
An object-oriented programming of an explicit dynamics code:

application to impact simulation

Olivier Pantalé*

LGP CMAO, ENIT, 47 Av d’Azereix, BP 1629, 65016 Tarbes Cedex, France

Abstract

During the last fifty years, the development of better numerical methods and more powerful computers has been a major enterprise for the

scientific community. Recent advances in computational softwares have lead to the possibility of solving more physical and complex

problems (coupled problems, nonlinearities, high strain and high strain rate problems, etc.). The development of object-oriented

programming leads to better structured codes for the finite element method and facilitates the development, the maintainability and the

expandability of such codes.

This paper presents an implementation in Cþþ of an explicit finite element program dedicated to the simulation of impacts. We first

present a brief overview of the kinematics, the conservative and constitutive laws related to large deformation inelasticity. Then we present

the design and the numerical implementation of some aspects developed with an emphasis on the object-oriented programming adopted.

Finally, the efficiency and accuracy of the program are investigated through some benchmark tests.

Keywords: Nonlinear finite-element; Explicit integration; Large deformations; Plasticity; Impact; Cþþ ; Object-oriented programming

1. Introduction

After a long time of intensive developments, the finite

element method has become a widely used tool for

researchers and engineers. An accurate analysis of large

deformation inelastic problems occurring in impact simu-

lations is extremely important as a consequence of a high

amount of plastic flow. This research field has been widely

explored and a number of computational algorithms for the

integration of constitutive relations have been developed for

the analysis of large deformation problems [1,2].

In this paper an object-oriented (OO) implementation of

an explicit finite element program called DynELA is

presented. This FEM program is written in Cþþ [3]. The

development of object-oriented programming (OOP) leads

to better-structured codes for the finite element method and

facilitates the development and maintainability [4,5]. A

significant advantage of OOP concerns the modeling of

complex physical systems such as deformation processing

where the overall complex problem is partitioned in

individual subproblems based on physical, mathematical

or geometric reasoning. Therefore, the finite element

concept leads naturally to an object representation.

2. Governing equations, discretization and numerical

integration

The conservative laws and the constitutive equations for

path-dependent material are formulated in an updated

Lagrangian finite element method in large deformations.

Both the geometrical and material nonlinearities are

included in this setting. The finite element method (FEM)

is used for the discretization of the conservative equations,

and an explicit integration scheme is then adopted for time

discretization of those equations. In the next paragraphs, we

summarize some basic results concerning nonlinear mech-

anics relevant to our subsequent developments and refers for

example to Hughes [6] or Simo and Hughes [7] for details

concerning finite element method and the integration of

constitutive laws.

2.1. Basic kinematics and constitutive equations

In a Lagrangian description, the mass, momentum and
* Tel.: þ33-5-62-44-27-00; fax: þ33-5-62-44-27-08.

E-mail address: oliver.pantale@enit.fr (O. Pantalé).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/advengsoft

energy equations which govern the continuum are given by

_rþ r div ~v ¼ 0 ð1Þ

r_~v ¼ r~f þ div s ð2Þ

r_e ¼ s : D 2 div ~q þ rr ð3Þ

where r is the mass density, ð_Þ the time derivative of (), ~v

the material velocity, ~f the body force vector, s the Cauchy

stress tensor, D the spatial rate of deformation, e the specific

internal energy, r the body heat generation rate and ~q is the

heat flux vector. The symbol ‘:’ denotes the contraction of a

pair of repeated indices which appear in the same order, so

A : B ¼ AijBij: The matricial forms of Eqs. (1)–(3) are

obtained, according to the finite element method, by

subdividing the domain of interest Vx into a finite number

of elements, leading to the following forms of the

conservative equations:

Mr _rþ Krr ¼ 0 ð4Þ

Mv _~v þ Fint ¼ Fext ð5Þ

Me _e þ g ¼ r ð6Þ

If we use the same form wð Þ for the shape and test function

(as usually done for an serendipity element), one may obtain

the following expressions for the elementary matrices of

Eqs. (4)–(6)

Mr ¼
ð
Vx

wrT

wr dVx; Kr ¼
ð
Vx

wrT

7vwr dVx ð7Þ

Mv ¼
ð
Vx

rwvT

wv dVx; Fint ¼
ð
Vx

7wvT

s dVx;

