
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2012

Functional Encryption as Mediated Obfuscation Functional Encryption as Mediated Obfuscation

Robert Perry Hooker
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hooker, Robert Perry, "Functional Encryption as Mediated Obfuscation" (2012). Graduate Student Theses,
Dissertations, & Professional Papers. 475.
https://scholarworks.umt.edu/etd/475

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267571686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/475?utm_source=scholarworks.umt.edu%2Fetd%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

FUNCTIONAL ENCRYPTION AS MEDIATED OBFUSCATION

By

ROBERT PERRY HOOKER

Bachelor of Science, Western State College, Gunnison, Colorado, 2005

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, MT

May 2012

Approved by:

Dr. Sandy Ross, Dean of The Graduate School
Graduate School

Dr. Mike Rosulek, Chair
Department of Computer Science

Dr. Douglas Raiford
Department of Computer Science

Dr. Mark Kayll
Department of Mathematical Sciences

Acknowledgments

This thesis would have been impossible without the advice, mentoring, and constant

reassurance of my advisor, Mike Rosulek. I am continually impressed with his patience,

work ethic, and equanimity. Mike is a consummate educator: always kind, never frustrated,

and genuinely passionate about his work.

I’m also grateful to my teachers in the UM CS department: Michael Cassens, Min Chen,

Glen Granzow, Joel Henry, Jesse Johnson, Doug Raiford, Yolanda Reimer, and Alden Wright.

It takes a department to raise a researcher.

To my fellow CS grad students: you’ve been wonderful co-workers and better friends.

May you all succeed in fabulous style.

Finally - to my family, my sine qua non: you’ve always been there. This thesis is dedicated

to you.

i

Abstract

We introduce a new model for program obfuscation, called mediated obfuscation. A

mediated obfuscation is a 3-party protocol for evaluating an obfuscated program that

requires minimal interaction and limited trust. The party who originally supplies the

obfuscated program need not be online when the client wants to evaluate the program.

A semi-trusted third-party mediator allows the client to evaluate the program, while

learning nothing about the obfuscated program or the client’s inputs and outputs. Mediated

obfuscation would provide the ability for a software vendor to safely outsource the less

savory aspects (like accounting of usage statistics, and remaining online to facilitate access)

of “renting out” access to proprietary software.

We give security definitions for this new obfuscation paradigm, and then present a

simple and generic construction based on functional encryption. If a functional encryption

scheme supports decryption functionality F (m, k), then our construction yields a mediated

obfuscation of the class of functions {F (m, ·) | m}. In our construction, the interaction

between the client and the mediator is minimal (much more efficient than a general-

purpose multi-party computation protocol). Instantiating with existing FE constructions,

we achieve obfuscation for point-functions with output (under a strong “virtual black-box”

notion of security), and a general feasibility result for obfuscating conjunctive normal form

and disjunctive normal form formulae (under a weaker “semantic” notion of security).

Finally, we use mediated obfuscation to illustrate a connection between worst-case

and average-case static obfuscation. In short, an average-case (static) obfuscation of

some component of a suitable functional encryption scheme yields a worst-case (static)

obfuscation for a related class of functions. We use this connection to demonstrate new

impossibility results for average-case (static) obfuscation.

ii

Contents

1 Introduction 1

1.1 Our Results . 3

2 Preliminaries 4

2.1 Basic Definitions . 4

2.2 Functional Encryption . 5

2.2.1 Syntax . 5

2.2.2 Identity-based encryption . 6

2.2.3 Security definitions . 7

2.2.4 Composability of FE schemes . 10

2.3 Obfuscation . 14

2.4 Universally Composable Security . 16

3 Mediated Obfuscation 19

3.1 Model . 19

3.2 Syntax . 20

3.3 Security Definitions . 21

3.4 General Feasibility . 22

3.4.1 Using one-round secure computation 22

3.4.2 Using (derivatives of) fully-homomorphic encryption 24

4 Functional Encryption as Mediated Obfuscation 26

4.1 Generic Construction from Functional Encryption 26

4.1.1 On full vs. relaxed security . 27

4.2 Implementing Mediated Obfuscation . 28

iii

4.2.1 Achieving semantic security . 28

4.2.2 Achieving strong security for point functions with AIBE 31

4.2.3 Mathematical background . 31

4.2.4 The AIBE construction . 33

5 Connections to Static Obfuscation 41

5.1 Static Obfuscation . 41

5.2 Implications . 43

6 Conclusion & Open Problems 45

iv

List of Figures

2.1 Steps in the proof of the composition theorem for straight-line-Sim1-security. 13

2.2 The common reference string functionality FCRS for a distribution D and a

set of parties P. 18

3.1 The mediated obfuscation model. 19

3.2 The FMO functionality for mediated obfuscation of a class of functions C. . . 20

3.3 The FMOX functionality for mediated obfuscation of a class of functions C. . . 21

3.4 The FJOIN functionality for the 〈C,M〉 subprotocol using NMSS. 23

v

Chapter 1

Introduction

Cryptography is a means for controlling access to information. Traditionally, encrypted data

is both useless to unauthorized parties and fully accessible to authorized users. However,

there are many natural applications for encryption schemes that relax these restrictions.

Functional encryption (FE) [BSW11a, O’N10] is a new class of encryption which

refines cryptography’s traditional “all-or-nothing” pattern. Broadly speaking, a functional

encryption system allows different users to hold unique secret keys which decrypt arbitrary

functions of the plaintext.

Functional encryption has many potential applications. For example, consider a large,

cloud-hosted, encrypted database of student information that contains both academic and

financial data. Here, the level of access required by teachers and accountants is different:

teachers only need to access the grades of students in their classes, while accountants only

need to access student financial reports. Traditionally, this access policy would be enforced

by storing the data on a trusted server that both authenticates users and supplies them

with appropriate content. However, in a cloud-based model, it may be undesirable to

outsource this level of trust in addition to data storage. In this case, the standard “all-or-

nothing” model is insufficient, because all key holders (i.e., both teachers and accountants)

can decrypt the entire student database. Functional encryption provides an alternative

approach: users get keys that only allow them to decrypt appropriate content.

In this work, we apply functional encryption to the problem of program obfuscation.

Informally, the goal of obfuscation is to make the source code of a program “unintelligible”

without altering its functionality. Though theoretical results such as the undecidability of

1

the HALTING PROBLEM and the conjectured difficulty of BOOLEAN SATISFIABILITY suggest

that computer programs are fundamentally difficult to interpret, in practice computer

programs are routinely analyzed1 by studying their source code. This poses a problem

for software vendors who want to create and distribute programs without revealing the

(potentially valuable) details of their implementation. Though some software vendors have

addressed this problem by hosting their programs in-house on secure servers, such systems

require the vendor to maintain a significant on-line presence. Maintaining such a presence

may be undesirable (or infeasible) for all software producers.

Obfuscation provides one solution to this dilemma. An obfuscated program is by

definition protected against reverse-engineering: the program still “works” on arbitrary

inputs, but its code is undecipherable (to anyone who does not hold the secret key). This

implies that an obfuscated program is a “virtual black-box:” the program is functional, but

its “inner workings” are disguised from view.

As a concrete example, consider the following scenario: Alice, a software vendor, wishes

to sell Bob the ability to run some proprietary software without revealing the program’s

source code. Alice could simply run the program on Bob’s behalf, but Alice would prefer

not to remain constantly available to service Bob’s requests. Instead, she would like to sell

Bob an obfuscated version of her software, and then go off-line. The security of obfuscation

implies that Bob would learn no more from this obfuscated program than he could have

learned in the trivial scenario in which Alice simply runs the program on his behalf.

Unfortunately, this type of static obfuscation is impossible for arbitrary programs [BGI+01].

Even for very simple programs, the known positive results for obfuscation require significant

security compromises.

As an alternative to static obfuscation, we propose a new relaxed notion of obfuscation

called mediated obfuscation (MO). To achieve fully secure obfuscation of arbitrary

programs, mediated obfuscation uses a minimal amount of interaction with a semi-trusted

third party. Thus, instead of evaluating a static program locally, the user is required

to engage in a 2-party interactive protocol to evaluate an obfuscated program on a

given input. Furthermore, we exclude the trivial solution in which Alice evaluates the

program completely on Bob’s behalf (which can hardly be considered an “obfuscation”).

To accomplish this, our model introduces a third party called the mediator. Alice can

1E.g., to determine the program’s purpose and/or algorithmic complexity.

2

obfuscate her program, send it to Bob, and then outsource the requirement of constant, on-

demand availability to the mediator. That is, Bob interacts with the always-online mediator

whenever he wants to evaluate the program on an input. All this is achieved while still

preventing reverse engineering (in this case, by either Bob or the mediator).

1.1 Our Results

In this thesis, we introduce and define the mediated obfuscation model. Briefly, a mediated

obfuscation is a 3-party protocol with the following syntax: a vendor obfuscates the

program f by generating an obfuscated program for the client and some key information

for the mediator. When the client wants to evaluate f on input x, he engages in a protocol

with the mediator, from which he learns f(x).

We establish two security definitions for MO: a “virtual black-box” simulation-based

definition, and a second, weaker definition in the style of semantic security. We show the

general feasibility of MO based on one-round secure computation and fully homomorphic

encryption, and then demonstrate a simple, efficient MO scheme based on functional

encryption. To extend the MO paradigm to obfuscation of arbitrary functions, we show that

a natural way of composing FE schemes preserves security and results in a more expressive

FE system.

Finally, we use mediated obfuscation to connect worst-case and average-case static

obfuscation. In short, an average-case (static) obfuscation of some component of a suitable

functional encryption scheme yields a worst-case (static) obfuscation for a related class of

functions. We use this connection to demonstrate new impossibility results for average-case

(static) obfuscation.

This thesis is based on joint work conducted with Manoj Prabhakaran and Mike Rosulek

[HPR12].

3

Chapter 2

Preliminaries

In this chapter, we present preliminary definitions and notation, including brief overviews

of functional encryption, obfuscation, and the Universally Composable security framework.

Readers who are familiar with these concepts may wish to review the new result on the

composability of FE schemes.

2.1 Basic Definitions

When X is a finite set, the notation x ← X means that x is chosen uniformly at random

from X. We say a function f : N → R is negligible in λ if for every constant c > 0 there

exists an integer n such that f(λ) < λ−c for all λ > n. A probabilistic polynomial time

(PPT) algorithm A has access to a source of randomness and runs in polynomial time; that

is, there exists a polynomial p(·) such that for every input x ∈ {0, 1}∗, the computation

A(x) terminates within p(|x|) steps. For algorithms A and F and an input string x, we write

AF (x) to denote the output of A when executed on input x with oracle access to F (i.e.,

A has access to a “black box” that can evaluate F in a single computational step). Given a

countable set1 I, a probability ensemble indexed by I is a collection of random variables

{Di | i ∈ I}. We say two probability ensembles D = {Dn | n ∈ N} and D′ = {D′n | n ∈ N}

are computationally indistinguishable (written D ≈ D′) if no efficient procedure can tell

them apart; i.e., for all PPT algorithms A the quantity

∣∣Pr [x← Dn;A(x) = 1]− Pr
[
x← D′n;A(x) = 1

]∣∣ is negligible in n.

1Typically either the natural numbers N or a polynomial-time computable subset of {0, 1}∗.

4

2.2 Functional Encryption

Functional encryption (FE) forms the basis of this work. FE provides sophisticated and

flexible relations between messages and secret keys: a message m is encrypted to a

ciphertext using the public key pk, and a secret key skk is associated with a parameter

k. Using skk allows the key holder to compute a specific function of k and m from an

encryption of m.

FE encompasses a wide range of encryption primitives like identity-based encryption

[BF01, SW04, YFDL04, Wat05, BW06, ABV+11], attribute-based encryption [BSW07,

BSW11a, Wat08, AI09, OT10, LOS+10], and predicate encryption [KSW08, BW07]. Func-

tional encryption’s expressive power immediately yields natural applications in database

access control, email services, and multimedia content distribution [GPSW06, BW07,

BH08].

