides similar results as
the threshold based model (model 2), but the predicted stress values are lower. This
effect may be at least partly related to the fact that the integral stiffness in this
model is lower, because of the high blurring caused by the CT point spread function.
The apparent decrease in the wall stress in the non-calcified tissue for Gc = 1.5 and
Gc = 2.0 with model 3 is most likely due to the fact that the position where the
maximum wall stress occurred in the reference simulations is now occupied by the
calcification, which means that this area is not taken into account when evaluating
the wall stress in the tissue surrounding the calcification. Since the experiments
with the micro-CT images indicate that the image intensity might be an indication
of the calcification density, this model may provide an easy means to account for
stiffness variations between multiple calcifications in an AAA.

Because our models focus on the detailed geometry of the calcification, we had
to make several assumptions. All of the calcifications we examined were relatively
small. There is, however, no obvious reason to assume that larger patches of calcified
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tissue would behave differently. All tissue samples were exposed to a similar stretch.
Within the AAA geometry the strain excised on the calcification is dependent on
the location. However, to test the influence of the geometry, the modelling approach
and the mechanical properties, it is essential to keep all other influences fixed. Still,
for a true patient-specific stress prediction the AAA geometry must be taken into
account. The mechanical model that we employed also has several limitations. First
of all, no friction was allowed on the material interface between the calcifications and
the non-calcified tissue. The true behaviour of this transition, while not known, may
be of utmost importance for the rupture behaviour of the vessel wall. Furthermore,
both the calcification and the surrounding tissue have been modelled as isotropic
elastic media with a linear stress-strain relation, while the true behaviour of the
vessel wall material may be more complicated [121]. However, the purpose in this
study was to study the influence of the modelling approach and variations in the
mechanical properties of the tissues for these models. Furthermore, if softer tissues
are present in the non-calcified regions, this will elevate the rupture risk rather than
decrease it.

Comparison of our results with earlier studies that do not take into account the
precise geometry of the calcification is not straightforward since the model assump-
tions were different. The uniform, slightly elevated stress inside the calcifications
for Gc = 1.5 MPa and Gc = 2.0 MPa appears to be in accordance with the results
of Speelman et al. [100]. Marra et al. [69] use extremely stiff calcifications and the
maximum stress is concentrated in two single elements, indicating that the mesh
resolution in those simulations may have been too low.

There is high uncertainty in the material properties of the calcification and the
different models predict different maximum stress values for different ranges of the
material properties. This makes it difficult to choose an optimal model that is valid
for all ranges and that can capture all effects that we witnessed. However, if we
only focus on the stress in the non-calcified tissue in the vicinity of the calcification
and discard the stress on the material interface and inside the calcification itself, it
may be possible to choose a best model.

There are several reasons to focus on the stress inside the surrounding tissue only.
The micro-CT images of calcifications indicate that what appears as a solid, uniform
calcification on normal resolution CT images may in fact be a complex arrangement
of smaller calcified areas. This means that it is of little use to try to accurately
model the shape and the material interface of the calcification, because the imaging
resolution is too low to capture these details. Therefore we feel that model 1, in
which we separately meshed the segmented calcification and the surrounding tissue
to capture the material interface, should be discarded.

The computed stresses are always highest inside the calcifications. However, a
calcification that appears as a solid uniform region may be either exactly that, or a
complex combination of calcified parts and other tissue. In the first case, it seems
reasonable to assume that the calcification is not likely to rupture, so that the high
stress values are of little importance for rupture prediction. In the second case, the
computed stress values are not necessarily representative of the true stress inside
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the calcified region, so they can also not be used for rupture predictions. Our results
indicate that if we only focus on the stress in the non-calcified tissue close to the
calcification, the exact geometry is less important than the material properties of
the calcification and the non-calcified tissue.

If the calcifications are modelled as relatively compliant in relation to the tissue
stiffness, the stress elevation is modest and uniform. In this situation it suffices to
change material properties on a predefined grid as long as the grid size is related to
the size of the smallest calcification. For stiffer calcifications, it will be necessary to
locally refine the grid in the neighbourhood of the calcification to capture the small
stress peaks at the tips of the calcification.

From the results of the down-sampling of the micro-CT images, it appears that
there is a relation between the image intensity and the calcification concentration.
With these considerations model 2 in which the stiffness is linearly related to the
image intensity seems the most appropriate model for rupture risk analysis in AAA.
Also from a practical point of view this model provides a simple relation for the
model input. However, the point spread function may elude the relation between
the calcification concentration and the image intensity. Therefore caution is needed
when choosing Gc, which might need to be set to a higher value to compensate for
the intrinsic blurring.