Fext ¼
ð
Vx

rwvT
~b dVx þ

ð
Gx

wvT

~t dGx

ð8Þ

Me ¼
ð
Vx

weT

we dVx; g ¼
ð
Vx

7weT

~q dVx;

r ¼
ð
Vx

weT

ðs : D þ rrÞ dVx 2
ð
Gx

weT

u dGx

ð9Þ

where 7 is the gradient operator, Gx is the surface of the

domain Vx; Mð Þ are consistent mass matrices, Fext is the

external force vector and Fint is the internal force vector. As

usually done, we associate the explicit integration scheme

with the use of lumped mass matrices in calculations,

therefore quantities ð _Þ are directly obtained from Eqs. (4)–

(6) without the need of any matrix inversion algorithm.

2.2. Constitutive law

This finite element code is dedicated to large strains

simulations, therefore we must ensure the objectivity of all

the terms appearing in the constitutive law. The symmetric

part of the spatial velocity gradient L; denoted by D is

objective while its skew-symmetric part W; called the spin

tensor, is not objective. The incremental formulation of the

constitutive law is given by _s ¼ f ðD· · ·Þ: Assuming that the

Cauchy stress tensor s is objective, its material time

derivative _s is nonobjective, so one must introduce an

objective rate notion which is a modified time derivative

form of the Cauchy stress tensor s as the Jaumann–

Zaremba or the Green–Naghdi derivatives. One of the

solutions to this problem consists of defining a new Cauchy

stress rate in a rotating referential defined using a rotation

tensor w with _w ¼ vw: Defining any quantity ð Þ in this

rotating referential as a corotational one denoted by ð Þc; one

may obtain:

sc ¼ wTsw and _sc ¼ wT _sw ð10Þ

In fact, the choice of v ¼ W with the initial condition

wðt0Þ ¼ I corresponds to the Jaumann rate. The major

consequence of corotational rates is that if we choose the

local axis system as the corotational one, constitutive laws

integration can be performed as in small deformation.

According to the decomposition of the Cauchy stress tensor

into a deviatoric term s and an hydrostatic term p, one may

obtain

_sc ¼ Cc : Dc and _p ¼ K tr½D�c ð11Þ

where K is the bulk modulus of the material and C is the

fourth-order constitutive tensor. In this application, we use a

J2 plasticity model with nonlinear isotropic/kinematic

hardening law. The associated von Mises yield criterion

allows the use of the radial-return mapping strategy briefly

summarized hereafter.

2.2.1. Elastic prediction

Due to the objectivity, and therefore the use of a

corotational system, all the terms of the constitutive

equation are corotational ones, so we can drop the subscript

c in the following equations for simplicity. The elastic

stresses are calculated using the Hooke’s law, according to

Eq. (11), by the following equation

ptrial
nþ1 ¼ pn þ K tr½De� and strial

nþ1 ¼ sn þ 2GDe ð12Þ

where De is the corotational strain increment tensor between

increment n and increment n þ 1: Hence, the deviatoric part

of the predicted elastic stress is given by

ftrial
nþ1 ¼ strial

nþ1 2 an ð13Þ

where an is the back-stress tensor. The von Mises criterion f

is then defined by:

f trial
nþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ftrial

nþ1 : ftrial
nþ1

r
2 sv ð14Þ

where sv is the yield stress in the von Mises sense. Hence, if

f trial
nþ1 # 0; the predicted solution is physically admissible,

and the whole increment is assumed to be elastic.

2.2.2. Plastic correction

If the predicted elastic stresses does not correspond to a

physically admissible state, a plastic correction has to be

performed. The previous trial stresses serve as the initial

condition for the so-called return-mapping algorithm. This

one is summarized by the following equation:

snþ1 ¼ strial
nþ1 2 2Ggn ð15Þ

where n ¼ ðftrial
nþ1=kftrial

nþ1k is the unit normal to the von Mises

yield surface, and g is the consistency parameter defined as

the solution of the one scalar parameter ðgÞ nonlinear

equation below:

f ðgÞ ¼ ftrial
nþ1

��� ���2 2Gg2

ffiffiffi
2

3

r
ðsvðgÞ2 kaðgÞkÞ ¼ 0 ð16Þ

Eq. (16) is effectively solved by a local Newton iterative

procedure [7]. Since f ðgÞ is a convex function, convergence

is guaranteed.

