5,342 research outputs found

    ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement

    Get PDF
    While many tailor made card game protocols are known, the vast majority of those suffer from three main issues: lack of mechanisms for distributing financial rewards and punishing cheaters, lack of composability guarantees and little flexibility, focusing on the specific game of poker. Even though folklore holds that poker protocols can be used to play any card game, this conjecture remains unproven and, in fact, does not hold for a number of protocols (including recent results). We both tackle the problem of constructing protocols for general card games and initiate a treatment of such protocols in the Universal Composability (UC) framework, introducing an ideal functionality that captures general card games constructed from a set of core card operations. Based on this formalism, we introduce Royale, the first UC-secure general card games which supports financial rewards/penalties enforcement. We remark that Royale also yields the first UC-secure poker protocol. Interestingly, Royale performs better than most previous works (that do not have composability guarantees), which we highlight through a detailed concrete complexity analysis and benchmarks from a prototype implementation

    Runtime protection via dataïŹ‚ow flattening

    Get PDF
    Software running on an open architecture, such as the PC, is vulnerable to inspection and modiïŹcation. Since software may process valuable or sensitive information, many defenses against data analysis and modiïŹcation have been proposed. This paper complements existing work and focuses on hiding data location throughout program execution. To achieve this, we combine three techniques: (i) periodic reordering of the heap, (ii) migrating local variables from the stack to the heap and (iii) pointer scrambling. By essentialy flattening the dataflow graph of the program, the techniques serve to complicate static dataflow analysis and dynamic data tracking. Our methodology can be viewed as a data-oriented analogue of control-flow flattening techniques. Dataflow flattening is useful in practical scenarios like DRM, information-flow protection, and exploit resistance. Our prototype implementation compiles C programs into a binary for which every access to the heap is redirected through a memory management unit. Stack-based variables may be migrated to the heap, while pointer accesses and arithmetic may be scrambled and redirected. We evaluate our approach experimentally on the SPEC CPU2006 benchmark suit

    Functional Encryption as Mediated Obfuscation

    Get PDF
    We introduce a new model for program obfuscation, called mediated obfuscation. A mediated obfuscation is a 3-party protocol for evaluating an obfuscated program that requires minimal interaction and limited trust. The party who originally supplies the obfuscated program need not be online when the client wants to evaluate the program. A semi-trusted third-party mediator allows the client to evaluate the program, while learning nothing about the obfuscated program or the client’s inputs and outputs. Mediated obfuscation would provide the ability for a software vendor to safely outsource the less savory aspects (like accounting of usage statistics, and remaining online to facilitate access) of “renting out” access to proprietary software. We give security definitions for this new obfuscation paradigm, and then present a simple and generic construction based on functional encryption. If a functional encryption scheme supports decryption functionality F (m, k), then our construction yields a mediated obfuscation of the class of functions {F (m, ·) | m}. In our construction, the interaction between the client and the mediator is minimal (much more efficient than a general- purpose multi-party computation protocol). Instantiating with existing FE constructions, we achieve obfuscation for point-functions with output (under a strong “virtual black-box” notion of security), and a general feasibility result for obfuscating conjunctive normal form and disjunctive normal form formulae (under a weaker “semantic” notion of security). Finally, we use mediated obfuscation to illustrate a connection between worst-case and average-case static obfuscation. In short, an average-case (static) obfuscation of some component of a suitable functional encryption scheme yields a worst-case (static) obfuscation for a related class of functions. We use this connection to demonstrate new impossibility results for average-case (static) obfuscation

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Mediated Ciphertext-Policy Attribute-Based Encryption and its Application (extended version)

    Get PDF
    In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a user secret key is associated with a set of attributes, and the ciphertext is associated with an access policy over attributes. The user can decrypt the ciphertext if and only if the attribute set of his secret key satisfies the access policy specified in the ciphertext. Several CP-ABE schemes have been proposed, however, some practical problems, such as attribute revocation, still needs to be addressed. In this paper, we propose a mediated Ciphertext-Policy Attribute-Based Encryption (mCP-ABE) which extends CP-ABE with instantaneous attribute revocation. Furthermore, we demonstrate how to apply the proposed mCP-ABE scheme to securely manage Personal Health Records (PHRs)
    • 

    corecore