6.5 Conclusion

We have investigated the local influence of calcified regions in AAA. Our processing
of micro-CT images indicates that the calcification geometry as it appears on clinical
CTA images is not necessarily realistic, since the image resolution may be inadequate
for capturing the complex structure of the calcifications. The computed peak wall
stress is sensitive to variations in the material properties of the calcifications. Locally
altering material properties on a pre-defined high resolution grid gives similar results
as a model with a segmented iso-intensity surface for relatively elastic calcifications
only. Also, for lower stiffness ratios, the exact geometry of the calcified region is of
minor importance for the peak wall stress in the non-calcified tissue. For rupture
risk analysis in AAA it seems best only to focus on the wall stress effects caused by
the calcification in the surrounding tissue. We propose that future research should
focus on accurately establishing the material properties of the calcified regions and
on experimentally assessing the rupture potential of the calcification, the material
interface and the surrounding, non-calcified tissue.



Chapter 7

Summary and discussion

7.1 Summary

In chapter 1 an introduction to the pathology and treatment of abdominal aortic
aneurysm (AAA) is presented. The main imaging modalities for AAA are discussed
and an overview of the automatic segmentation methods for AAA that have been
proposed in literature is provided. Also, there is an overview of the evolution in
the computational modelling of AAA over the past 25 years which has led to the
current, geometrically patient-specific computational models for AAA, which are
the central topic in this dissertation.

In chapter 2 an automatic method for segmentation and dynamic propagation of
the AAA lumen and the AAA outer vessel wall with deformable 2-simplex models
is presented. This study is based on novel MR protocols for imaging of AAA. The
method is validated against multiple manual expert segmentations. Results indicate
that the errors in the automatic method are reasonable when the distance from
the points on the contours to the 3D surface is used as a performance indicator.
Statistical evaluation of performance based on a comparison of the in-slice cross
sectional contours of the segmented surface with the manual contours shows that
the algorithm is outperformed by the human observers.

The formulation of a computational model for AAA based on the geometries re-
sulting from the automatic segmentation method requires a number of processing
steps to come to a computational mesh. In chapter 3 algorithms that are used for
generating thin-walled structures, correcting the curvature of the dual triangulation
of the 2-simplex meshes, generating planar regions, and generating and optimising
tetrahedral meshes are presented. Every step in the modelling chain has been tested
and evaluated. A benchmark comparison with several other mesh generation appli-
cations showed that the new application outperforms the existing methods in the
majority of cases.

Chapter 4 of this dissertation introduces a backward incremental modelling ap-
proach that is used to approximate the diastolic equilibrium wall stress in abdominal
aortic aneurysm. This approach leads to a more realistic systolic geometry in the
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simulation process. The wall stress results from the backward incremental approach
are compared with the stresses that are obtained when the full systolic pressure is
directly applied on the measured diastolic geometry. Results indicate that the new,
more realistic model leads to higher peak wall stress.

In Chapter 5 an investigation into the influence of the segmentation accuracy, the
variability in the location of the outer wall of the AAA and the modality choice on
the computed wall stress in the aneurysm is conducted. The peak wall stress is only
reproducible when a sufficiently smooth geometrical model is employed. The 0.99
percentiles of the wall stress distribution, however, show excellent reproducibility.
The influence of the user variability in performing manual interaction with the seg-
mentation is higher than the influence of inaccuracies caused by the segmentation
uncertainty. This variability appears to be similar on MR and CT. For robust rup-
ture risk prediction based on AAA wall stress it appears best not to include too
much geometrical detail, either by using a sufficiently smooth surface representa-
tion, or by using a more robust statistical parameter derived from the wall stress
distribution in the AAA wall.

Chapter 6 deals with the influence of wall calcifications on the AAA wall stress.
The influence of the calcification shape, the modelling approach and the material
properties are tested. The results show how the peak wall stress is sensitive to the
material properties and the modelling approach. For the peak stress in the non-
calcified tissue surrounding the calcification, the exact shape of the calcified area
appears to be less important than the precise material properties of the calcifications
and the surrounding tissue.

