16,758 research outputs found

    Efficient Representation of Computational Meshes

    Full text link
    We present a simple yet general and efficient approach to representation of computational meshes. Meshes are represented as sets of mesh entities of different topological dimensions and their incidence relations. We discuss a straightforward and efficient storage scheme for such mesh representations and efficient algorithms for computation of arbitrary incidence relations from a given initial and minimal set of incidence relations. The general representation may harbor a wide range of computational meshes, and may also be specialized to provide simple user interfaces for particular meshes, including simplicial meshes in one, two and three space dimensions where the mesh entities correspond to vertices, edges, faces and cells. It is elaborated on how the proposed concepts and data structures may be used for assembly of variational forms in parallel over distributed finite element meshes. Benchmarks are presented to demonstrate efficiency in terms of CPU time and memory usage

    Engineering Art Galleries

    Full text link
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    Towards a Domain Specific Language for a Scene Graph based Robotic World Model

    Full text link
    Robot world model representations are a vital part of robotic applications. However, there is no support for such representations in model-driven engineering tool chains. This work proposes a novel Domain Specific Language (DSL) for robotic world models that are based on the Robot Scene Graph (RSG) approach. The RSG-DSL can express (a) application specific scene configurations, (b) semantic scene structures and (c) inputs and outputs for the computational entities that are loaded into an instance of a world model.Comment: Presented at DSLRob 2013 (arXiv:cs/1312.5952

    An object-oriented programming of an explicit dynamics code: application to impact simulation

    Get PDF
    During the last fifty years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. Recent advances in computational softwares have lead to the possibility of solving more physical and complex problems (coupled problems, nonlinearities, high strain and high strain rate problems, etc.). The development of object-oriented programming leads to better structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. This paper presents an implementation in C++ of an explicit finite element program dedicated to the simulation of impacts. We first present a brief overview of the kinematics, the conservative and constitutive laws related to large deformation inelasticity. Then we present the design and the numerical implementation of some aspects developed with an emphasis on the object-oriented programming adopted. Finally, the efficiency and accuracy of the program are investigated through some benchmark tests

    Developments in GRworkbench

    Full text link
    The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, GRworkbench has been significantly extended to facilitate numerical experimentation in analytically-defined space-times. The numerical differential geometric engine has been rewritten using functional programming techniques, enabling objects which are normally defined as functions in the formalism of differential geometry and General Relativity to be directly represented as function variables in the C++ code of GRworkbench. The new functional differential geometric engine allows for more accurate and efficient visualisation of objects in space-times and makes new, efficient computational techniques available. Motivated by the desire to investigate a recent scientific claim using GRworkbench, new tools for numerical experimentation have been implemented, allowing for the simulation of complex physical situations.Comment: 14 pages. To appear A. Moylan, S.M. Scott and A.C. Searle, Developments in GRworkbench. Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity, editors M. Novello, S. Perez-Bergliaffa and R. Ruffini. Singapore: World Scientific 200
    corecore