2.2.1 Syntax

A functional encryption scheme Σ is parameterized by a functionality F which describes

the information about the plaintext that can be learned from the ciphertext: the result

of decrypting a ciphertext associated with plaintext m, using a decryption key associated

with value k, is F (m, k). Formally, a functionality is a function F : M × K → {0, 1}∗,

where K is the key space and M is the message space.2 A functional encryption scheme

with functionality F is a tuple of PPT algorithms Σ = (Setup,KeyGen,Enc,Dec), with the

following syntax:

(pk,mk) ← Setup(1λ): given a security parameter, Setup samples a public key and a

master key.

skk ← KeyGen(mk, k): accepts a master key and a parameter k ∈ K, and outputs a

decryption key.

c← Enc(pk,m): takes the public key and a plaintextm ∈M, and returns a ciphertext.

y ← Dec(skk, c): accepts a decryption key and a ciphertext, and returns either a string

or an error indicator ⊥.
2Both the key space and the message space implicitly depend on the security parameter λ. For simplicity of

notation, we treat the security parameter as implicit in this context.

5

The correctness requirement is that, for all (pk,mk) ← Setup(1λ) and all skk ←

KeyGen(mk, k), we have Dec(skk,Enc(pk,m)) = F (m, k) with probability 1 over the

randomness of Enc.

Additionally, we extend the standard definition of FE to include a natural notion of key

verifiability wherein a user can verify the validity of a decryption key corresponding to a

given value.

Definition 2.2.1 (Key verifiability). A functional encryption scheme with key verifiability is

an FE scheme as defined above with an additional CheckKey algorithm:

b ← CheckKey(pk, s̃k, x): given a public key, a purported decryption key, and a

parameter x, CheckKey returns 1 if ∀m : Dec(s̃k,Enc(pk,m)) = F (m,x) with

overwhelming probability over the randomness used in Enc, and 0 otherwise.

Note that ∀x : Pr[CheckKey(pk,KeyGen(mk, x), x) = 1] is overwhelming in λ.

2.2.2 Identity-based encryption

Identity-based encryption (IBE) [Sha85, BF01, Wat05] is a notable special case of functional

encryption with particular relevance to the problem of obfuscation. In IBE, a ciphertext

is “addressed” to an arbitrary nonempty string id (such as an email or IP address), and

plaintext messages are pairs (id,m). In terms of the functionality F , an IBE system uses the

function:

F ((id,m), id′) =

m if id = id′

⊥ otherwise

In other words, the encrypted message Enc(pk, (id,m)) can only be decrypted with the secret

key corresponding to the identity id.

The first IBE schemes explicitly included id “in the clear” as an unencrypted part

of the ciphertext. This partial information is represented in terms of the functionality

F via a special empty key ε. Using the empty key3 as input to Dec yields all the

information about the plaintext that can be gleaned by simply examining the ciphertext,

thus, Dec(ε, c) = F (ε, (id,m)) = id. This simplified the constructions, but allowed anyone

to determine a message’s intended recipient simply by examining the ciphertext. However,

3Typically defined as the empty string.

6

the development of anonymous identity-based encryption (AIBE) [BW06, Gen06] solved

this problem with ciphertexts that do not reveal the message’s intended receiver.

Predicate encryption (PE) [KSW08, BW07] generalizes the AIBE concept: messages

consist of a “payload” and a set of “attributes,” secret keys are associated with a predicate,

and the payload is revealed if and only if the predicate “accepts” the set of attributes. As

before, a ciphertext in a PE system reveals nothing about the payload or the set of attributes.

Here, the salient point is that an anonymous IBE scheme effectively obfuscates the

functionality F (which tests whether id = id′). This can be seen by considering an adversary

who has access to the FE algorithms for F : the security of the FE scheme guarantees that

the adversary cannot learn anything meaningful by examining secret keys and ciphertexts

- at best, it can only execute the Dec algorithm on inputs of its choice (assuming it obtains

secret keys for those inputs).

Notably, the AIBE functionality is analogous to the class of point functions with output

I = {Ix,m | x,m}, where a point function Ix,m is a boolean function that assumes the value

m at exactly one point x:

Ix,m(y) =

m if x = y

⊥ otherwise

Secure AIBE is thus akin to an obfuscation of the class I of point functions with output,

which are used in practice to perform tasks like password checking.

2.2.3 Security definitions

Security definitions for functional encryption schemes come in two basic flavors: indistinguishability-

based and simulation-based. Briefly, indistinguishability-based security implies that no

efficient (i.e., PPT) algorithm can distinguish between ciphertexts that encode different

messages, while simulation-based security is defined relative to an “ideal world” where a

perfectly trusted party is used to control access to messages. A real scheme is said to be

“simulation-secure” if no (real) adversary can learn more about the encrypted messages

in the real world than in the ideal one (where by definition no information is leaked

unintentionally). Simulation-based security is stronger but typically harder to achieve.

Here, we present two variants of the indistinguishability-based and simulation-based

security definitions given by Boneh, Sahai, & Waters [BSW11a]. In both cases, we require

7

that the ciphertext conceal the entire message m.

Definition 2.2.2 (Selective security). Let Σ be an FE scheme as above. Define the following

interaction:

SelSecExp(Σ,A, β, λ) :

1. Give 1λ to A, who then outputs plaintexts m0,m1 ∈M.
2. Compute (pk,mk)← Setup(1λ) and c = Enc(pk,mβ). Give (pk, c) to A.
3. A is given access to an oracle KeyGen(mk, ·), subject to the constraint that

F (m0, k) = F (m1, k) for all k queried to the oracle.
4. A outputs a bit, which we define as the output of this interaction.

Define the advantage of the adversary A as:

AdvSel(Σ,A, λ) :=
∣∣∣Pr [SelSecExp(Σ,A, 1, λ) = 1]− Pr [SelSecExp(Σ,A, 0, λ) = 1]

∣∣∣
We say that Σ is Selective-secure if for all PPT A the function AdvSel(Σ,A, λ) is negligible in

λ.

This Selective security definition is the selective relaxation of the definition for FE given

in [BSW11a]. In the case that the FE scheme is a predicate scheme, the values m0 and m1

in the above experiment contain both the “payload” and the “attributes” associated with

the ciphertext. Thus the above experiment combines both the standard notion of security

(payload hiding) as well as the notion of (strongly) attribute-hiding [KSW08].4

Definition 2.2.3 (Sim1 security). Let Σ be an FE scheme as above. Define the following

interactions:

Real(Σ,A,m, λ):

1. (pk,mk)← Setup(1λ)

2. c← Enc(pk,m)

3. z ← AKeyGen(mk,·)(1λ, pk, c)

4. output (z, k1 . . . , kn), where
k1, . . . , kn are the queries made
to the oracle in the previous step.

Ideal(Σ,S,m, λ):

1. z ← SF (m,·)(1λ)

2. output (z, k1 . . . , kn), where
k1, . . . , kn are the queries made
to the oracle in the previous step.

We say that Σ is Sim1-secure if for all PPTA there exists a PPT simulator S such that for all m,

the distribution ensembles {Real(Σ,A,m, λ)}λ and {Ideal(Σ,S,m, λ)}λ are indistinguishable.
4Weak attribute hiding would correspond to the additional restriction that F (m0, k) = F (m1, k) = ⊥, in

this case.

8

Furthermore, if for all A, the corresponding S treats A only in a straight-line, black-box

manner, then we say that the scheme is straight-line-Sim1-secure.

Simulation-based security implies that no PPT adversary can distinguish between

encryptions of two different messages (m0,m1) without an evaluation token for a key k ∈ K

such that F (m0, k) 6= F (m1, k).

The simulation-based security definition given in [BSW11a] allows the adversary to

request many ciphertexts, and also learn the value F (m, ε) — the so-called “intentional

leakage” of the ciphertext. Thus, in the case where F (m, ε) = ε (i.e., the functionality is

“attribute hiding”) and the adversary only requests one ciphertext, their definition collapses

to the Sim1 definition here.

Theorem 2.2.4. Let Σ be a Sim1-secure FE scheme as above. Then, Σ is also Selective-secure.

Proof. We prove the contrapositive. Assume that there exists an adversary A∗ such that

AdvSel(Σ,A∗, λ) is non-negligible (i.e., Σ is not Selective-secure). Then, it suffices to show

that there exists an adversary A+ that breaks the Sim1-security of Σ: i.e., ∃A+∀S∃m :

Real(Σ,A+,m, λ) 6≈ Ideal(Σ,S,m, λ). We use A∗ to construct A+.

Since AdvSel(Σ,A∗, λ) is non-negligible, there exist messages m0,m1 such that A∗ can

distinguish with non-negligible probability between Enc(pk,m0) and Enc(pk,m1) using only

oracle queries k1 . . . kn for which F (m0, ki) = F (m1, ki). Without loss of generality, assume

A∗ always outputs the same m0,m1 on a given security parameter.

A minor syntactic modification of A∗ yields the desired A+: define A+ to be a Turing

machine that participates in the Sim1 security interaction, but uses an internally emulated

copy of A∗ to determine its output. That is, when A+ receives a ciphertext c = Enc(pk,m),

it starts A∗, discards the plaintexts chosen by A∗ in the first step of the Selective security

experiment, passes (pk, c) to A∗ and outputs the bit and oracle queries generated by A∗.

Thus, we have Real(Σ,A+,m0, λ) 6≈ Real(Σ,A+,m1, λ).

However, the restriction that F (m0, ki) = F (m1, ki) for all oracle queries ki implies that

any S receives the same information regardless of whether its oracle is parameterized with

m0 or m1. Thus, Ideal(Σ,S,m0, λ) ≡ Ideal(Σ,S,m1, λ) for all S.

Combining these equations implies that either Real(Σ,A+,m0, λ) 6≈ Ideal(Σ,S,m0, λ) or

Real(Σ,A+,m1, λ) 6≈ Ideal(Σ,S,m1, λ), which means Σ is not Sim1-secure.

9

2.2.4 Composability of FE schemes

The MO construction in Chapter 4 uses existing FE schemes to construct a mediated

obfuscation of the class of point functions with logarithmic-length5 output. Towards

obfuscating functions with longer output, we show that a natural way of composing FE

schemes preserves the two security notions defined above and results in a more expressive

FE functionality.

Let ΣA,ΣB be distinct FE schemes for the functionalities FA, FB, respectively, where FA

and FB share the same key space. Then, the “composition” of ΣA and ΣB, which we denote

as ΣA‖ΣB, is the FE scheme defined as follows:

Setup∗(1λ):

run (pkA,mkA)← SetupA(1λ)

run (pkB,mkB)← SetupB(1λ)

output (pk∗,mk∗) :=

((pkA, pkB), (mkA,mkB))

Dec∗(sk∗k, c
∗):

parse sk∗k as (skkA, skkB) and c∗ as (cA, cB)

run yA ← DecA(skkA, cA)

run yB ← DecB(skkB, cB)

output y∗ := (yA, yB)

KeyGen∗(mk∗, k):

parse mk∗ as (mkA,mkB)

run skkA ← KeyGenA(mkA, k)

run skkB ← KeyGenB(mkB, k)

output sk∗k := (skkA, skkB)

Enc∗(pk∗, (mA,mB)):

parse pk∗ as (pkA, pkB)

run cA ← EncA(pkA,mA)

run cB ← EncB(pkB,mB)

output c∗ := (cA, cB)

ΣA‖ΣB then supports the functionality FA‖FB, defined by:

(FA‖FB)((mA,mB), k) = FA(mA, k) ‖FB(mB, k).

Thus, if FA and FB are point functions with single-bit output, then the composed

functionality FA‖FB has 2-bit output (i.e., FA, FB → {0, 1} ⇒ FA‖FB → {0, 1}2).

