3,445 research outputs found

    Impression Classification of Endek (Balinese Fabric) Image Using K-Nearest Neighbors Method

    Get PDF
    An impression can be interpreted as a psychological feeling toward a product and it plays an important role in decision making. Therefore, the understanding of the data in the domain of impressions will be very useful. This research had the objective of knowing the performance of K-Nearest Neighbors method to classify endek image impression using K-Fold Cross Validation method. The images were taken from 3 locations, namely CV. Artha Dharma, Agung Bali Collection, and Pengrajin Sri Rejeki. To get the image impression was done by consulting with an endek expert named Dr. D.A Tirta Ray, M.Si. The process of data mining was done by using K-Nearest Neighbors Method which was a classification method to a set of data based on learning data that had been classified previously and to classify new objects based on attributes and training samples. K-Fold Cross Validation testing obtained accuracy of 91% with K value in K-Nearest Neighbors of 3, 4, 7, 8

    KEER2022

    Get PDF
    AvanttĂ­tol: KEER2022. DiversitiesDescripciĂł del recurs: 25 juliol 202

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Visual Prototyping of Cloth

    Get PDF
    Realistic visualization of cloth has many applications in computer graphics. An ongoing research problem is how to best represent and capture appearance models of cloth, especially when considering computer aided design of cloth. Previous methods can be used to produce highly realistic images, however, possibilities for cloth-editing are either restricted or require the measurement of large material databases to capture all variations of cloth samples. We propose a pipeline for designing the appearance of cloth directly based on those elements that can be changed within the production process. These are optical properties of fibers, geometrical properties of yarns and compositional elements such as weave patterns. We introduce a geometric yarn model, integrating state-of-the-art textile research. We further present an approach to reverse engineer cloth and estimate parameters for a procedural cloth model from single images. This includes the automatic estimation of yarn paths, yarn widths, their variation and a weave pattern. We demonstrate that we are able to match the appearance of original cloth samples in an input photograph for several examples. Parameters of our model are fully editable, enabling intuitive appearance design. Unfortunately, such explicit fiber-based models can only be used to render small cloth samples, due to large storage requirements. Recently, bidirectional texture functions (BTFs) have become popular for efficient photo-realistic rendering of materials. We present a rendering approach combining the strength of a procedural model of micro-geometry with the efficiency of BTFs. We propose a method for the computation of synthetic BTFs using Monte Carlo path tracing of micro-geometry. We observe that BTFs usually consist of many similar apparent bidirectional reflectance distribution functions (ABRDFs). By exploiting structural self-similarity, we can reduce rendering times by one order of magnitude. This is done in a process we call non-local image reconstruction, which has been inspired by non-local means filtering. Our results indicate that synthesizing BTFs is highly practical and may currently only take a few minutes for small BTFs. We finally propose a novel and general approach to physically accurate rendering of large cloth samples. By using a statistical volumetric model, approximating the distribution of yarn fibers, a prohibitively costly, explicit geometric representation is avoided. As a result, accurate rendering of even large pieces of fabrics becomes practical without sacrificing much generality compared to fiber-based techniques

    Sustainability in design: now! Challenges and opportunities for design research, education and practice in the XXI century

    Get PDF
    Copyright @ 2010 Greenleaf PublicationsLeNS project funded by the Asia Link Programme, EuropeAid, European Commission

    Active recognition and pose estimation of rigid and deformable objects in 3D space