7.2 Possible improvements

The main focus of the research described in this dissertation is the modelling of
wall stress in patient-specific models of AAA from MR. A clear limitation of the
use of MR is its limited spatial resolution. Once the resolution can be improved,
both the slice thickness and the slice distance should be brought down. The slice
distance for our particular protocol and application is currently limited to 6 mm
only because of hardware limitations of the scanning device. The true minimum
slice thickness however, is mainly governed by the signal to noise ratio (SNR).
Experiments with slice thicknesses down to 3 mm in this AAA study indicated that
the SNR soon becomes too low when the field of view is not adjusted. Scanning
at 3.0 Tesla instead of scanning at 1.5 Tesla will, in theory, provide a higher SNR,
allowing for thinner slices. It is not clear how this will work out in practice, since
higher field strengths may lead to an increase in T1, less uniform static MR fields
and increased motion and susceptibility artifacts [35]. Still, if a higher resolution
can be acquired in the through-slice direction this will lead to less partial volume,
and more accurate imaging of the vessel wall. Also, at higher resolution it may
very well become possible to segment the bifurcation into the iliac arteries from
MR. Apart from higher resolution, the black blood vessel wall images would also
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seriously benefit from an improvement of the receiver coil design. The range of the
cardiac coil used for the black blood images is too low, resulting in compromised
SNR at the image slices near the renal arteries and the iliac bifurcation.

The material properties used in the wall stress simulations presented in this work
are fixed. However, the combination of patient-specific blood pressure with the
volume variation that may be computed with the propagation technique could be
used to assign a patient-specific compliance to the AAA.

The segmentation and propagation method presented in chapter 2 currently only
uses the 2D B-TFE images, for which the individual slices are aligned based on the
3D B-TFE images. The 3D images may provide more accurate geometrical infor-
mation because of the smaller slice distance of 3 mm. However, these images also
have a slice overlap of 3 mm and suffer from limited contrast and serious artifacts.
The black blood images often provide a clear outer wall feature at the spine, where
the feature of the B-TFE images is very limited. However, as mentioned before, the
SNR at the upper and lower sections of the imaged volume is very limited. Combi-
nation of this information in an intelligent multi-image, multi-feature segmentation
algorithm that utilises the several images to obtain combined information may very
well lead to an improvement of the segmentation accuracy and robustness.

The mesh generation method for vascular structures presented in chapter 3 could
benefit from changes in the deformable surface algorithm. First of all, the current
internal force implementation is based on the simplex angle, which is directly com-
puted from the three neighbouring vertices. The deformation process based on the
simplex angle favours locally spherical shapes, while vascular structures are often
locally shaped like a cylinder. Also, the current implementation leads to a model
in which mesh resolution and smoothness constraints cannot easily be controlled
separately. An alternative method to compute the internal forces could for instance
take into account not only the curvature magnitude, but also the curvature orienta-
tion. Also, using more robust curvature estimators such as the normal vector voting
approach might lead to a more stable, smoother deformation process.

We used the backward incremental method which is used to estimate the geometry
of the unloaded aneurysm from medical images with a material model that is based
on a linear relationship between stress and strain, while the true stress-strain curve
for AAA material is non-linear. Even though the neo-Hookean model might give a
close approximation of the material behaviour in the range from diastolic load to
systolic load, this is most likely not the case in the range between the completely
unloaded configuration and the diastolic configuration. Using a more realistic stress-
strain curve will most likely lead to higher deformations in the backward incremental
method with respect to the initial geometry. The effect on the equilibrium stress in
the measured geometry, however, is expected to be less, since the stress distribution
is mainly dominated by the pressure on the inner vessel wall and the shape of the
AAA. The main difficulty for employing a more complex material model is that
the higher number of parameters in the more complex material model can only
be estimated in-vivo based on the patient-specific compliance. Therefore the first
research challenge would be to investigate whether the full set of parameters can
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be estimated from observations based on the diastolic and systolic configurations
alone.

The main limitations in the sensitivity analysis that has been performed are the
limited number of users, the limited number of patients and the sometimes too large
time period between the CT and MR acquisitions. These limitations do not affect
the validity of the conclusion in this work that the computed wall stress is far more
sensitive to the variations in the user input than to the segmentation errors. The
next step in this work would be to find a geometry representation that is robust to
these kind of variations. However, a study to prove the reproducibility of an even less
detailed model would require a much larger number of patients and a larger number
of users. Allowing too much detail will cause the peak wall stress to respond to
very local variations, resulting in a predictor that is only based on a very small part
of the AAA geometry. So, paradoxically, the use of more detailed patient-specific
geometrical input may very well lead to a less patient-specific rupture predictor. To
overcome this problem, it might be advisable to use a model of the AAA geometry
with less freedom. However, using too little detail might affect the discriminatory
power of the wall stress as a rupture predictor. For a fine tuning of the robustness
and the accuracy of the AAA wall stress models, databases with data from patients
who are followed over time until a rupture occurs are a necessity.