Theorem 2.2.5. If ΣA,ΣB are Selective-secure (resp. straight-line-Sim1-secure) FE schemes

for the functionalities FA, FB, respectively, then ΣA‖ΣB is Selective-secure (resp. straight-line-

Sim1-secure) for the functionality FA‖FB.

Proof overview. The proofs use a series of hybrid arguments over the adversaries in the

security interactions (Figure 2.1). More generally, if the composed scheme is NOT secure,

then the adversary which breaks the security of ΣA‖ΣB could be used as a subroutine

5With respect to the security parameter λ.

10

with internally generated inputs to break the security of either ΣA or ΣB, contradicting the

assumption that both ΣA and ΣB are secure. We first prove the security of ΣA‖ΣB in the

Selective security model:

Proof. In the Selective security model, letA be an adversary that participates in the selective

security experiment for the composed FE scheme ΣA‖ΣB. For A, SelSecExp runs as follows:

- On input 1λ, A submits two message pairs (mA,mB)0, (mA,mB)1.
- Compute (pk∗,mk∗) ← Setup∗(1λ) and c∗ = Enc(pk∗, (mA,mB)β). Give pk∗ =

(pkA, pkB) and c∗ = (cA, cB) to A.
- A adaptively submits queries to a KeyGen∗(mk∗, ·) oracle, subject to the constraint

that (FA‖FB)((mA,mB)0, k) = (FA‖FB)((mA,mB)1, k) for all k queried to the oracle.
- A outputs a guess b ∈ {0, 1}.

Let SA (resp. SB) be an adversary that participates in the selective security experiment for

ΣA (resp. ΣB) by internally emulating A as well as the FE algorithms for ΣB (resp. ΣA)

on arbitrary inputs. Assume that SA (resp. SB) outputs the same bit b as its emulated copy

of A. On input pkA, SA honestly generates pkB and sends pk∗ = (pkA, pkB) to A. A issues

its KeyGen∗ queries for k1, k2, . . . , and receives responses sk∗k = (skkA, skkB) where skkB is

generated internally by SA according to KeyGenB and skkA is generated by sending k to an

external KeyGenA oracle. Then, A generates two messages (mA,mB)0, (mA,mB)1 for the

composed functionality FA‖FB. Since no key query (FA‖FB)(·, ki) distinguishes between

(mA,mB)0 and (mA,mB)1, we can say that FA(·, k) (resp. FB(·, k)) doesn’t distinguish

between the messages (mA)0 and (mA)1 (resp. (mB)0 and (mB)1). Thus, (mA)0 and

(mA)1 are passed to the (external) challenger in the indistinguishability game for ΣA, which

responds by sending SA an encryption Enc(pkA, (mA)β).

By the construction of SA, Pr [SelSecExp(ΣA,SA, 0, λ) = 1] ≡ Pr [SelSecExp(ΣA‖ΣB,A, 0, λ) = 1],

and by the security of ΣA, Pr [SelSecExp(ΣA,SA, 0, λ) = 1] ≈ Pr [SelSecExp(ΣA,SA, 1, λ) = 1].

Now consider the adversary SB that participates in the indistinguishability game for ΣB.

Since both SA and SB work by internally emulating A, and by construction the view of A

(i.e., its inputs and outputs) in SA is distributed identically to the view of A in SB, we can

say that Pr [SelSecExp(ΣA,SA, 1, λ) = 1] ≡ Pr [SelSecExp(ΣB,SB, 0, λ) = 1].

By the construction of SB (similar to the argument above), we also have

Pr [SelSecExp(ΣB,SB, 1, λ) = 1] ≡ Pr [SelSecExp(ΣA‖ΣB,A, 1, λ) = 1], and the security of

ΣB implies that Pr [SelSecExp(ΣB,SB, 1, λ) = 1] ≈ Pr [SelSecExp(ΣB,SB, 0, λ) = 1]. Thus,

11

by transitivity we have

Pr [SelSecExp(ΣA‖ΣB,A, 0, λ) = 1] ≈ Pr [SelSecExp(ΣA‖ΣB,A, 1, λ) = 1]

which implies that ΣA‖ΣB is Selective-secure.

Next, we prove Theorem 2.2.5 for Sim1-secure FE schemes:

Proof. Let ΣA,ΣB be Sim1-secure FE schemes for the functionalities FA, FB respectively.

Consider the adversary AKeyGen∗(mk∗,·) which attacks the composed scheme ΣA‖ΣB. On

input c∗ = Enc∗(pk∗, (mA,mB)), A submits queries to a KeyGen∗ oracle and eventually

outputs a bit. Since KeyGen∗ operates by individually running the KeyGen algorithms from

ΣA and ΣB, we can useA to construct an adversaryAKeyGenA(mkA,·)
A that internally emulates

AKeyGen∗(mk∗,·) along with all algorithms and inputs for ΣB, and outputs the same bit as A.

Since ΣA is black-box Sim1-secure, we can then say that AKeyGenA(mkA,·)
A ≈ SFA(mA,·)A for

some SA that internally emulates AKeyGenA(mkA,·)
A as a straight-line subroutine, given that

AA and SA issue the same oracle queries as the emulated subroutine for A.

Recall that AA internally generates inputs to ΣB. Using this fact, we can construct an

adversary AKeyGenB(mkB ,·)
B whose output is identically distributed to SA, but who receives

EncB(pkB,mB) externally and queries an external KeyGenB oracle instead of generating

these inputs internally. This construction implies SFA(mA,·)A ≡ AKeyGenB(mkB ,·)
B .

Invoking the straight-line, black-box Sim1-security of ΣB then yields a simulator SB that

internally emulates SFA(mA,·)A as a subroutine, such that AKeyGenB(mkB ,·)
B ≈ SFB(mB ,·)

B when

AB and SB issue the same oracle queries as A. Finally, recall that the original (emulated)

adversary A runs as a subroutine within SB, and every KeyGen∗ query made by A on

input k is answered by an emulated oracle for FA(mA, k) as well as an external oracle

for FB(mB, k). This combination of two separate oracles for FA and FB operating on the

same input k can then be replaced with one query to an oracle for (FA‖FB)((mA,mB), ·),

which means we can construct S(FA‖FB)((mA,mB),·) ≡ SFB(mB ,·)
B . Then, by transitivity

AKeyGen∗ ≈ S(FA‖FB)((mA,mB),·)

which implies that ΣA‖ΣB is Sim1-secure.

12

ΣA

ΣB

KeyGenA

KeyGenB

A

z

≡

ΣA

ΣB

KeyGenA

KeyGenB

A
AAAA

z

≈

ΣB

FA(mA, ·)

KeyGenB

A
SASA

z

≡

ΣB

FA(mA, ·)

KeyGenB

A
ABAB

z

≈

FB(mB, ·)

FA(mA, ·)

A
SBSB

z

≡

FB(mB, ·)‖FA(mA, ·)

A
SS

z

Figure 2.1: Steps in the proof of the composition theorem for straight-line-Sim1-security.

13

2.3 Obfuscation

A program f is obfuscated if it cannot be “reverse-engineered” — that is, the source code

of f reveals no more information than can be learned from oracle access to f . Obfuscation

has a wide range of applications, most obviously in the realm of software protection.

Definition 2.3.1. An algorithm Of is an obfuscation of the function (Turing machine) f if for

all probabilistic polynomial-time (PPT) adversaries A there exists an oracle PPT simulator S

such that the quantity

∣∣∣Pr [A(Of) = 1]− Pr
[
Sf (1|f |) = 1

]∣∣∣ is a negligible function of |f |.

Essentially, Definition 2.3.1 implies that nothing meaningful can be learned by exam-

ining the description of an obfuscated program: at best, an obfuscated program Of is

indistinguishable from an idealized, inviolable “oracle” that does nothing but accept inputs

x and return f(x).

The study of program obfuscation in the context of provable security was initiated by

Barak et al. [BGI+01], where it was famously shown that general-purpose obfuscation

is impossible, even for relatively weak definitions of (static) obfuscation. This result is

achieved by constructing a class of Turing machines (TM) for functions that can neither be

obfuscated nor deduced via oracle queries alone. The unobfuscatable TM from [BGI+01] is

defined in terms of its two “subroutine” Turing machines summarized here:

First, for strings x,m ∈ {0, 1}k define the TM that computes a point function with output

Ix,m(y) :=

m if x = y

0k otherwise

Then define a Turing machine J that when given the description of a Turing machine

〈K〉 determines whether K computes the same function6 as Ix,m or whether K computes

Ix′,m′ for any (x′,m′) 6= (x,m)

6As presented, J is uncomputable. However, it suffices for J to consider whether K = Ix,m in a polynomial
number of steps.

14

Jx,m(〈K〉) :=

1 if K(x) = m

0 otherwise

Now consider an adversary A that is given obfuscations OIx,m ,OJx,m of the functions

Ix,m and Jx,m. A can simply run OJx,m on input 〈OIx,m〉, and the correctness property of

obfuscation implies that the result of OJx,m(〈OIx,m〉) = 1, that is

Pr
[
A(OJx,m ,OIx,m) = 1

]
= 1

Since Ix,m returns a non-zero value on only one point, and Jx,m is non-zero on negligibly

few points in the space of all Turing machines, any polynomial-time algorithm S with oracle

access to Ix,m, Jx,m has a negligibly small probability of querying either oracle on an input

where the value of the function is not zero. Thus, even with the additional information

yielded by oracle access to the function Ix,m, it is highly unlikely that any simulator will be

able to generate a TM description 〈M〉 such that Jx,m(〈M〉) = 1. Formally:

∀S : Pr
[
〈M〉 ← SIx,m,Jx,m(1k) : Jx,m(〈M〉) = 1

]
is negligible.

Thus, the “virtual black-box” notion of obfuscation from Definition 2.3.1 is impossible for

arbitrary functions. This construction formalizes the intuitive notion that access to the

source code of a program is a significant advantage to algorithms that operate in polynomial

time.

Positive results for obfuscations have mostly been limited to point functions [LPS04,

Wee05, CD08], yet even point functions require some necessary relaxations of the original

definitions (cf. [Wee05]). Hofheinz et al. [HMLS10] proposed a very natural relaxation

of the security definitions of [BGI+01]; namely, they considered obfuscating functions

which are drawn at random from a class (average-case obfuscation). By comparison,

the previous definition required security to hold equally for every function in the class

(worst-case obfuscation). Average-case obfuscation is a natural choice when obfuscating

a cryptographic primitive, where the obfuscation needs only to hide the hard-coded secret

key that was sampled honestly.7 Several expressive cryptographic primitives have features

7The model proposed by Hofheinz et al. also considers the problem of obfuscating randomized functions.

15

that can be understood as being average-case obfuscations of certain functionalities: e.g.,

proxy-re-encryption [HRsV11] and encrypted signatures [Had10].

Our definitions for mediated obfuscation require that client and mediator engage in

a one-round protocol in order for the client to evaluate the obfuscated program. In

our main feasibility result, we use existing constructions for one-round secure computa-

tion [CCKM00, IKO+11], as well as other highly powerful cryptographic tools like fully

homomorphic [Gen09] and targeted non-malleable [BSW11b] encryption schemes which

naturally lend themselves to one-round protocols.

2.4 Universally Composable Security

The Universally Composable (UC) framework is a system for establishing and analyzing

the security of cryptographic protocols [Can00]. In this work, the UC framework is used

to demonstrate the general feasibility of mediated obfuscation schemes based on secure

1-round protocols for non-interactive computation.

Interactive Turing machines (ITMs) form the basis of the UC framework’s computational

model. Interactive Turing machines are Turing machines with a special “shared tape” which

can be read and modified (written into) by other ITMs [GMR89]. In the UC framework, the

execution of a protocol in an arbitrary network environment is modeled with a system of

ITMs that are appropriately connected via their shared tapes.