2.3. Time integration

All above equations are integrated by an explicit scheme

associated with lumped mass matrices. The flowchart for the

explicit time integration of the Lagrangian mesh is given in

Box 1.

3. Object-oriented design

Object-oriented calculations have received extensive

attention in computational mathematics and several engin-

eering applications have already been published in compu-

tational journals. The benefits of OOP to implementation of

FEM programs has been explored by Miller [8] and Mackie

[9], and more recently applied to a Lagrangian analysis of

thermo-plasticity coupled with ductile damage at finite

strains by Zabaras and Srikanth [10]. The main used

language in OOP is the Cþþ , but some prospectives have

been made to use other languages such as Java [11] with an

extensive performance analysis. In this section only some

aspects of the architecture are presented. Section 3.2

describes the basic classes and linear algebra. Some more

specific aspects of the numerical implementation are

presented in Section 3.3.

3.1. Overview of object-oriented programming

Traditionally, numerical softwares are based on use of a

procedural programming language such as C or Fortran, in

which the finite element algorithm is broken down into

procedures that manipulate data. When developing a large

application, the procedures are wrapped up in libraries

which are used as modules and sometimes linked with

external libraries such as the well-known Blas [12] one for

linear algebra. Over the last few years, the use of object-

oriented programming techniques has increased, leading to

highly modularized code structure through user defined

classes which can be seen as the association of data and

methods. In OOP, an object is in fact an instance of a class.

This approach is very attractive because of well-defined

mechanisms for modular design and re-use of code. Briefly

speaking, OOP encourages computer implementations of

mathematical abstractions such as the work done concern-

ing partial differential equations with Diffpack [13].

Efficient OOP results in the association of low level numeric

computations encapsulated in high level abstraction such as

inheritance, members and operators overload, abstraction

and polymorphism or templates [14]. All those well-known

characteristics for programmers are briefly presented here

after, with their applications to numerical FEM program

development.

Inheritance is a mechanism which allows the exploitation

of commonality between objects. For example, assuming

that we implements and Element base class containing

methods such as integration of conservation laws over the

element, one can derivate this class to create two-

dimensional, three-dimensional or axisymmetric elements.

Those inherited classes, for example the two-dimensional

element class, may be derivated one more time to create

rectangular or triangular planar elements defined with

various number of nodes as shown in Fig. 1. Therefore,

only the highly specialized code, as shape functions

calculations, is implemented in those derived classes.

Members and operators overload allow an easy writing of

mathematical functions such as matrices product using a

generic syntax of the form A ¼ B p C where A, B and C are

three matrices of compatible sizes. The overloaded

operators p and ¼ may use efficient matrix calculation

and affectation algorithms associated with a set of basic

checks like size compatibility of the operators. The same

kind of operation is possible when the parameters are

instances of different classes, such as the definition of the

product of a matrix and a vector.

Abstraction is the ability of defining abstract objects

using virtual member methods. Abstract classes allow the

writing of generic algorithms and the easy extension of the

existing code. The resulting class is said to have a

polymorphic behavior. An example of an abstract class is

the class Element defined in Fig. 1. In this case, we never

create an instance of the class Element, but only instances of

Box 1

Flowchart for explicit time integration

1. Initial conditions and initialization: n ¼ 0; s0 ¼ sðt0Þ; x0 ¼ xðt0Þ; v0 ¼

vðt0Þ

2. Update quantities: n U n þ 1; sn ¼ sn21; xn ¼ xn21; vnþ1=2 ¼ vn21=2

3. Compute the time-step and update current time: tn ¼ tn21 þ Dt

4. Update nodal displacements: xn ¼ xn21 þ Dtvn21=2

5. Compute internal and external force vector fint
n ; fext

n

6. Integrate the conservative equations and compute accelerations: _vn ¼

M21ðfext
n 2 f int

n Þ

7. Update nodal velocities: vnþ1=2 ¼ vn21=2 þ Dt_vn

8. Enforce essential boundary conditions: if node I on Gv

9. Output; if simulation not complete go to 2

derived classes depending on the type of the element

needed.