    Get PDF
    Object recognition and pose estimation is a fundamental problem in computer vision and of utmost importance in robotic applications. Object recognition refers to the problem of recognizing certain object instances, or categorizing objects into specific classes. Pose estimation deals with estimating the exact position of the object in 3D space, usually expressed in Euler angles. There are generally two types of objects that require special care when designing solutions to the aforementioned problems: rigid and deformable. Dealing with deformable objects has been a much harder problem, and usually solutions that apply to rigid objects, fail when used for deformable objects due to the inherent assumptions made during the design. In this thesis we deal with object categorization, instance recognition and pose estimation of both rigid and deformable objects. In particular, we are interested in a special type of deformable objects, clothes. We tackle the problem of autonomously recognizing and unfolding articles of clothing using a dual manipulator. This problem consists of grasping an article from a random point, recognizing it and then bringing it into an unfolded state by a dual arm robot. We propose a data-driven method for clothes recognition from depth images using Random Decision Forests. We also propose a method for unfolding an article of clothing after estimating and grasping two key-points, using Hough Forests. Both methods are implemented into a POMDP framework allowing the robot to interact optimally with the garments, taking into account uncertainty in the recognition and point estimation process. This active recognition and unfolding makes our system very robust to noisy observations. Our methods were tested on regular-sized clothes using a dual-arm manipulator. Our systems perform better in both accuracy and speed compared to state-of-the-art approaches. In order to take advantage of the robotic manipulator and increase the accuracy of our system, we developed a novel approach to address generic active vision problems, called Active Random Forests. While state of the art focuses on best viewing parameters selection based on single view classifiers, we propose a multi-view classifier where the decision mechanism of optimally changing viewing parameters is inherent to the classification process. This has many advantages: a) the classifier exploits the entire set of captured images and does not simply aggregate probabilistically per view hypotheses; b) actions are based on learnt disambiguating features from all views and are optimally selected using the powerful voting scheme of Random Forests and c) the classifier can take into account the costs of actions. The proposed framework was applied to the same task of autonomously unfolding clothes by a robot, addressing the problem of best viewpoint selection in classification, grasp point and pose estimation of garments. We show great performance improvement compared to state of the art methods and our previous POMDP formulation. Moving from deformable to rigid objects while keeping our interest to domestic robotic applications, we focus on object instance recognition and 3D pose estimation of household objects. We are particularly interested in realistic scenes that are very crowded and objects can be perceived under severe occlusions. Single shot-based 6D pose estimators with manually designed features are still unable to tackle such difficult scenarios for a variety of objects, motivating the research towards unsupervised feature learning and next-best-view estimation. We present a complete framework for both single shot-based 6D object pose estimation and next-best-view prediction based on Hough Forests, the state of the art object pose estimator that performs classification and regression jointly. Rather than using manually designed features we propose an unsupervised feature learnt from depth-invariant patches using a Sparse Autoencoder. Furthermore, taking advantage of the clustering performed in the leaf nodes of Hough Forests, we learn to estimate the reduction of uncertainty in other views, formulating the problem of selecting the next-best-view. To further improve 6D object pose estimation, we propose an improved joint registration and hypotheses verification module as a final refinement step to reject false detections. We provide two additional challenging datasets inspired from realistic scenarios to extensively evaluate the state of the art and our framework. One is related to domestic environments and the other depicts a bin-picking scenario mostly found in industrial settings. We show that our framework significantly outperforms state of the art both on public and on our datasets. Unsupervised feature learning, although efficient, might produce sub-optimal features for our particular tast. Therefore in our last work, we leverage the power of Convolutional Neural Networks to tackled the problem of estimating the pose of rigid objects by an end-to-end deep regression network. To improve the moderate performance of the standard regression objective function, we introduce the Siamese Regression Network. For a given image pair, we enforce a similarity measure between the representation of the sample images in the feature and pose space respectively, that is shown to boost regression performance. Furthermore, we argue that our pose-guided feature learning using our Siamese Regression Network generates more discriminative features that outperform the state of the art. Last, our feature learning formulation provides the ability of learning features that can perform under severe occlusions, demonstrating high performance on our novel hand-object dataset. Concluding, this work is a research on the area of object detection and pose estimation in 3D space, on a variety of object types. Furthermore we investigate how accuracy can be further improved by applying active vision techniques to optimally move the camera view to minimize the detection error.Open Acces

    Psychotextiles and their interaction with the human brain

    Get PDF
    This work crosses the boundaries between design and technology, and it focuses on pattern design, its relationship with neuroscience and how new SMART products can be developed from this interaction. What we see in our environment has significant influence on our emotion and behaviour. A simple shape and form is able to impact on our emotions. This research has explored the emotional effect evoked by different visual pattern characteristics. Two paired pattern categories were investigated: repeating/non-repeating and weak/intense. Repeating patterns contain regularly repeating elements and have symmetrical and continuous features; in contrast, non-repeating patterns contain irregularly repeating elements and have asymmetrical and discontinuous features. Weak patterns are faint, light and simple compared to intense patterns that are high in contrast, bold and complex. The emotional response to each type of pattern was investigated directly by brain and cardiac activities of twenty subjects by electroencephalography (EEG) and electrocardiography (ECG) measurements and by self-evaluation; the former is used to measure the brain wave activity, and the ECG to analyse the heart rate changes. These physiological signals were then analysed, interpreted and correlated with people’s self-evaluation of their emotional response to the pattern. It was found that repeating patterns produce a more pleasant sensation than non-repeating patterns, and intense patterns evoke a higher level of excitement than weak patterns. The significant changes in the emotional effects found by changes of pattern and the good correlation of the objective and subjective emotional measurements encouraged the implementation of pattern change by design and production of SMART fabrics. Four knitted fabrics with the ability of switching their pattern appearance from repeating to non-repeating, and from weak to intense have been successfully produced with a purpose made electrochromic composite yarn. The emotional effects of pattern-changing of these fabrics have been further investigated. The notion of influencing human emotion by engineering the pattern design and characteristics of SMART textiles is established and these fabrics are named Psychotextiles. Finally the event-related potential (ERP) investigation of the visual brain (no thinking, or memory) revealed that there may be an influence on human emotional effects in less than 1 second from the time of seeing the object; a time sufficiently short for these to be little analysis within the brain