The main entities in the UC model are outlined below:

Functionalities (F) represent desirable cryptographic tasks; in the UC model, a

functionality is a trusted entity that receives (possibly empty) inputs from

parties P0, P1, . . . , Pn, performs some computational task on those inputs, and

returns appropriate outputs to the parties.

Protocols (π, ρ, φ, . . .) define methods for interacting with functionalities. Gener-

ally, an honest party is a uniquely-identified ITM interacting with a functionality

F by running the code of protocol π; corrupt parties interact with F but run

arbitrary code.

Environments (Z) model all network activity external to the parties executing π (or

otherwise interacting with F). The environment interacts with all parties and

16

the adversary, and outputs a single bit on the completion of protocol execution.

Adversaries (A,S) attempt to extract secret information from the honest parties

or otherwise manipulate protocol execution by corrupting one or more honest

parties. “Corruption” of an honest party is modeled by allowing the adversary

total control over the corrupt party’s interaction with the functionality. The

adversary also communicates with the environment.

The UC framework uses the trusted third-party paradigm to establish the security of

cryptographic protocols. For any given cryptographic task, an ideal functionality F is defined

which represents a set of instructions that tell a trusted party how to carry out that task. As

with the other entities in the UC framework, the ideal functionality is modeled as an ITM.

Interactions with ideal functionalities are carried out according to an ideal protocol via

a set of dummy parties {P̃0, P̃1, . . . , P̃n}. Dummy parties simply relay messages between the

ideal functionality and the other entities in the UC model.. The ideal protocol, denoted

IDEALF , represents an incorruptible means to achieve a task F and is necessarily impossible

to realize in the real world.

Security guarantees in the UC framework are established relative to the ideal protocol.

A real-world cryptographic protocol π is said to securely realize an ideal functionality F if

the protocol can be mathematically shown to emulate the ideal protocol IDEALF .

Security proofs in the UC framework are derived by considering a model that captures

both the influence of the adversary on protocol execution and the impact of protocol

execution on the environment. This model consists of a network of ITMs representing

the protocol π, the adversary A, and the environment Z. Proofs in this model typically

yield statements like, “protocol π emulates protocol ρ,” or “protocol π securely realizes

functionality F because it emulates IDEALF .”

Protocol emulation is established by considering the interaction between the protocol

and the adversary from the point of view of the environment. Informally, a protocol π is said

to emulate another protocol ρ if, for any given environment Z, it is possible to construct

a simulator S such that interactions between π and the adversary A “look the same” as

interactions between ρ and the simulator S.

More formally, let EXEC[π,A,Z] be the random variable representing the environment

Z ’s output after adversary A interacts with protocol π. Then, protocol π emulates protocol

17

ρ if:

∀A∃S∀Z : EXEC[Z,A, π] ≈ EXEC[Z,S, ρ]

where ≈ denotes computational indistinguishability. If ρ is the ideal protocol IDEALF , then

π is said to UC-realize functionality F .

Furthermore, the UC framework can be extended to admit secure protocols for

essentially all computable functions by assuming a priori access to an appropriate set-up

functionality. The UC framework augmented with black-box access to a functionality G is

called the G-hybrid model.

The most extensively studied set-up assumption is the common reference string func-

tionality FCRS (Figure 2.2) [CF01], which is parameterized by a distribution D and set

of parties P participating in a protocol instance. The FCRS-hybrid model assumes that all

protocol instances have access to a unique trusted party that can provide, upon request, a

common string chosen uniformly at random from the uniform distribution over strings of

some length.

• On input REQUEST from party P : verify that party P is a participant in the
protocol instance. If P /∈ P, abort.

• If there is no random string r already recorded, choose and record r ← D.

• Send public output r to P .

Figure 2.2: The common reference string functionality FCRS for a distribution D and a set
of parties P.

18

Chapter 3

Mediated Obfuscation

In this chapter, we present the mediated obfuscation (MO) model, security definitions,

and general feasibility based on non-malleable secret sharing and fully homomorphic

encryption. Mediated obfuscation is a natural relaxation of static obfuscation that employs

a limited amount of interaction to securely evaluate a function.

3.1 Model

In the mediated obfuscation (MO) model (Figure 3.1), a vendor wants to provide a client

with the ability to evaluate a function f without revealing f and without remaining online

for the client’s convenience. To accomplish this, the vendor employs a trusted mediator to

interact with the client.

vendor

client mediator

〈C,M〉

Of mkf

x

skx

Figure 3.1: The mediated obfuscation model.

19

The security requirements are modeled via an ideal functionality FMO (Figure 3.2),

parameterized by a class of functions C. For simplicity, the roles of the three parties are

fixed in the description of FMO. In an interaction with FMO, the client has only oracle access

to the function f . The mediator simply guards this access, possibly based on the inputs

being sent.

• On input f from the vendor, where f ∈ C: if any value f ′ is previously
recorded, then abort. Otherwise, internally record f and send OK to the
client and mediator. If both the client and mediator are corrupt, also send f
to both parties.

• On input x from the client, abort if no value f was previously recorded.
Otherwise, send the value INPUT to the mediator and internally record x.

• On input OK from the mediator, abort if no value f was previously recorded,
or if no value x was previously recorded. Otherwise, compute y = f(x) and
give output y to the client and output OK to the mediator.

Figure 3.2: The FMO functionality for mediated obfuscation of a class of functions C.

3.2 Syntax

The functionality FMO, along with the following syntactic constraints, defines the syntax of

MO:

Definition 3.2.1. A mediated obfuscation (MO) scheme ∆ = (Obfu, 〈C,M〉) for the class

of functions C is a protocol for the FMO functionality described in Figure 3.2, where Obfu is the

vendor’s protocol function and 〈C,M〉 is a 1-round, 2-party interactive protocol between the

client and mediator. The function Obfu is defined as follows:

• (Of ,mkf) ← Obfu(1λ, f): accepts a security parameter and a description of a function

(or circuit) f ∈ C, and outputs an obfuscated version of the function along with a master

key for the function.

• The vendor sends Of to the client and mkf to the mediator.

Once Of and mkf are distributed, the vendor’s role in the protocol is finished: all further

interaction takes place between the client and the mediator. When the client wants to evaluate f

on input x, she engages in the 2-party protocol 〈C,M〉 with the mediator. The joint execution of

20

the client, holding inputs Of , x, and the mediator, holding input mkf , results in an output f(x)

for the client assuming mkf is a valid key for f . We write this as f(x)← 〈C[Of , x],M [mkf]〉.

We require that 〈C,M〉 is 1-round (send and receive one message) and stateless across different

values of x.

3.3 Security Definitions

Next, we define the security conditions for MO. These definitions capture the intuitive

notion that the client shouldn’t learn anything more than she would with oracle access

to the function f .

Definition 3.3.1. We define the following levels of security for an MO scheme:

1. Full security: The MO scheme is a secure protocol for the FMO functionality (Figure 3.2).

2. Relaxed security: The MO scheme is a secure protocol for the FMOX functionality

(Figure 3.3) which gives x to the mediator.

• On input f from the vendor, where f ∈ C: if any value f ′ is previously
recorded, then abort. Otherwise, internally record f and send OK to the
client and mediator. If both the client and mediator are corrupt, also send f
to both parties.

• On input x from the client, abort if no value f was previously recorded.
Otherwise, send INPUT and x to the mediator and internally record x.

• On input OK from the mediator, abort if no value f was previously recorded,
or if no value x was previously recorded. Otherwise, compute y = f(x) and
give output y to the client and output OK to the mediator.

Figure 3.3: The FMOX functionality for mediated obfuscation of a class of functions C.

3. Semantic security: Let ∆ denote the MO scheme, and define the following interaction:

MOSSExp(∆,A, β, λ) :

(a) Give 1λ to A, who then outputs (descriptions of) two functions
f0, f1 ∈ C.

(b) Compute (Ofβ ,mkβ)← Obfu(fβ, 1
λ). Give (1λ,Ofβ) to A.

(c) A is allowed to repeatedly engage in the protocol with an honest party
running M [mkfβ]. If M ever aborts, or outputs x such that f0(x) 6= f1(x),
the entire interaction halts.

(d) A outputs a bit, which we define as the output of this interaction.

21

Define the advantage of the adversary A as:

MOSSAdv(∆,A, λ) :=

∣∣∣∣∣∣ Pr [MOSSExp(∆,A, 1, λ) = 1]

−Pr [MOSSExp(∆,A, 0, λ) = 1]

∣∣∣∣∣∣
Then ∆ is semantically secure if relaxed security holds when the security condition

against a corrupt client is replaced with the following condition: for all PPT A the

function MOSSAdv(∆,A, λ) is negligible in λ.

We point out that for certain classes of functions (e.g., collision-resistant hash functions),

this definition of semantic security is somewhat vacuous since it may be computationally

infeasible for the adversary to find two functions f0 6= f1 and an input x which satisfy

the requirement that f0(x) = f1(x). An analogous drawback to semantic-security-style

definitions for functional encryption was observed by O’Neill [O’N10].

3.4 General Feasibility

We outline two constructions of mediated obfuscation schemes that achieve full security

and support obfuscation of arbitrary functions. However, these constructions make use of

encryption primitives that are both powerful and inefficient, leaving room for the simpler

construction based on functional encryption presented in Chapter 4.

3.4.1 Using one-round secure computation

A non-malleable secret sharing (NMSS) scheme [IPS08] consists of two algorithms, Split

and Join. We require that if (α, β) ← Split(x), then the marginal distributions of α and β

are each independent of x, but that Join(α, β) = x. The non-malleability property of the

scheme is that, for all x and PPT adversaries A:

Pr
[
(α, β)← Split(x);β′ ← A(β, x) : β′ 6= β ∧ Join(α, β′) 6= ⊥

]
is negligible.

Using NMSS as a building block, the MO construction is as follows:

Obfu(f, 1λ):

1. Sample r ← {0, 1}λ and send r to both the client and mediator.
2. Generate (α, β)← Split(〈f〉). Set Of := α and mkf := β.

22

3. Send α to the client and β to the mediator.

〈C,M〉 protocol (client has input (Of , x); mediator has input mkf):

1. Run a one-round, two-party protocol for the FJOIN functionality (Fig-
ure 3.4).

• On input (Of , x) from the client, record (Of , x) and send the value INPUT to
the mediator.

• On input mkf from the mediator, record mkf . Abort if no value (Of , x) was
previously recorded.

• Set f := Join(Of ,mkf); if f = ⊥, then abort.

• Give f(x) to the client.

• Erase all previously recorded values.

Figure 3.4: The FJOIN functionality for the 〈C,M〉 subprotocol using NMSS.

Several works show how the 〈C,M〉 protocol can be carried out in a single round of

interaction [CCKM00, IKO+11]. In particular, Ishai et al. [IKO+11] give UC-secure, 1-round

protocols in the FCRS-hybrid model (Figure 2.2). In our setting, the vendor can honestly

sample and provide a common reference string to both parties, eliminating the need for

trusted setup.

Theorem 3.4.1. The NMSS-MO construction above is a fully-secure MO scheme for the class

of functions whose description length is bounded by λ.

Proof. In this construction, we can apply the UC security of the two-party subprotocol, so

that the MO protocol is operating in a hybrid model providing ideal access to the FJOIN

functionality defined in Figure 3.4. We first consider security against a corrupt client. The

simulator in the FMO-hybrid model is as follows: First, the simulator chooses a random

α and gives it to the client. By the secret sharing property of the NMSS, the simulated

α is distributed identically to the real interaction. When the client gives (α′, x) to the

hybrid functionality, the simulator checks whether α ?
= α′. If not, then the simulator

aborts; otherwise, the simulator sends x to FMO. By the non-malleability property of the

NMSS scheme, we have that an honest mediator would have aborted with overwhelming

probability if α 6= α′, so the simulation is sound.

Next, we consider security against a corrupt mediator. The simulation is extremely

similar to the previous case. The simulator provides a random β. When the mediator sends

23

β to the hybrid functionality, the simulator sends OK to FMO. By similar reasoning to above,

this simulation is sound.