Template classes are generic ones, for example generic

lists of any kind of object (nodes, elements, integration

points, etc.). Templates are the fundamental enabling

technology that supports construction of maintainable

highly abstract, high performance scientific codes in

Cþþ [15]. The use of OOP, and here the Cþþ language,

has been criticized because its computational efficiency is

commonly believed to be much lower than the one of

comparable Fortran codes. Recent studies on relative

efficiency of Cþþ numerical computations [15] have

shown that there is a performance increase with optimized

codes but libraries must be implemented carefully so that

the CPU intensive numerics take place in functions that are

easily optimized by C compilers. Creation of user defined

class libraries with overload operators and encapsulation of

low level operations on the basic data types allows for

optimizations to be introduced incrementally through the

development cycle. For example, in the linear algebra

library, we use low level C and Fortran routines coming

from the Lapack and Blas [12] libraries.

3.2. Basic classes and linear algebra

In a FEM application, the most logical point of departure

will be the creation of a basic and mathematical class

library. In this project, we have made the choice of

developing our own basic classes such as the template

class List (used to manage a list of any kind of object:

Node, Element, etc.) and linear algebra ones such as

Vector, Matrix and Tensor classes. Other projects

described in literature are usually based on free or

commercial libraries of Cþþ as the work done by Zabaras

[16] with Diffpack. This choice has been done because we

need linear algebra classes optimized for an explicit FEM

program and in order to distribute this work according to the

GNU general public license. Also, we did not wanted to

waste a lot of time working with a free library becoming no

longer free distributed from one day to another but rather a

commercial package like the Diffpack library.

To illustrate one of the major advantage of the OOP, if

we consider that the objects _sc and Dc are instances of the

Tensor2 class, while the object Cc is an instance of the

Tensor4 class, this allows us to implement both terms of

Eq. (11) in a simple, compact and elegant manner:

Tensor2 dS_c,D_c; // two instances of the
Tensor2 class
Tensor4 C_c; // an instance of the Tensor4
class
double K,dP; // two scalars
··· // some various operations
dP ¼ K p D_c.trace(); // first equation
ð_p ¼ K tr ½Dc�Þ

dS_c ¼ C_c p D_c; // second equation ð_sc ¼

Cc : DcÞ

Box 2 presents the minimum parts of the two classes

Tensor2 and Tensor4 needed to implement those Cþþ

code lines.

Fig. 1. UML diagram of the element class (simplified representation).

Box 2

Headers of the Tensor2 and Tensor4 classes

class Tensor2{

· · ·

Public:

Tensor2(); // constructor

,Tensor2(); // destructor

· · ·

Tensor2 operator ¼ (const Tensor2& t);

Friend Tensor2 operator p (const double& value, const Tensor2& tensor);

double trace();

};

class Tensor4 {

· · ·

Public:

Tensor4(); // constructor

,Tensor4(); // destructor

· · ·

Tensor2 operator p (const Tensor2& t) const;

};

† To implement those operations, we first need of course

the default constructors and destructors of both classes

Tensor2 and Tensor4. Those two methods take no

arguments here.

† For the first equation, we need the implementation of the

method trace() used to compute the trace of a

Tensor2, and an overload of the operator between a

scalar value, and a Tensor2 object. This one is to be

declared as a friend method because we need to access

some private members of the Tensor2 class in this

method.

† An overloading of the operator between the two classes

Tensor2 and Tensor4 and of the operator ¼

between two Tensor2 classes have been implemented

for the second equation.

3.3. Finite element classes

As it can be found in many other papers dealing with

the implementation of FEM [8,9,16] some basic classes

have been introduced in this work. In this paragraph, an

overview of the FEM classes is presented. Then, we

focus on the implementation of the nonlinear material

behavior used in this FEM code to illustrate the use of

OOP in FEM.

3.3.1. Overview of the FEM classes

The FEM represented by the class Domain is mainly

composed by the modules represented by the abstract

classes Node, Element, Material, Interface and

ioDomain as shown in Fig. 2.

The class Node contains nodal data, such as node

number or nodal coordinates. Two instances of the

NodalField class containing all nodal quantities at

each node are linked to each node of the structure. The

first one is relative to time t, the second one to t þ Dt: At the

end of the increment, we just have to swap the references to

those objects to transfer all quantities from one step to

another (see step 2 of the explicit time integration flowchart

in Box 1). Boundary conditions (BC) through the Boun-
daryCondition class may affect the behavior of each

node in particular subtreatments such as contact conditions,

external forces or thermal flux treatment. A list of BC is

attached to each node, this gives the ability to change the BC

during the main solve loop. For example a call to the

Node < updatePosition() method changes the

coordinates according to the current BC.