In the study on the influence of calcifications only a limited number of calcification
shapes were used, and the boundary conditions that were imposed were similar
for every shape. It cannot be excluded that imposing more complex loads on the
calcification, such as the ones occurring in the AAA, might affect the conclusion
that a detailed description of the calcification geometry is not needed. Therefore,
the use of more realistic load models would be a clear improvement in this work.
Because the current results indicate that for the stress in the non-calcified tissue
the shape of the calcification is not of major importance, it may be possible to
predict the stress in the healthy parts of the AAA wall without having to include
that calcification in the simulation, which means a significant gain in computation
time. To do this, it would be necessary to tabulate the stress resulting from the
presence of a calcification under various loads. Next, the loads in the AAA wall can
be computed from a simulation based on an ideal wall elasticity. Finally, for every
calcification, the local loads are estimated and the expected extra stress is read from
the pre-defined table. However, for this scenario, it is essential to first obtain good
insight in the variations in the stiffness of calcifications in AAA.

7.3 Future prospects

The only true patient-specific influence in the wall stress models of AAA presented
in this dissertation is the AAA shape. Other influences that are likely to affect the
peak wall stress are the local wall thickness, the material properties and the possible
influence of thrombotic sediments. The wall thickness and the material properties
cannot yet be accurately determined with medical imaging devices. The correct
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model for the influence of thrombus is still controversial. Although the number of
patient-specific influences is thus limited, the model may still provide an important
indication of the rupture potential of an AAA.

For future research it is important to distinguish between two separate research
goals. From an academic point of view, it is worthwhile to try to improve the
models with more patient-specific influences and to investigate the effects on the
wall stress. This path, which could be characterised by the term wall stress analysis
will eventually lead to an improved understanding of the important influences for the
wall stress and the process leading to the eventual rupture. The topics discussed
in chapter 4 and chapter 6 of this thesis fit this description very well. On the
other hand, using more patient-specific input will also bring more uncertainty into
the model and, since the model becomes more complex, may make the wall stress
approximations even more sensitive to errors than is currently the case. From a
clinical point of view, this is undesirable, since this compromises the use of the
models for rupture risk prediction, which is the second major research goal. Even
though these two research paths are closely related and will clearly benefit from each
other’s progress, they must be considered separately. For rupture risk prediction,
clinical validation studies are the next big step. Every proposed improvement for
wall stress analysis which makes the model more patient-specific and/or physically
more accurate must be thoroughly validated clinically before it can be concluded
that this extension also leads to an improved rupture risk predictor. There is no
apparent reason to assume that the physically most realistic model for AAA wall
stress will provide the best clinical model for rupture risk prediction.

As mentioned before, the main issue for wall stress based AAA rupture risk pre-
diction is conducting validation studies. The classical performance measures for
segmentation tasks on medical images are based on the distance to golden standard
models. These measures are inappropriate for evaluating the computed wall stress
in the AAA, as indicated in chapter 5. Since the wall stress itself cannot easily be
compared to a golden standard solution for complex domains, the only obvious vali-
dation methodology is through statistical evaluation of large groups of patients who
are followed over a long period. The main difficulty with these studies is that most
patients leave the study once their aneurysm reaches 55 mm. Therefore, validation
studies fully rely on rupture incidences of small aneurysms. This means that large
numbers of patients will have to participate in a validation study, which almost di-
rectly implies that these will have to be multi-centre studies. A large, multi-centre
trial leading to a public database is also the only method allowing comparison of
the several models of the various research groups and to determine whether newly
recognised influences for the wall stress analysis truly add to the clinical value of
the model.

Since most patients with AAA leave the validation group once their aneurysm
diameter reaches 55 mm, these studies can only show whether the wall stress provides
a better rupture risk predictor for small aneurysms. Statistical evaluation of the
wall stress as a selection criterion for aneurysms above 55 mm depends on the
remaining group of patients who cannot be stented because of various reasons such as
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uncommon aneurysm shape or because their weak health does not allow even EVAR.
However, it may well be that this group does not provide a good representation of
the complete AAA population since the condition of these patients has discriminated
them from this population. Therefore, the selection criteria for patients in the group
for statistical evaluation of wall stress in aneurysms with a diameter over 55 mm
must be given careful thought. In the mean time it seems reasonable to use wall
stress analysis in combination with the maximum diameter as a means to identify
smaller aneurysms that are likely to rupture.