3.4.2 Using (derivatives of) fully-homomorphic encryption

A targeted-malleable homomorphic encryption scheme [BSW11b] supports a limited set

of homomorphic ciphertext operations as features; all others ways of generating related

ciphertexts are infeasible.

Definition 3.4.2 (Targeted-malleability). Let Π = (KeyGen,Enc,Dec) be a public-key

encryption scheme. Define the following interactions:

Real(Π,A, λ):

1. (pk, sk)← KeyGen(1λ)

2. (M, STATE1, STATE2)← A1(pk, 1
λ)

3. (m1, . . . ,mr)←M
4. c∗i ← Enc(pk,mi) for all i ∈ {1, . . . , r}
5. (c1, . . . , cq)← A2(c

∗
1, . . . , c

∗
r , STATE2, 1

λ)

6. For every j ∈ {1, . . . , q} let

dj :=

{
COPYi if cj = c∗i

Decsk(cj) otherwise
7. Output (STATE1,m1, . . . ,mr, d1, . . . , dq)

Ideal(Π,S, λ):

1. (pk, sk)← KeyGen(1λ)

2. (M, STATE1, STATE2)← S1(pk, 1
λ)

3. (m1, . . . ,mr)←M
4. (c1, . . . , cq)← S2(STATE2, 1

λ)

5. For every j ∈ {1, . . . , q} let

dj :=

COPYi if cj = COPYi

f(mi)

if cj = (i, f1, . . . , fl)

where i ∈ {1, . . . , r},
l ≤ t, f1, . . . , fl ∈ F ,
and f = f1 ◦ · · · ◦ fl

Decsk(cj) otherwise
6. Output (STATE1,m1, . . . ,mr, d1, . . . , dq).

We say that Π is non-malleable against chosen-plaintext attacks with respect to a class of

functions F if for all PPT A = (A1, A2) there exists a PPT simulator S = (S1, S2) such that

the distribution ensembles {Real(Π,A, λ)}λ and {Ideal(Π,S, λ)}λ are indistinguishable.

Let E(〈C〉, x) := C(x) denote a universal circuit. Let (KeyGen,Enc,Dec) be a targeted-

malleable encryption scheme supporting homomorphic operations Enc(y) 7→ Enc(E(y, x)⊕

s) for all x, s. Then the MO construction is as follows:

Obfu(f, 1λ):

1. Generate (pk, sk)← KeyGen(1λ), and set c = Enc(pk, 〈f〉).
2. Set Of := (pk, c) and mkf := sk.

〈C,M〉 protocol (client has input (Of , x); mediator has input mkf):

24

1. The client chooses random string s and uses the homomorphic properties
of the scheme to obtain c′ = Enc(E(〈f〉, x)⊕s). He sends c′ to the mediator.

2. The mediator decrypts c′ and sends the result to the client. The client strips
s and obtains f(x) as the result.

Theorem 3.4.3. A targeted-malleable homomorphic encryption scheme can be used to

construct a relaxed-secure MO scheme for the class of functions whose description length is

bounded by λ.

Proof. We first consider security against a corrupt client. The simulator provides the client

with an honestly generated key pk and a ciphertext c ← Enc(pk, 0λ). The definition

of targeted non-malleability implies that there is a simulator which can “extract” the

homomorphic operation applied to a ciphertext. Thus when the client provides a ciphertext

c′, our simulator extracts the parameters x and s identifying the valid homomorphic

operation that was applied to c. If this extraction is successful, the simulator sends x to

FMOX. Upon receiving y = f(x) from FMOX, the simulator hands the client an encryption

Enc(pk, y ⊕ s), where s was the value extracted previously.

For security against a semi-honest mediator, we simply observe that by the homomorphic

properties of the scheme, and the random choice of mask s chosen by the client, the

mediator sees only a random-looking encryption of a random value in each interaction

of the protocol.

25

Chapter 4

Functional Encryption as Mediated

Obfuscation

In this chapter, we demonstrate that secure mediated obfuscations can be constructed from

existing functional encryption systems. First, we present a purely generic MO construction

based on functional encryption syntax. Then, we show that the Okamoto-Takashima IBE

scheme described in the full version of [OT10, §G.3] actually satisfies Sim1-security for AIBE,

provided that the message space is polynomial in size. Thus, this scheme yields a mediated

obfuscation for the class of point functions with logarithmic-length output, which can be

concatenated via Theorem 2.2.5 to provide mediated obfuscations of arbitrary functions.

4.1 Generic Construction from Functional Encryption

Given a functional encryption scheme Σ = (Setup,KeyGen,Enc,Dec) for the functionality

F (m, k), a mediated obfuscation scheme ∆ = (Obfu, 〈M,C〉) for the class of functions

C = {F (m, ·) | m} can be naturally constructed as follows:

Obfu(f, 1λ):

1. Run (pk,mk)← Setup(1λ) and c← Enc(pk,m), where m is such that f(·) ≡
F (m, ·).

2. Set Of := c and mkf := mk. Output (Of ,mkf).

〈C,M〉 protocol (client has input (Of , x); mediator has input mkf):

1. The client sends x to the mediator.
2. The mediator runs skx ← KeyGen(mk, x) and sends skx to the client.

26

3. The client runs CheckKey(pk, skx, x), and aborts if CheckKey returns 0.
4. The client computes and outputs y ← Dec(skx,Of). The FE correctness

properties ensure that y = F (m,x).

Theorem 4.1.1. If Σ is a Sim1-secure (resp. Selective-secure) FE scheme with verifiable keys for

functionality F , then the above construction ∆ is a relaxed-secure (resp. semantically-secure)

MO scheme for class of functions C = {F (m, ·) | m}.

Proof overview. Correctness of our construction follows from the correctness properties of

the FE scheme. Security against a corrupt (semi-honest) mediator follows from the fact that

such a mediator’s view consists only of mkf and the queries x1, . . . , xk of the client. mkf is

distributed independently of m (the index of F (m, ·) ∈ C), and the client’s queries are also

available to the mediator in the ideal interaction with FMOX.

Proof. For security against a corrupt (malicious) client, we first consider the case where Σ

is Sim1-secure. The client receives a ciphertext c ← Enc(pk,m) and then, via the 〈C,M〉

protocol, effectively uses the mediator as an oracle for KeyGen(mk, ·). Thus the client is

a valid adversary in the Sim1 security experiment1 for Σ. There exists a simulator S that

simulates the view of the client, given only black-box access to F (m, ·). This simulation can

thus be carried out in the FMOX-ideal model, since FMOX provides the simulator access to

a (guarded) oracle for F (m, ·). This establishes full security for the MO scheme against a

corrupt client.

Similarly, in the semantic security game for MO against a corrupt client, the client first

specifies two functions f0, f1 ∈ C and then receives an obfuscation of fβ. The client is

further allowed to repeatedly interact with an honest mediator subject to the constraint

that the mediator reports an input x for the client such that f0(x) = f1(x). As the mediator

is simply acting as an oracle to KeyGen(mkf , ·), it can easily be seen that the MO semantic

security game can be carried out within the FE Selective-security game in a straight-forward

manner.

4.1.1 On full vs. relaxed security

The above construction achieves relaxed MO security (meaning that the mediator learns x).

In some settings involving software rental/leasing, it is in fact desirable for the mediator

1The Sim1 game also gives pk to the adversary, but it is not needed for our MO construction.

27

to obtain the client’s inputs for accounting or policy-enforcement purposes. However,

if leakage of x is undesirable, then a straight-forward transformation can convert this

construction to full MO security (in which the mediator may be malicious but does not

learn x) as follows:

First, the vendor generates a sufficiently long random string s and gives it to both

the client and mediator. Then the client and mediator can treat s as a common random

string and run a UC-secure subprotocol for evaluating the KeyGen function (with the client

providing x and the mediator providing mk, and only the client receiving output). As above,

this can be done in a single round of interaction [IKO+11]. By the UC-security of the

subprotocol, whatever the client can learn in this modified protocol can be learned with

access to a KeyGen(mk, ·) oracle, as the mediator provides in the simpler protocol above.

If the FE scheme satisfies the notion of key verifiability given in Definition 2.2.1, then this

transformation achieves full MO security.

Remark 4.1.2. Without loss of generality, we can assume in the MO scheme that the same

query is not given twice to KeyGen. This can be enforced by letting the mediator keep track of

queries, or by having the mediator evaluate a version of KeyGen that has been derandomized

with a pseudorandom function.

4.2 Implementing Mediated Obfuscation

The generic construction presented in Section 4.1 suggests that implementing MO with

existing FE schemes should be relatively straightforward. We outline the requirements

for meeting the security definitions given in Section 2.2.3, and then demonstrate that the

AIBE instantiation of the general scheme from [OT10] satisfies key-verifiability and the

definitions of both semantic security and strong simulation-based security.

4.2.1 Achieving semantic security

Modern FE schemes have focused on predicate encryption. That is, a “payload” encrypted

with parameter y can be decrypted by the key corresponding to parameter x only if

P (x, y) = 1. Our application requires a notion of “attribute-hiding” — namely, that the

ciphertext hides parameter y in addition to the payload. The current state of the art for

such predicate encryption schemes is for inner-product predicates; using the notation above,

28

these schemes use the predicate P (x, y) = [〈x, y〉 ?
= 0], where x and y are interpreted as

vectors.

To achieve semantic-security for our MO scheme instantiation, we require only a

Selective-secure (but attribute-hiding) FE scheme. Katz, Sahai, and Waters constructed

such a Selective-secure inner-product predicate encryption scheme [KSW08]. Okamoto &

Takashima [OT11] have recently published a fully-secure, attribute-hiding scheme as well.2

Predicate-encryption schemes encrypt a ciphertext with a fixed payload m, and the

decryption is all-or-nothing, resulting in either m or an error ⊥. Thus, these schemes can

be used to obfuscate a function with a single bit of output (using a public, fixed m and

interpreting m as 1, ⊥ as 0). Then multiple FE schemes can be combined/concatenated (as

outlined in Section 2.2.4) to obfuscate a function with longer output. Thus, to obfuscate a

function f in our model, it suffices to obfuscate f1, . . . , fk, where fi is the function which

gives the i-th bit of f ’s output.

Furthermore, we note that polynomial evaluation (“does p(x) = 0?”), CNF, and DNF

formulas can all be expressed using inner products [KSW08]. Thus a very wide class of

functions can be obfuscated in our model with semantic security.

Theorem 4.2.1. A secure attribute-hiding predicate encryption scheme Σ which implements

the predicate P (x, y) := [〈x, y〉 ?
= 0] can be used to evaluate CNF/DNF formulæ.

Proof overview. Polynomials can be evaluated using inner-product relations, and CNF and

DNF formulæ can be written as multivariate polynomials. We demonstrate that such an

encoding reveals no information about the Boolean expression to be evaluated (though

keys do reveal the values tested in the logical formula).

Proof. To evaluate a polynomial in m variables with total degree n, first order the
(
n+m
n

)
terms lexicographically (shown here with m = 2, ordered by variable and then exponent):

p(x, y) = a1x
ny0+a2x

n−1y1+a3x
n−1y0+a4x

n−2y2+a5x
n−2y1+a6x

n−2y0+ · · ·+a(n+2
n)x

0y0

Associating the vector of coefficients ~a := (a1, a2, . . .) with a ciphertext and specific variable

assignments ~v := (xny0, xn−1y1, . . . , x0y0) with a message, we see that 〈~a,~v〉 = p(x, y).

2Lewko et al. [LOS+10] construct a scheme that is fully (not selectively) secure but which satisfies only a
weaker notion of attribute-hiding. It is not discussed whether the scheme satisfies selective attribute-hiding.