    Augmentieren von Personen in Monokularen Videodaten

    Get PDF
    When aiming at realistic video augmentation, i.e. the embedding of virtual, 3-dimensional objects into a scene's original content, a series of challenging problems has to be solved. This is especially the case when working with solely monocular input material, as important additional 3D information is missing and has to be recovered during the process, if necessary. In this work, I will present a semi-automatic strategy to tackle this task by providing solutions to individual problems in the context of virtual clothing as an example for realistic video augmentation. Starting with two different approaches for monocular pose and motion estimation, I will show how to build a 3D human body model by estimating detailed shape information as well as basic surface material properties. This information allows to further extract a dynamic illumination model from the provided input material. The illumination model is particularly important for rendering a realistic virtual object and adds a lot of realism to the final video augmentation. The animated human model is able to interact with virtual 3D objects and is used in the context of virtual clothing to animate simulated garments. To achieve the desired realism, I present an additional image-based compositing approach that realistically embeds the simulated garment into the original scene content. Combining the presented approaches provide an integrated strategy for realistic augmentation of actors in monocular video sequences.Unter der Zielsetzung einer realistischen Videoaugmentierung durch das Einbetten virtueller, dreidimensionaler Objekte in eine bestehende Videoaufnahme, gibt eine Reihe interessanter und schwieriger Problemen zu lösen. Besonders im Hinblick auf die Verarbeitung monokularer Eingabedaten fehlen wichtige rĂ€umliche Informationen, welche aus den zweidimensionalen Eingabedaten rekonstruiert werden mĂŒssen. In dieser Arbeit prĂ€sentiere ich eine halbautomatische Verfahrensweise, welche es ermöglicht, die einzelnen Teilprobleme einer umfassenden Videoaugmentierung nacheinander in einer integrierten Strategie zu lösen. Dies demonstriere ich am Beispiel von virtueller Kleidung. Beginnend mit zwei unterschiedlichen AnsĂ€tzen zur Posen- und Bewegungsrekonstruktion wird ein realistisches 3D Körpermodell eines Menschen erzeugt. Dazu wird die detaillierte Körperform durch ein geeignetes Verfahren approximiert und eine Rekonstruktion der OberflĂ€chenmaterialen vorgenommen. Diese Informationen werden unter anderem dazu verwendet, aus dem Eingabevideo eine dynamische Szenenbeleuchtung zu rekonstruieren. Die Beleuchtungsinformationen sind besonders wichtig fĂŒr eine realistische Videoaugmentierung, da gerade eine korrekte Beleuchtung den RealitĂ€tsgrad des virtuell generierten Objektes erhöht. Das rekonstruierte und animierte Körpermodell ist durch seinen Detailgrad in der Lage, mit virtuellen Objekten zu interagieren. Dies kommt besonders im Anwendungsfall von virtueller Kleidung zum tragen. Um den gewĂŒnschten RealitĂ€tsgrad zu erreichen, fĂŒhre ich ein zusĂ€tzliches, bild-basiertes Korrekturverfahren ein, welches hilft, die finale Bildkomposition zu optimieren. Die Kombination aller prĂ€sentierter Teilverfahren bildet eine vollumfĂ€ngliche Strategie zur Augmentierung von monokularem Videomaterial, die zur realistischen Simulation und Einbettung von virtueller Kleidung eines Schauspielers im Originalvideo verwendet werden kann

    Rhapsodic Objects

    Get PDF
    Circulation and imitation of cultural products are key factors in shaping the material world.The contributions explore how technical knowledge, immaterial desires, and political agendas impacted the production and consumption of visual and material culture in different times and places. They map a new a multidirectional market for cultural goods in which the source countries can be positioned at the center

    Automatic Analysis of People in Thermal Imagery

    Get PDF
    • 

    corecore