For wall stress analysis two influences that are very important to bring into the
model are the wall thickness and the influence of thrombosis. The main difficulties
for wall thickness assessment are that it is difficult to distinguish the vessel wall
from the thrombus and that the standard scan planning methods do not allow to
scan perpendicular to the vessel wall everywhere in the AAA. The latter problem
also hampers accurately scanning quantitative flow images in AAA, especially in
the area close to the iliac arteries. Currently, the scan planning on the MR console
is fully manual, a situation which prevents the operator to use the MR technique,
which can be used to scan in any direction, to its full potential. Implementation
of basic image processing techniques on the scanner console could lead to a more
automated scan planning, supplying a more versatile imaging modality. With these
improvements, more accurate vessel wall scans and quantitative flow images could
come within reach. The black blood images that have been acquired could not fulfil
their intended function, i.e. local wall thickness assessment. However, these images
do provide excellent contrast between several of the constituents of the thrombosis.
The varying reports on the influence of thrombus on the AAA wall stress deter-
mined experimentally and by modelling could well indicate that the influence of
the thrombus needs to be modelled on a patient-specific basis as well. If the ma-
terial properties of these constituents and the nature of the contact between them
are determined, this knowledge could be combined in a patient-specific model for
thrombus in AAA.
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[25] H Delingette, M Hébert, and K Ikeuchi. Shape representation and image segmenta-
tion using deformable surfaces. Image and Vision Computing, 10:132–44, 1992.

[26] ES Di Martino and DA Vorp. Effect of variation in intraluminal thrombus consti-
tutive properties on abdominal aortic aneurysm wall stress. Annals of Biomedical



Bibliography 113

Engineering, 31:804–809, 2003.

[27] ES Di Martino, S Mantero, F Insoli, G Melissano, D Astore, R Chiesa, and R Fumero.
Biomechanics of abdominal aortic aneurysm in the presence of endoluminal throm-
bus: experimental characterisation and structural static computational analysis. Eu-
ropean Journal of Vascular and Endovascular Surgery, 15:290–299, 1998.

[28] ES Di Martino, G Guadagni, A Fumero, G Ballerini, R Spirito, P Biglioli, and
A Redaelli. Fluid-structure interaction within realistic three-dimensional models of
the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm.
Medical Engineering & Physics, 23:647–655, 2001.

[29] PB Dobrin. Pathophysiology and pathogenesis of aortic aneurysms. Surgical Clinics
of North America, 69:687–703, 1989.

[30] NJB Driessen, CVC Bouten, and FPT Baaijens. Improved prediction of the collagen
fiber architecture in the aortic heart valve. Journal of Biomechanical Engineering,
127:329–336, 2005.

[31] NJB Driessen, CVC Bouten, and FPT Baaijens. A structural constitutive model
for collagenous cardiovascular tissues incorporating the angular fiber distribution.
Journal of Biomechanical Engineering, 127:494–503, 2005.

[32] DF Elger, DM Blacketter, RS Budwig, and KH Johansen. The influence of shape
on the stresses in model abdominal aortic aneurysms. Journal of Biomechanical
Engineering, 118:326–332, 1996.

[33] L Engellau, EM Larsson, U Albrechtsson, T Jonung, E Ribbe, J Thorne,
Z Zdanowski, and L Norgren. Magnetic resonance imaging and MR angiography
of endoluminally treated abdominal aortic aneurysms. European Journal of Vascular
and Endovascular Surgery, 15:212–219, 1998.

[34] MK Eskandari, JST Yao, WH Pearce, RB Rutherfordt, FJ Veith, P Harris, VM Bern-
hard, GJ Becker, MD Morasch, HB Chrisman, RK Ryu, and JS Matsumara.
Surveillance after endoluminal repair of abdominal aortic aneurysms. Cardiovas-
cular Surgery, 9:469–471, 2001.

[35] RF Farr and PJ Allisy-Roberts. Physics for medical imaging. WB Saunders, 2002.

[36] M Ferrant, A Nabavi, B Macq, FA Jolesz, R Kikinis, and SK Warfield. Registration
of 3-D intraoperative MR images of the brain using a finite-element biomechanical
model. IEEE Transactions on Medical Imaging, 20:1384–1397, 2001.

[37] MF Fillinger, ML Raghavan, SP Marra, JL Cronenwett, and FE Kennedy. In vivo
analysis of mechanical wall stress and abdominal aortic aneurysm risk. Journal of
Vascular Surgery, 26:589–597, 2002.

[38] MF Fillinger, SP Marra, ML Raghavan, and FE Kennedy. Prediction of rupture
risk in abdominal aortic aneurysm during observation: Wall stress versus diameter.
Journal of Vascular Surgery, 37:724–732, 2003.