29

To encode logical expressions, we proceed recursively: for the base case, we construct a

simple single-variable polynomial to test equality:

P
x

?
=I

(x) := x− I

Then, define the AND and OR operators in terms of logical expressions φ encoded as

polynomials Pφ:

Pφ1∨φ2(~x1, ~x2) := Pφ1(~x1) · Pφ2(~x2)

Pφ1∧φ2(~x1, ~x2) := r · Pφ1(~x1) + Pφ2(~x2)

for random r ∈ Zq. The proofs that x − I = 0 ⇐⇒ x = I and x1 · x2 = 0 ⇐⇒ (x1 =

0) ∨ (x2 = 0) are straightforward, and with all but negligible probability over choice of r it

holds that r · x1 + x2 = 0 ⇐⇒ (x1 = 0) ∧ (x2 = 0). Thus, for all φ, Pφ = 0 if and only if φ

evaluates to TRUE.

To build an appropriate polynomial for an arbitrary logical expression, e.g.

φ =

(
(x1 = I1) ∨ (x2 = I2)

)
∧
(

(x3 = I3) ∨ (x4 = I4)

)

we begin with the polynomials encoding the equality tests Pφ1 = x1 − I1, Pφ2 = x2 − I2,

Pφ3 = x3− I3, and Pφ4 = x4− I4. Combining these via the definitions of Pφ1∧φ2 and Pφ1∨φ2

above yields:

Pφ5 = Pφ1∨φ2(x1, x2) = Pφ1(x1) · Pφ2(x2)

Pφ6 = Pφ3∨φ4(x3, x4) = Pφ3(x3) · Pφ4(x4)

Pφ = Pφ5∧φ6
(
(x1, x2), (x3, x4)

)
= r · Pφ5

(
(x1, x2)

)
+ Pφ6

(
(x3, x4)

)
= r ·

(
(x1 − I1) · (x2 − I2)

)
+

(
(x3 − I3) · (x4 − I4)

)

which can be expanded and ordered lexicographically to generate an appropriate inner-

product relation. We associate polynomial coefficients (which encapsulate I1, I2, I3, I4, r)

with ciphertexts; thus, security of this procedure follows directly from the attribute-hiding

security of Σ.

30

4.2.2 Achieving strong security for point functions with AIBE

In [OT10] the scheme is presented as an inner-product encryption scheme. A decryption

key associated with vector ~v can decrypt a ciphertext associated with vector ~x if and only if

~x ·~v = 0. To obtain AIBE, we instantiate this general construction with vectors of dimension

2. To encrypt to identity id ∈ Zq, use ciphertext vector ~x = (1, id); the decryption key for

identity id is the one associated with vector ~v = (id,−1).

In [OT10] the scheme is proven to be adaptively secure and weakly-attribute-hiding.

However, the “weak” property of the weakly attribute hiding security definition is not

relevant in the case of IBE (in the IBE instantiation, for each ~v there is a unique ~x such

that ~v · ~x = 0). Thus the same security proof for the scheme works in the context of the

Sim1-security definition, with only one additional step needed.

4.2.3 Mathematical background

The scheme presented in [OT10] is based on cyclic groups of large prime order augmented

with a bilinear pairing operation.3 Pairing-based cryptography has become increasingly

popular in the past decade [DBS04]. Such schemes are typically based on a mapping

between two well-chosen cryptographic groups which allows for a problem in one group

to be reduced to a different (typically easier) problem in the other group.

Bilinear Pairings

Let G be a cyclic (additive) group of prime order q with generator G, and let GT be a cyclic

(multiplicative) group with the same order q. A bilinear pairing e : G × G → GT has the

following properties:

1. Bilinearity: e(sG, tG) = e(G,G)st for all s, t ∈ Zq.
2. Non-Degeneracy: e(G,G) is not the identity element of GT .
3. Computability: e(sG, tG) is computable in polynomial time for all s, t ∈ Zq.

The Decisional Linear (DLIN) Assumption

The decisional linear problem in G is to determine whether a+b = c given U, V,H, aU, bV, cH ∈

G. More formally, we define the advantage of an adversary A in deciding the DLIN problem

3The canonical examples of bilinear pairings are the Weil and Tate pairings over elliptic curves.

31

as:

AdvDLIN(A,G, λ) :=

∣∣∣∣∣∣ Pr [U, V,H ← G; a, b← Zq : A(U, V,H, aU, bV, (a+ b)H) = 1]−

Pr [U, V,H,R← G; a, b← Zq : A(U, V,H, aU, bV,R) = 1]

∣∣∣∣∣∣
The DLIN assumption is that AdvDLIN(A,G, λ) is negligible in λ for every PPT adversary

A. It is believed that the Decision Linear Problem is hard even in bilinear groups where

Decisional Diffie-Hellman is easy [BBS04].

Dual Pairing Vector Spaces

Let G be a cyclic group with generator G and bilinear pairing operation e : G × G → GT .

We write G additively and GT multiplicatively, so that e(sG, tG) = e(G,G)st.

Let V be the vector space Gn. We define a bilinear map e : V × V → GT as e(x,y) =∏n
i=1 e(Xi, Yi), where x = (X1, . . . , Xn) and y = (Y1, . . . , Yn). The space V has a canonical

basis A = (a1, . . . ,an), where ai = (0, . . . , 0︸ ︷︷ ︸
i−1

, G, 0, . . . , 0︸ ︷︷ ︸
n−i

).

A dual pairing vector space is such a vector space V along with dual orthonormal bases

B and B∗. We define the following DPVS setup algorithm, which chooses the dual bases at

random:

DPVSSetup(1λ, n): Choose a cyclic group G of prime order q, equipped with bilinear map

e : G × G → GT , for which the DLIN problem is hard with security parameter λ. Let

G be a generator of G. Define V := Gn with canonical basis A as described above.

Choose ψ ← Z∗q and X = (xij) ← GL(n,Zq). Set gT := e(G,G)ψ, and Y = (yij) :=

ψ(XT)−1. For i ∈ {1, . . . , n}, set bi :=
∑

j xijaj and b∗i :=
∑

j yijaj .

Return (params := (G,GT , e, gT , n, q),B := (b1, . . . , bn),B∗ := (b∗1, . . . , b
∗
n)).

Let B = (b1, . . . , bn), and let a1, . . . , an ∈ Zq. Then we define the notation (a1, . . . , an)B =∑n
i=1 aibi. In other words, (a1, . . . , an)B is the vector whose coordinates with re-

spect to basis B are (a1, . . . , an). When (B,B∗) are dual orthonormal bases, we have

e
(

(a1, . . . , an)B, (c1, . . . , cn)B∗
)

= (gT)~a·~c.

32

4.2.4 The AIBE construction

For completeness, we describe the fully-secure FE scheme from [OT10]. Let DPVSSetup

be the DPVS setup routine described above. Then the scheme is given by the following

algorithms. Note that identities are elements of Zq, and payloads are elements of GT .

Setup(1λ): Run (params,B,B∗) ← DPVSSetup(1λ, 8). Set B̂ := (b1, b2, b3, b8) and

B̂∗ := (b∗1, b
∗
2, b
∗
3, b
∗
6, b
∗
7). Arbitrarily select a plaintext space M ⊆ GT , where

|M| = poly(λ). Output (pk := (params,M, B̂), sk := B̂∗).

KeyGen(sk, id): Choose σ, η1, η2 ← Zq uniformly at random. Return

k := (1, σ id,−σ, 0, 0, η1, η2, 0)B∗

Enc(pk, id,m ∈M): Choose ζ, ω, ϕ← Zq uniformly at random. Return (c, c′) where:

c := (ζ, ω, ω id, 0, 0, 0, 0, ϕ)B c′ := m(gT)ζ

Dec(k, (c, c′)): Compute m := c′/e(c,k). If m 6∈ M then output ⊥; otherwise output

m.

The original Okamoto-Takashima scheme [OT10] does not include the restriction on the

plaintext space having polynomial size. Instead, their decryption algorithm simply returns

m, which is random “gibberish” when a ciphertext is decrypted with an incorrect key. Note

that the decrypter cannot compare the key’s identity to that of the ciphertext, since the

ciphertext hides its associated identity. So to make the output of Dec explicitly match the

behavior of the IBE functionality, we must ensure that an error indicator ⊥ is returned when

the identities do not match. It is for this reason that we restrict M to have polynomial

size and perform a consistency check in Dec. Furthermore, we also use this restriction for

technical reasons in the security proof (briefly, the simulator must be able to determine the

discrete logarithm of the plaintext).

Theorem 4.2.2. This scheme is a straight-line-Sim1-secure (Definition 3.4.2) AIBE scheme,

under the DLIN assumption.

Proof overview. We start by considering the real-world interaction of the Sim1-security

definition, in which the adversary first receives a ciphertext Enc(pk, id∗,m∗) and then is

33

allowed to make queries to KeyGen(mk, ·). By Remark 4.1.2, we assume that the adversary

never makes two queries to KeyGen for the same identity. Then, through a series of

indistinguishable hybrids we obtain an interaction in which the ciphertext is distributed

independently of id∗ andm∗. In fact, the values id∗ andm∗ are not needed until (and unless)

the adversary queries KeyGen on id∗. Thus this final interaction serves as the required

simulation — it first gives the “dummy” ciphertext to the adversary. Then, whenever the

adversary queries KeyGen on id, the simulator queries F ((id∗,m∗), ·) on id (here, F is the IBE

functionality). From the output of this query, the simulator can deduce whether id = id∗,

and if so, learn the value of m∗. Then the simulator can appropriately generate a simulated

decryption key for identity id.

The sequence of hybrids is very similar to that used in the proof of weak-attribute-hiding

from [OT10]. However, in that security definition the adversary is not allowed to request a

decryption key for either of the challenge identities. In our security definition, the adversary

is free to request a decryption key on id∗. Importantly, the adversary can request at most

one such key. Our main technical contribution in the security proof is to show that the

argument of [OT10] can withstand simulating at most one such key while still letting the

simulated ciphertext be distributed independently of the identity and plaintext.

Proof. We prove security in a sequence of hybrid interactions. We begin with a simulator

which has oracle access to the IBE functionality F ((id∗,m∗), ·) but also receives id∗ and m∗

as input. Thus this simulator can perfectly simulate the real-interaction of the Sim1-security

definition. Finally by the last hybrid, the simulator will not require id∗ and m∗ until these

are deduced from an oracle query.

Interaction 0: The simulator runs the Setup procedure of the scheme and generates the

ciphertext honestly as follows. It chooses ζ, ω, ϕ← Zq and sets:

c := (ζ, ω, ω id∗, 0, 0, 0, 0, ϕ)B; c′ := m∗(gT)ζ

When the adversary queries its KeyGen oracle on identity id, the simulator queries its oracle

on id. If the output of the oracle is ⊥, then the simulator marks this identity as an incorrect

identity; otherwise it marks the identity as the correct identity. There is at most one correct

identity query. It then generates the corresponding key as follows. It chooses σ, η1, η2 ← Zq

34

and sets:

kid := (1, σ id,−σ, 0, 0, η1, η2, 0)B∗

The view of the adversary is thus identical to the real-world interaction of Sim1-security

definition.

Interaction 1: Same as the previous interaction, except the simulator also chooses random

r1, r2 ← Zq and generates the ciphertext as:

c := (ζ, ω, ω id∗, r1, r2, 0, 0, ϕ)B; c′ = m∗(gT)ζ

We call this ciphertext a semi-functional ciphertext. This interaction is indistinguishable

from the previous by the same reasoning as in [OT10], from the security of their “Problem

1” which follows from the DLIN assumption.