The class Element is a virtual class that contains the

definition of each element of the structure (see Fig. 1). This

class serves as a base class for a number of other classes

depending on the type of analysis and the nature of elements

needed. The difference between all derived element classes

concerns for example the shape functions. Of course, it is

possible to mix together various types of elements in the

same computation. The only restriction here concerns the

first level of inheritance, you cannot have an axisymmetric

element and a plane strain one in the same model. Each

element of the structure contains a given number of nodes,

Fig. 2. Simplified UML diagram of the Object oriented framework.

an arbitrary number of integration points (see Integra-
tionPoint class) and refers an associate constitutive law

through the material definition.

The Interface class contains all definitions concern-

ing the contact interfaces the contact law through the

ContactLaw class and the contact definition through the

Side class. We do not present more this one here. The class

ioDomain is used to serve as an interface between the

Domain and input/output files. This class serves as a base

class for many other derived classes which implements

specific interfaces for various file formats. The most important

one is the class InputData used to read the model.

The class Material is used for the definition of the

materials used in various models. This class is a general-

ization for all possible kinds of material definition. Some

details concerning the implementation of this class are given

here after.

3.3.2. Implementation of the nonlinear material behavior

The isotropic inelastic material behavior is defined via

the evolution of the equivalent plastic strain sv and the

evolution of a number of state variables. A simplified UML

diagram concerning the Material class is presented in

Fig. 3. From this later, we can see that the class Material
is virtual and serves as a base class for other material classes

such as Mat_Elastic, Mat_Elastoplastic or

Mat_El_Plas_Tabular. The first one is used for the

definition of an elastic material, the second one for an

elastoplastic material of the form sv ¼ A þ B �1pn

where A, B

and n are material constants, and the last one allows us to

define an arbitrary form for the strain hardening function

using a tabular function sv ¼ f ð �1pÞ:
Various constitutive models are represented as virtual

functions in classes derivated from the Material base

class. Some attributes and methods are implemented in the

base class Material, while other attributes or methods are

implemented in the derived classes. First ones concern

methods and attributes that are common to each kind of

material. For example the Young’s modulus E, the density r

or the Poisson ratio n are common attributes shared by each

kind of constitutive law. The A, B and n material constants

are attributes dedicated to the Mat_Elastoplastic
class. The definition of the nonlinear hardening law through

a DiscreteFunction class is dedicated to the

Mat_El_Plas_Tabular class. To define a new material

law, one has to derivate a new class from the Material
class. Box 3 presents a summary of the basic functionalities

Fig. 3. UML diagram of the material class (simplified representation).

Box 3

Headers of the material and Mat_El_Plast_Tabular classes

class Material {

friend class ListkMaterial p l;
protected:

Tensor4 C;

double young, poisson, density;

double heat, dilatation, T0 conductivity;

String Name;

public:

Material();

Material (const Material& material);

virtual , Material();

· · ·

virtual String getLawName() ¼ 0;

virtual double getYieldStress() ¼ 0;

virtual double getDerYieldStress() ¼ 0;

void computeHookeParameters();

void checkValues();

Friend ostream & operator ! (ostream & stream, Material& material);

· · ·

};

class Mat_El_Plas_Tabular: public Material {

protected:

DiscreteFunction p function; // used to define the tabular function

public:

Mat_El_Plas_Tabular ();

Mat_El_Plas_Tabular (const Mat_El_Plas_Tabular& material);

, Mat_El_Plas_Tabular ();

· · ·

String getLaw Name();

double getYieldStress();

double getDerYieldStress();

void setFunction(DiscreteFunction p func) {function ¼ func;}

DiscreteFunction p getFunction() {return (function);}

friend ostream & operator ! (ostream & os, Mat_El_Plas_Tabular&

material);

· · ·

};

of class Material and Mat_El_Plas_Tabular. The

main effort to implement a new constitutive model is to

define the getYieldStress() and getDerYieldS-
tress() methods which must return, respectively, the

value of the hardening parameter sv ¼ f ð �1p;…Þ and the

slope of the hardening law h ¼ ›svð1
p;…Þ=› �1p:

3.4. Pre-processing language

In the FEM code DynELA, we developed a specific high

level language using the Lex and Yacc [17] utilities. This

language has a grammar presenting analogies with Cþþ .