[39] L Freitag and P Plassmann. Local optimisation-based simplicial mesh untangling
and improvement. International Journal for Numerical Methods in Engineering, 49:
109–125, 2000.

[40] PJ Frey and P-L George. Mesh generation. Hermes Science, 2000.

[41] O Gérard, A Collet Billon, J-M Rouet, M Jacob, M Fradkin, and C Allouche. Effi-
cient model-based quantification of left ventricular function in 3-D echocardiography.



114 Bibliography

IEEE Transactions on Medical Imaging, 21:1059–1068, 2002.

[42] RM Greenhalgh and the Evar trial participants. Comparison of endovascular
aneurysm repair with open repair in patients with abdominal aortic aneurysm (evar
trial 1), 30-day operative mortaility results: randomised controlled trial. The Lancet,
364:843–848, 2004.

[43] JV Hajnal, DLG Hill, and DJ Hawkes, editors. Medical Image Registration. CRC
Press, Boca Ratton, USA, 2001.

[44] AJ Hall, EFG Busse, DJ McCarville, and JJ Burgess. Aortic wall tension as a
predictive factor for abdominal aortic aneurysm rupture: improving the selection
of patients for abdominal aortic aneurysm repair. Annals of Vascular Surgery, 14:
152–157, 2000.

[45] U Hartmann and F Kruggel. A fast algorithm for generating tetrahedral 3D finite
element meshes from magnetic resonance tomograms. In Proceedings of the IEEE
Workshop on Medical Image Analysis, 1998.

[46] RH Hashemi, WG Bradley, Jr, and CJ Lisanti. MRI The Basics. Lippincott Williams
& Wilkins, Philadelphia, USA, 2004.

[47] MS Hassouna, AA Farag, S Hushek, and T Moriarty. Statistical-based approach for
extracting 3D blood vessels from TOF-MyRA data. In Lecture Notes in Computer
Science, volume 2878, pages 680–687, 2003.

[48] T Hatakeyama, H Shigemats, and T Muto. Risk factors for rupture of abdominal
aortic aneurysms based on three-dimensional study. Journal of Vascular Surgery, 33:
453–461, 2001.

[49] A Hilton and J Illingworth. Marching triangles: Delaunay implicit surface triangu-
lation. Technical report, University of Surrey, 1997.

[50] GA Holzapfel, G Sommer, and P Regitnig. Anisotropic mechanical properties of
tissue components in human atherosclerotic plaques. Journal of Biomechanical En-
gineering, 126:657–665, 2004.

[51] RM Hoogeveen, CJG Bakker, and MA Viergever. Limits to the accuracy of vessel
diameter measurement in MR angiography. Journal of Magnetic Resonance Imaging,
8:1228–1239, 1998.

[52] H Huang, R Virmani, H Younis, AP Burke, RD Kamm, and RT Lee. The impact
of calcification on the biomechanical stability of atherosclerotic plaques. Circulation,
103:1051–1055, 2001.

[53] F Inzoli, F Boschetti, M Zappa, T Longo, and R Fumero. Biomechanical factors
in abdominal aortic aneurysm rupture. European Journal of Vascular Surgery, 7:
667–674, 1993.

[54] J Jago, A Collet-Billon, C Chenal, J-M Jong, and S Makram-Ebeid. XRES: adaptive
enhancement of ultrasound images. Medicamundi, 46:36–41, 2002.

[55] KH Johansen. Aneurysms. Scientific American, 247:110–125, 1982.

[56] CD Karkos, U Mukhopadhyay, I Papakostas, J Ghosh, GJ Thomson, and R Hughes.
Abdominal aortic aneurysm: the role of clinical examination and opportunistic de-
tection. European Journal of Vascular and Endovascular Surgery, 19:299–303, 2000.

[57] R Klette, HS Stiehl, MA Viergever, and KL Vincken, editors. Performance Charac-
terisation in Computer Vision. Kluwer Academic Publishers, Dordrecht, the Nether-



Bibliography 115

lands, 2000.

[58] CM Kramer, LA Cerilli, K Hagspiel, JM DiMaria, FH Epstein, and JA Kern. Mag-
netic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic
aneurysm. Circulation, 109:1016–1021, 2004.

[59] B Kritpracha, HG Beebe, and AJ Comerota. Aortic diameter is an insensitive mea-
surement of early aneurysm expansion after endografting. Journal of Endovascular
Therapy, 11:184–190, 2004.

[60] H Kurvers, FJ Veith, NJ Gargiulo, EV Lipsitz, T Ohki, NS Cayne, WD Suggs,
CH Timaran, GY Kwon, SJ Rhee, and C Santiago. Discontinuous, staccato growth
of abdominal aortic aneurysms. Journal of the American College of Surgeons, 199:
709–715, 2004.