Interaction (2, h), for h ∈ {0, . . . , N}, where N is an upper bound on the number of KeyGen

queries made by the adversary. Interaction (2, 0) is defined to be the same as Interaction

1. For h > 0, Interaction (2, h) is defined to be the same as Interaction (2, h − 1) except

that when the adversary makes its hth incorrect identity query to KeyGen, the simulator

generates the corresponding decryption key as follows. It chooses random w1, w2 ← Zq and

sets:

kid := (1, σ id,−σ,w1, w2, η1, η2, 0)B∗

We call keys of this form semi-functional keys. This interaction is indistinguishable from

the previous by the same reasoning as in [OT10], from the security of their “Problem 2”

which follows from the DLIN assumption. Since we also apply similar reasoning in a later

step, we give more details here:

Define ~xid = (1, id) and ~vid = (id,−1). The proof in [OT10] defines a “Problem 2”

game that involves the adversary distinguishing between two interactions (i.e., guessing a

random choice bit β ← {0, 1}). Relevant to the IBE scheme’s security proof, they show that

an adversary participating in the Problem 2 game can generate normal decryption keys,

semi-functional keys for any incorrect identity, as well as the following distributions (for

35

the semi-functional ciphertext and the semi-functional h-th incorrect-identity key):

when β = 0 in the game

cid∗ := (ζ, ω ~xid∗ , ~r, ~0, ϕ)B

kid := (1, σ ~vid, ~0, ~η, 0)B∗

when β = 1 in the game

cid∗ := (ζ, ω ~xid∗ , ρU~xid∗ , ~0, ϕ)B

kid := (1, σ ~vid, τZ~vid, ~η, 0)B∗

Here, ~r = (r1, r2) and ~η = (η1, η2) are uniform in Z2
q; ρ, τ are random in Zq; and U and Z

are random 2 × 2 matrices subject to the constraint that U−1 = ZT . Now, since id 6= id∗,

we have that ~vid · ~xid∗ 6= 0. As such, the vectors ρU~xid∗ and τZ~vid are random subject to

their inner product being nonzero. Now, it is with negligible probability that independently

random vectors have inner product zero; thus kid above is distributed statistically close to

a true semi-functional key (which has independent randomness instead of τZ~vid).

Thus an adversary participating in the Problem 2 game can induce a view statistically

close to that of Interaction (2, h − 1 + β). Since it is infeasible to guess β in Problem

2 with nonnegligible advantage, we have that Interactions (2, h − 1) and (2, h) are

indistinguishable.

Interaction 3: The same as Interaction (2, N) except that if the adversary ever queries

KeyGen on the correct identity id∗, then the simulator generates the corresponding key as

follows. It chooses random w1, w2 ← Zq subject to the constraint that (w1, w2) and (r1, r2)

are orthogonal, where r1, r2 are the values from the ciphertext. It sets:

kid∗ := (1, σ id∗,−σ,w1, w2, η1, η2, 0)B∗

The indistinguishability of this step follows from the same reasoning as above. However,

when applying the same reduction to Problem 2 as before, we have that ~vid · ~xid∗ = 0.

Thus the vectors ρU~xid∗ and τZ~vid are random subject to their inner product being zero.

Indeed, this is exactly the distribution required by Interaction 3. Importantly, it is possible

to generate semi-functional keys for incorrect identities within the Problem 2 game. It is

not clear whether semi-functional keys for the correct identity can be generated within the

game. Thus, this interaction must be arranged last in the sequence of hybrids, and we can

only withstand one key for a correct identity.4

4Similarly, the approach here does not appear to extend to higher-dimensional inner product encryptions,

36

Let ~r = (r1, r2) and ~w = (w1, w2). Note that in this interaction, the purported plaintext

in Dec(kid∗ , (c, c
′)) is computed as c′/e(c,kid∗) = c′/(gT)ζ+~r·~w = m∗/(gT)~r·~w. Thus we can

equivalently say that the value ~w chosen for kid∗ is distributed uniformly subject to the

constraint that Dec(kid∗ , (c, c
′)) = m∗.

Interaction 4: The same as Interaction 3, except the ciphertext is generated as follows. The

simulator chooses ζ ′, y1, y2 ← Zq and then sets:

c := (ζ ′, y1, y2, r1, r2, 0, 0, ϕ)B; c′ = m∗(gT)ζ

As in the previous interaction, the values w1, w2 in kid∗ are chosen randomly subject to

the constraint that Dec(kid∗ , (c, c
′)) = m∗. We claim that interactions 3 & 4 are in fact

distributed identically. To see why, let S = (sij) denote a randomly chosen 2 × 3 matrix,

and consider the following change of basis:

d1

...

d8

 =

I3

S I2

I2

b1
...

b8

 ;

d∗1
...

d∗8

 =

I3 −ST

I2

I2

b∗1
...

b∗8

Then D := (d1, . . . ,d8) and D∗ := (d∗1, . . . ,d

∗
8) are dual orthonormal bases. D differs from B

only in coordinates 4 & 5. These coordinates of B are not included as part of the public key,

so from the adversary’s point of view both (D,D∗) and (B,B∗) are equally consistent with

the public key.

when ~x and ~v have high dimension. In that setting, there can be several distinct choices of ~v such that ~x ·~v = 0.

37

With respect to the basis pair (D,D∗), the ciphertext component c can be written as:

c := (ζ, ω, ω id∗, r1, r2, 0, 0, ϕ)

b1
...

b8

= (ζ, ω, ω id∗, r1, r2, 0, 0, ϕ)

I3

−S I2

I2

d1

...

d8

= (ζ − s1,1r1 − s2,1r2︸ ︷︷ ︸
ζ′

, ω − s1,2r1 − s2,2r2︸ ︷︷ ︸
y1

, ω id∗ − s1,3r1 − s2,3r2︸ ︷︷ ︸
y2

, r1, r2, 0, 0, ϕ)

d1

...

d8

Since the entries of S are chosen uniformly at random, each of ζ ′, y1, y2 are uniform in Zq,

as desired.

Similarly, the key corresponding to id can be expressed in the new basis as:

kid := (1, σ id,−σ,w1, w2, η1, η2, 0)

b∗1
...

b∗8

= (1, σ id,−σ,w1, w2, η1, η2, 0)

I3 ST

I2

I2

d∗1
...

d∗8

= (1, σ id,−σ,w1 + s1,1 + s1,2σ id− s1,3σ︸ ︷︷ ︸

w′1

, w2 + s2,1 + s2,2σ id− s2,3σ︸ ︷︷ ︸
w′2

, η1, η2, 0)D∗

Now, when id 6= id∗ (i.e., the simulator is servicing a query for an incorrect identity), w1, w2

are chosen uniformly in Zq (independent of everything else). Thus w′1, w
′
2 are uniform

as desired. When id = id∗, (w1, w2) are chosen uniformly subject to the constraint that

Dec(k, (c, c′)) = m∗. Since we are changing only the basis, k and c are exactly as before.

The change in basis has only affected the coordinates of B∗/D∗ involving w1, w2; thus these

values are still uniform subject to the same constraint, as desired.

38

This final interaction defines our simulator. It first generates the ciphertext (c, c′)

according to the distribution in Interaction 4. Note that despite m∗ appearing in the

description of how c′ is generated, the ciphertext is in fact distributed independently of

m∗ and id∗, as required. Then, when the adversary queries KeyGen on id, the simulator

queries its oracle F ((id∗,m∗), ·) and generates the resulting key accordingly, depending on

whether id = id∗. In the case that id = id∗, the simulator must choose w1, w2 values (in kid∗)

according to a particular constraint. To do so, the simulator must know the discrete log of

m∗ (the values in the constraint all appear “in the exponent”). For this reason, we require

the scheme’s plaintext space to have polynomial size. Finally, we note that the simulator

uses the adversary in a straight-line, black-box manner.

Theorem 4.2.3. This AIBE scheme is key verifiable (Definition 2.2.1).

Proof overview. Recall that B̂ := (b1, b2, b3, b8), and B̂ ∈ pk. Knowledge of these basis

vectors allows the construction of four “test ciphertexts” that together ensure a secret key

exhibits the correct properties when paired with a valid ciphertext.

Proof. Our proof of correctness need only consider honestly-generated ciphertexts, that is,

ciphertexts of the form (c, c′) where

c := (ζ, ω, ω id, 0, 0, 0, 0, ϕ)B c′ := m(gT)ζ

To extract m, the decryption operation computes c′/e(c, s̃k). Thus, to verify the validity of

s̃k for the identity id, we must show that e(c, s̃k) = (gT)ζ with overwhelming probability

over the randomness used to generate c. We write c = (c1, . . . , c8)B and s̃k = (s1, . . . , s8)B∗ ,

and recall that e
(

(c1, . . . , c8)B, (s1, . . . , s8)B∗
)

= (gT)c·s̃k. Thus, it suffices to show that the

inner product c · s̃k =
∑8

i=1 cisi = ζ. Substituting an honestly-generated ciphertext for c

yields:

ζs1 + ωs2 + ωids3 + ϕs8 = ζ

for all ζ, ω, ϕ ∈ Zq.

Thus we need only verify that s̃k has appropriate values for s1, s2, s3, and s8. Since the

public key pk includes the basis vectors B̂ := (b1, b2, b3, b8), we can construct ciphertexts to

check these values.

We construct a CheckKey algorithm that can be used to verify decryption keys:

39

CheckKey(pk, s̃k, id):

Verify that s̃k ∈ V. If not, abort and output 0. Then, ensure the following

constraints hold:

e((1, 0, 0, 0, 0, 0, 0, 0)B, s̃k) = (gT)1

e((0, 0, 0, 0, 0, 0, 0, 1)B, s̃k) = (gT)0

e((0, 1, id, 0, 0, 0, 0, 0)B, s̃k) = (gT)0

e((0, 0, 1, 0, 0, 0, 0, 0)B, s̃k) 6= (gT)0

If any of the constraints fail, abort and ouput 0. Otherwise return 1.

40

Chapter 5

Connections to Static Obfuscation

In this chapter, we use mediated obfuscation to connect worst-case and average-case static

obfuscation. Briefly, an average-case (static) obfuscation of the KeyGen algorithm of a

suitable functional encryption scheme Σ yields a worst-case (static) obfuscation for Σ’s

functionality F . We use this connection to derive new impossibility results for average-case

(static) obfuscation.

5.1 Static Obfuscation

Definition 5.1.1 ([BGI+01, HMLS10]). (Obfu,Eval) is a static obfuscation scheme for a class

of functions C if for all f ∈ C and all x, we have Eval(Obfu(f, 1λ), x) = f(x) with overwhelming

probability over the coins of Obfu. The scheme is virtual-black-box (VBB) secure if for all

PPT A, there exists a simulator S such that for all f :

∣∣∣Pr
[
Of ← Obfu(f, 1λ);A(Of , 1λ) = 1

]
− Pr

[
Sf (1λ) = 1

]∣∣∣ is negligible in λ.

The probability is over the coins of Obfu, A, and S. If the security condition holds only for a

random choice of f ← C, then the scheme is on-average-VBB-secure.

If the security condition holds when both A and S are given an additional arbitrary input

z (which may depend on f), then the scheme is secure in the presence of auxiliary input.

In our generic construction for a mediated obfuscation of functions C, the client receives

a static ciphertext from the vendor and then essentially uses the mediator for oracle access

to the KeyGen algorithm of a functional encryption scheme. Now, if the KeyGen algorithm

41

admits a static obfuscation (in the sense of [BGI+01, HMLS10]), then the client has no use

for the mediator. Intuitively, the ciphertext together with an appropriate static obfuscation

for KeyGen constitute a static obfuscation for C. In fact, the obfuscation of KeyGen need

only be secure on average (i.e., for a random choice of mk).

Theorem 5.1.2. Let (Setup,KeyGen,Enc,Dec) be a Sim1-secure FE scheme with functionality

F and define C = {F (m, ·) | m}. If there is a static obfuscation scheme for the class1 of

functions {KeyGen(mk, ·) | mk} that is on-average-VBB-secure in the presence of auxiliary

input, then there is a VBB-secure static obfuscation scheme for the class C.

Proof. The static obfuscation for C is as follows:

• Obfu: Given m (the index of the function F (m, ·) to be evaluated) and security

parameter λ, generate (pk,mk) ← Setup(1λ) and c ← Enc(pk,m). Also generate

O as a static obfuscation of KeyGen(mk, ·). Output (c,O).