[61] HM Ladak, JB Thomas, JR Mitchell, BK Rutt, and DA Steinman. A semi-automatic
technique for measurement of arterial wall from black blood MRI. Medical Physics,
28:1098–1107, 2001.

[62] RT Lee, FJ Schoen, HM Loree, MW Lark, and P Libby. Circumferential stress
and matrix metalloproteinase in human coronary atherosclerosis. Arteriosclerosis,
Thrombosis and Vascular Biology, 16:1070–1081, 1996.

[63] Z Li and C Kleinstreuer. A new wall stress equation for aneurysm-rupture prediction.
Annals of Biomedical Engineering, 33:209–213, 2005.
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Samenvatting

Een abdominaal aorta aneurysma (AAA) is een pathologische verwijding van de
aorta ter hoogte van de onderbuik. AAA’s ontstaan met name bij oudere mannen
en zijn hoogstwaarschijnlijk gerelateerd aan arteriosclerose. Als een AAA scheurt
is de overlevingskans voor de patiënt zeer klein. Om scheuring te voorkomen kan
er een stent-graft, een soort prothese voor de aorta, geplaatst worden. Deze ingreep
wordt meestal uitgevoerd met behulp van een kleine incisie ter hoogte van de lies.
De stent-graft wordt door deze incisie met behulp van een geleidingsdraad via het
vatenstelsel naar de aorta geleid en geplaatst. Het plaatsen van een stent-graft
is een risicovolle operatie en bij een niet te verwaarlozen deel van de behandelde
patiënten treden na de plaatsing gevaarlijke complicaties op. Om deze redenen is
het van groot belang om een goede selectie te kunnen maken van patiënten die in
aanmerking komen voor deze ingreep.

De huidige praktijk is dat patiënten worden geselecteerd op basis van de diameter
van het aneurysma. Op het moment dat het aneurysma zover gegroeid is dat de
diameter meer is dan 55 mm wordt tot behandeling overgegaan. Ofschoon de scheu-
ringskans tot op zekere hoogte wel gerelateerd is aan het formaat van het aneurysma
gebeurt het ook dat kleine aneurysmata scheuren en zijn er gevallen bekend van zeer
grote aneurysmata die niet scheuren. Een nieuwe methode om tot een betere selec-
tie van patiënten te komen is het bepalen van de wandspanning in het aneurysma
met behulp van eindige elementen modellen. Het ultieme doel van het onderzoek
naar wandspanning in AAA’s is om met volautomatische methoden tot een robuus-
te, nauwkeurige schatting van het patiëntspecifieke ruptuurrisico te komen. Voor
de exacte waarde van de maximale spanning zijn de patiëntspecifieke vorm van het
aneurysma, de bloeddruk, de invloed van trombus en de materiaaleigenschappen
van groot belang. De doelstellingen van het onderzoek dat beschreven wordt in dit
proefschrift zijn om op basis van magnetische resonantie beelden een model van de
specifieke vorm van het aneurysma te genereren en vervolgens een benadering te
maken van de wandspanning. Tevens zijn we gëınteresseerd in de gevoeligheden van
dit model.

Hoofdstuk 1 geeft een overzicht van de risicofactoren die een rol spelen voor het
ontstaan van AAA’s, alsmede een overzicht van de behandelingsmethoden. Verder
wordt er een kort overzicht gepresenteerd van de beschikbare literatuur over het
reconstrueren van de AAA geometrie op basis van medische beelden en het uitvoeren
van wandspanningsanalyses in AAA’s.
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In Hoofdstuk 2 wordt beschreven hoe we met behulp van nieuwe MR acquisitie
protocollen een reconstructie hebben gemaakt van de patiëntspecifieke vorm van het
aneurysma. De variatie tussen de drie-dimensionale geometrieën van de aneurys-
mata bij verschillende patiënten is dermate groot dat het lastig is om met globale
aannamen over de geometrie tot een nauwkeurige geometrische beschrijving te ko-
men. Om deze reden is de methode gebaseerd op 3D deformable models die een
discrete beschrijving vormen van een oppervlak dat op basis van beeldinformatie en
lokale vormcriteria iteratief vervormd kan worden tot het een benadering geeft van
de vorm van het aneurysma. Tevens hebben we een methode ontwikkeld om met
behulp van een optimalisatie van de correlatie van lokale beeldinformatie op opeen-
volgende fasen binnen de hartcyclus de initiële vorm te deformeren om een dyna-
mische beschrijving van de geometrie van het bloedvat te verkrijgen. De methodes
zijn gevalideerd door de resultaten te vergelijken met 2D contouren die getekend zijn
door een aantal gebruikers. Ofschoon de fouten in de automatisch gereconstrueerde
vorm acceptabel zijn, presteren de gebruikers in vrijwel alle gevallen beter dan de
algoritme.