• Eval: To evaluate such an obfuscation (c,O) on input x, first evaluate k ← O(x), then

output the result of Dec(k, c).

Correctness of this construction follows immediately from the correctness properties of the

functional encryption scheme and static obfuscation for KeyGen.

To show VBB security of this construction, let A be an arbitrary PPT adversary, and

consider an interaction in which A receives input (c,O, 1λ). View its input (O, 1λ) as an

obfuscation of a randomly chosen member of the class {KeyGen(mk, ·) | mk}, and the input

c as dependent auxiliary input. By the security of O, there exists a simulator S0 such that

for all m:

∣∣∣Pr
[
(c,O)← Obfu(〈F (m, ·)〉, 1λ);A(c,O, 1λ) = 1

]
−Pr

[
(pk,mk)← KeyGen(1λ);SKeyGen(mk,·)

0 (Enc(pk,m), 1λ) = 1
]∣∣∣ is negligible in λ.

Now by the Sim1 security of the FE scheme, we have that there exists another simulator S1
1Technically, this class contains randomized functions, which are supported in the definitions for static

obfuscation of Hofheinz et al. [HMLS10] that we use here.

42

such that for all m:

∣∣∣Pr
[
(pk,mk)← KeyGen(1λ);SKeyGen(mk,·)

0 (Enc(pk,m), 1λ) = 1
]

−Pr
[
SF (m,·)
1 (1λ) = 1

]∣∣∣ is negligible in λ.

By transitivity, S1 is our desired simulator for A.

5.2 Implications

Theorem 5.1.2 can be interpreted as a reduction from average-case (static) obfuscation to

the standard, worst-case (static) obfuscation. As a corollary, we see that an impossibility

result relating to an FE scheme’s functionality F can be “lifted” to an impossiblity result for

the scheme’s KeyGen function, as long as the FE scheme is Sim1-secure.

In Section 4.2.2 we have given an AIBE scheme that indeed satisfies the Sim1 security

required by Theorem 5.1.2. Thus a suitable static obfuscation of its KeyGen procedure

would imply the existence of a static obfuscation of point functions with multi-bit output.

Obfuscation of point functions has been thoroughly studied [Can97, LPS04, Wee05, CD08,

CKVW10, BC10]. However, all of these results use either very strong computational

assumptions, or weak security definitions for obfuscation (or both). In fact, several

impossibility results are known for obfuscating point functions, which can be used to derive

an impossibility for our KeyGen algorithm.

The above definitions of obfuscation consider only adversaries whose output is a single

bit. Wee [Wee05] shows that point-function (static) obfuscation is impossible against

adversaries with arbitrary-length output. Our Sim1 security definition for FE does allow

adversaries with arbitrary-length output, and the above proof goes through for arbitrary-

length output if the obfuscation of KeyGen allows it. Our AIBE construction in Section 4.2.2

also has a black-box simulator, so when the simulator for the KeyGen-obfuscation is also

black-box, the resulting simulation in the proof (for static obfuscations of C = {F (m, ·) |

m}) is black-box. Again, Wee [Wee05] showed that it is impossible to obfuscate point-

functions with a black-box simulator. Thus:

Corollary 5.2.1. The KeyGen algorithm of our construction (Section 4.2.2) has no static

obfuscation that is on-average-VBB-secure and either view-simulating or black-box, in the

43

presence of the public key.

Recall that the KeyGen algorithm of an IBE scheme is a signing algorithm in a natural

digital signature scheme [BF01],2 and the auxiliary input we consider (an encryption of

(m, id)) can be derived from the verification key of this signature scheme. Thus it is quite

natural to consider the problem of statically obfuscating KeyGen algorithms in the presence

of such auxiliary input.

Roughly speaking, these results imply that the problem of obfuscating signature schemes

(with an on-average security guarantee that is highly natural for such settings) is related

to the problem of obfuscating point functions (with a more demanding worst-case security

guarantee). Progress in the former will be contingent on progress in the latter.

2Observed by Naor but described in a paper by Boneh & Franklin.

44

Chapter 6

Conclusion & Open Problems

Mediated obfuscation is a theoretical framework for program obfuscation that uses

interaction with a semi-trusted third-party to circumvent the general impossibility of static

obfuscation.

As demonstrated in Chapter 4, mediated obfuscation for point functions arises naturally

from fully attribute-hiding (i.e., anonymous) identity-based encryption, and the FE scheme

in [OT10] was shown to admit a relaxed-secure mediated obfuscation with relatively minor

modifications. Further study of the MO paradigm will benefit from instantiations based

on other fully attribute-hiding schemes (e.g. [LOS+10]) and pave the way toward the

development of theoretically optimal mediated obfuscation.

Furthermore, the development of strongly simulation-secure MO (i.e., schemes in which

the mediator learns nothing about the client’s input x, and security holds against entirely

corrupt mediators) would represent a major advance. Fully-secure MO would enable

vendors to outsource obfuscation without delegating total trust to the mediator, and

guarantee correctness of any value f(x) returned (to the client) by the mediator.

Finally (and perhaps most significantly), it remains to be seen if the mediated

obfuscation model can be extended to randomized functionalities. Such an advance would

likely coincide with the development of security definitions for FE that capture randomized

functionalities; thus far, no such definitions exist.

45

Bibliography

[ABV+11] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris,

and Hoeteck Wee. Fuzzy identity based encryption from lattices. Cryptology

ePrint Archive, Report 2011/414, 2011. http://eprint.iacr.org/.

[AI09] Nuttapong Attrapadung and Hideki Imai. Conjunctive broadcast and attribute-

based encryption. In Proceedings of the 3rd International Conference Palo Alto

on Pairing-Based Cryptography, Pairing ’09, pages 248–265, Berlin, Heidelberg,

2009. Springer-Verlag.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In

Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer

Science, pages 41–55. Springer, 2004.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point

obfuscation. In Rabin [Rab10], pages 520–537.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil

pairing. In Kilian [Kil01], pages 213–229.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.

In Kilian [Kil01], pages 1–18.

[BH08] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast

encryption schemes. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of

Lecture Notes in Computer Science, pages 455–470. Springer, 2008.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-

based encryption. In Proceedings of the 2007 IEEE Symposium on Security and

46

http://eprint.iacr.org/

Privacy, SP ’07, pages 321–334, Washington, DC, USA, 2007. IEEE Computer

Society.

[BSW11a] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions

and challenges. In Ishai [Ish11], pages 253–273.

[BSW11b] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic

encryption for restricted computations. IACR Cryptology ePrint Archive,

2011:311, 2011.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based

encryption (without random oracles). In CRYPTO, pages 290–307, 2006.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on

encrypted data. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in

Computer Science, pages 535–554. Springer, 2007.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all

partial information. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of

Lecture Notes in Computer Science, pages 455–469. Springer, 1997.

[Can00] Ran Canetti. Universally composable security: A new paradigm for

cryptographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

[CCKM00] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Müller. One-round secure

computation and secure autonomous mobile agents. In Ugo Montanari, José

D. P. Rolim, and Emo Welzl, editors, ICALP, volume 1853 of Lecture Notes in

Computer Science, pages 512–523. Springer, 2000.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with

multibit output. In Smart [Sma08], pages 489–508.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. IACR

Cryptology ePrint Archive, 2001:55, 2001.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On

symmetric encryption and point obfuscation. In Daniele Micciancio, editor, TCC,

volume 5978 of Lecture Notes in Computer Science, pages 52–71. Springer, 2010.

47

[DBS04] Ratna Dutta, Rana Barua, and Palash Sarkar. Pairing-based cryptographic

protocols : A survey. Cryptology ePrint Archive, Report 2004/064, 2004.

http://eprint.iacr.org/.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In

Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, volume

4004 of Lecture Notes in Computer Science, pages 445–464. Springer Berlin /

Heidelberg, 2006.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009. crypto.stanford.edu/craig.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of

Lecture Notes in Computer Science. Springer, 2010.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of

interactive proof systems. SIAM J. Comput., 18:186–208, February 1989.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-

based encryption for fine-grained access control of encrypted data. In Ari

Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM

Conference on Computer and Communications Security, pages 89–98. ACM,

2006.

[Had10] Satoshi Hada. Secure obfuscation for encrypted signatures. In Gilbert [Gil10],

pages 92–112.

[HMLS10] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for

cryptographic purposes. J. Cryptology, 23(1):121–168, 2010.

[HPR12] Robert Hooker, Manoj Prabhakaran, and Mike Rosulek. Functional encryption

as mediated obfuscation. 2012.

[HRsV11] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan.

Securely obfuscating re-encryption. J. Cryptology, 24(4):694–719, 2011.

48

http://eprint.iacr.org/
crypto.stanford.edu/craig

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit

Sahai. Efficient non-interactive secure computation. In Kenneth G. Paterson,

editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages

406–425. Springer, 2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on

oblivious transfer - efficiently. In David Wagner, editor, CRYPTO, volume 5157

of Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

[Ish11] Yuval Ishai, editor. Theory of Cryptography - 8th Theory of Cryptography

Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings,

volume 6597 of Lecture Notes in Computer Science. Springer, 2011.

[Kil01] Joe Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual

International Cryptology Conference, Santa Barbara, California, USA, August

19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science.

Springer, 2001.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting

disjunctions, polynomial equations, and inner products. In Smart [Sma08],

pages 146–162.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and

Brent Waters. Fully secure functional encryption: Attribute-based encryption

and (hierarchical) inner product encryption. In Gilbert [Gil10], pages 62–91.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques

for obfuscation. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT,

volume 3027 of Lecture Notes in Computer Science, pages 20–39. Springer, 2004.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint

Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption

with general relations from the decisional linear assumption. In Rabin [Rab10],

pages 191–208. Full version published on Cryptology ePrint Archive, Report

2010/563, http://eprint.iacr.org/2010/563.

49

http://eprint.iacr.org/2010/556
http://eprint.iacr.org/2010/563

[OT11] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding

(hierarchical) inner product encryption. Cryptology ePrint Archive, Report

2011/543, 2011. http://eprint.iacr.org/.

[Rab10] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual

Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.

Proceedings, volume 6223 of Lecture Notes in Computer Science. Springer, 2010.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings

of CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA,

1985. Springer-Verlag New York, Inc.

[Sma08] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of

Lecture Notes in Computer Science. Springer, 2008.

[SW04] Amit Sahai and Brent Waters. Fuzzy identity based encryption. Cryptology

ePrint Archive, Report 2004/086, 2004. http://eprint.iacr.org/.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In

EUROCRYPT, pages 114–127, 2005.

[Wat08] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive,

efficient, and provably secure realization. Cryptology ePrint Archive, Report

2008/290, 2008. http://eprint.iacr.org/.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald

Fagin, editors, STOC, pages 523–532. ACM, 2005.

[YFDL04] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. Id-based

encryption for complex hierarchies with applications to forward security and

broadcast encryption. In Proceedings of the 11th ACM conference on Computer

and communications security, CCS ’04, pages 354–363, New York, NY, USA,

2004. ACM.

50

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Functional Encryption as Mediated Obfuscation
	Let us know how access to this document benefits you.
	Recommended Citation

	Introduction
	Our Results

	Preliminaries
	Basic Definitions
	Functional Encryption
	Syntax
	Identity-based encryption
	Security definitions
	Composability of FE schemes

	Obfuscation
	Universally Composable Security

	Mediated Obfuscation
	Model
	Syntax
	Security Definitions
	General Feasibility
	Using one-round secure computation
	Using (derivatives of) fully-homomorphic encryption

	Functional Encryption as Mediated Obfuscation
	Generic Construction from Functional Encryption
	On full vs. relaxed security

	Implementing Mediated Obfuscation
	Achieving semantic security
	Achieving strong security for point functions with AIBE
	Mathematical background
	The AIBE construction

	Connections to Static Obfuscation
	Static Obfuscation
	Implications

	Conclusion & Open Problems