Hoofdstuk 3 beschrijft de methoden die gebruikt zijn om op automatische wij-
ze van de initiële beschrijving van de geometrie te komen tot een beschrijving die
gebruikt kan worden voor eindige elementen simulaties. Hierin zijn belangrijke ver-
beteringen verwezenlijkt ten opzichte van de nauwkeurigheid van bestaande metho-
den. Ofschoon de methoden die in dit hoofdstuk beschreven worden in dit onder-
zoek voornamelijk gebruikt worden voor wandspanningssimulaties in AAA’s, zijn
ze ook direct toe te passen op andere al dan niet pathologische vaatstructuren in
het lichaam. Dit laatste wordt gëıllustreerd aan de hand van een voorbeeld van
bloedstroming in een cerebraal aneurysma.

De bestaande methode om de wandspanning in een AAA te berekenen gaat uit
van de aanname dat de vorm zoals die gemeten wordt tijdens de diastolische fase
spanningsvrij is. Deze aanname is in de praktijk niet houdbaar aangezien er tijdens
elke fase van de hartcyclus sprake is van een drukval over de wand van het aneurys-
ma. In Hoofdstuk 4 presenteren we een methode waarmee de voorspanning zoals die
heerst in het aneurysma zoals het op de dynamische MR beelden zichtbaar is bena-
derd kan worden. Op deze wijze komen we tot een meer realistische benadering van
de verplaatsingen en de spanningen in de aneurysma wand. De resultaten wijzen
uit dat de piekspanning in de AAA’s hoger is dan tot dusverre werd aangenomen.

In Hoofdstuk 5 wordt de gevoeligheid van de berekende wandspanningen voor ge-
ometrische fouten onderzocht. Allereerst tonen we aan dat de maximale wandspan-
ning alleen reproduceerbaar is als we een voldoende glad model voor het aneurysma
gebruiken. Uit experimenten gebaseerd op verschillende manuele segmentaties van
een aantal gebruikers op MR blijkt dat de wandspanning in het aneurysma zeer
gevoelig is voor kleine variaties met betrekking tot de precieze vorm. Een vergelijk-
bare studie met behulp van CT beelden voor dezelfde patiënten laat zien dat deze
onzekerheid ook aanwezig is voor deze modaliteit. De resultaten wijzen verder uit
dat het voor ruptuurvoorspellingen wellicht beter is om zeer lokale effecten te ver-
waarlozen, hetzij door een niet al te gedetailleerd model te veronderstellen voor de
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vorm, of door een statistische afgeleide van de wandspanningsverdeling te gebruiken
in plaats van het absolute maximum.

In Hoofdstuk 6 wordt de invloed van calcificaties in de wand van het aneurys-
ma nader bekeken. Het is in de bestaande literatuur gesuggereerd dat calcificaties
kunnen leiden tot hogere wandspanningen hetgeen aanleiding zou kunnen geven tot
een hoger ruptuurrisico. De gehanteerde modellen en de aannamen voor de mate-
riaaleigenschappen in de voorgaande studies zijn echter zeer verschillend, evenals
de waargenomen fenomenen. Verder wordt in deze voorgaande studies de precieze
vorm van de calcificaties buiten beschouwing gelaten. In onze simulaties gebruiken
we juist een gedetailleerd model voor de calcificaties en laten we de vorm van de
AAA buiten beschouwing. Door de resultaten van een aantal modelleringsmethoden
onderling te vergelijken voor verschillende aannamen voor de materiaaleigenschap-
pen laten we zien dat de spanning sterk afhangt van de materiaaleigenschappen
van de calcificaties. Tevens laten we zien dat de spanningen in de calcificaties en
op de overgang van de materialen nauwelijks nauwkeurig te benaderen zijn met de
huidige scan-methoden en kennis over de materiaalhechting. Het lijkt dan ook het
beste om vooralsnog met name de veranderde spanning in het niet gecalcificeerde
deel van het weefsel te beschouwen onder invloed van de calcificaties. Deze laatste
grootheid blijkt slechts in zeer beperkte mate gerelateerd te zijn aan de vorm van
de calcificaties, en in veel grotere mate aan de materiaaleigenschappen.
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