The most important points are summarized here after:

† fully free-form language supporting classic features such

as comments, files inclusion through #include
commands

† supports for various computations between reals or

vectors, arithmetic, trigonometric, increments or vari-

ables comparisons

† includes tests (if, then and else) and loops (for and

while)

† i/o functionalities such as cout, fopen, fclose or

, ,

† many other useful features (we refer to the DynELA user

manual [18]).

As an example we present here after a semi-analytic

declaration of the nonlinear hardening law used in the

necking of a circular bar example (see Eq. (17) and related

parameters in Table 1). This nonlinear hardening law is well

described using the Mat_El_Plas_tabular class

associated with a discrete function. The definition of this

hardening law using the DynELA specific language is given

by:

// local variables declaration
sv_0 ¼ 0.45e9;
sv_inf ¼ 0.715e9;
delta ¼ 16.93;
h ¼ 0.12924;
// hardening law declaration using a
discrete function
FOR (eps ¼ 0;eps , 1;eps þ ¼ (eps/5) þ 1/
1000){
DISCRETE FUNCTION: hard_funct { // name
of the function

eps,sv_0 þ (sv_inf-sv_0) p (1 2

EXP(2delta p (eps)) þ h p (eps); //
add a new point

};
};
// material declaration
MATERIAL: steel {
YOUNG: 2.069E þ 11; // Young modulus
NU: 2.9E-01; // Poisson ratio
DENSITY: 7.8E þ 03; // Density
ELASTOPLASTIC TABULAR { DISCRETE FUNC-
TION hard_funct; };

};

In this example we first begin the block with the

definition of the material constants of the hardening law

equation. By default, if no type specification is done, the

pre-processor assumes that the variable is a scalar. Vectors,

strings or other types are also available. Then, in the

example we use a classic FOR loop in the range [0:1] to

calculate and create each point of the hardening law via the

definition of a discrete function named here hard_funct.

This FOR loop have an increasing increment size because

more points are needed for such function near the origin.

Then, in the last part of the program, we define a new

material, called steel here, and associates the previously

defined discrete function hard_funct to it. This method

allows us to modify in a simply way the definition of the

hardening law by changing the variable values at top of the

program. This can also be done externally from other

program, and leads to parametrized numerical models used

in identification of constitutive law parameters.

4. Numerical validations

The objective of this section is to assess the numerical

implementations made in DynELA concerning the J2 flow

theory presented in Section 3. For this validation we

consider two representative examples related to well

documented numerical experiments available in literature,

the necking of a circular bar subjected to traction forces and

the simulation of a direct Taylor test impact. All

computations were performed with an AMD K6-3

400 MHz under Linux.

4.1. Necking of a circular bar

This experimentally well documented example [7,19] is

concerned with necking of a circular bar with a radius of

6.413 mm and a length 52.34 mm, subjected to uniaxial

tension resulting from an axial elongation of 14 mm. This

example serves here as a testbed for the plastic algorithm

developed in DynELA. The material considered here is a

special steel (A533, Grade B, Class 1), with a general

Table 1

Material properties for the circular bar

Young’s modulus E 206.9 GPa

Poisson ratio n 0.29

Initial flow stress s0
v 450.0 MPa

Residual flow stress s1
v 715.0 MPa

Linear hardening h 0.12924

Saturation exponent d 16.93

nonlinear hardening law of the form:

sv ¼ s0
v þ ðs1

v 2 s0
vÞð1 2 expð2d �1

pÞ þ h �1
pÞ ð17Þ

Material properties given by Norris et al. [19] are

reported in Table 1. This calculation problem is nonlinear,

both by the constitutive equation and by the large

deformation and rotation that occur at necking.

Two different meshes consisting of 50 and 400 elements

are considered to assess the influence of the discretization.

Only half of the axisymmetric geometry of the bar has been

meshed in the model. This example is a quasi-static one, but

because we used an explicit algorithm, we introduced a

prescribed velocity of 7 m/s at the top of the workpiece to

control the displacement. This rate corresponds to the one

used in the numerical model presented by Norris et al.

Fig. 4 reports final meshes obtained for the full

elongation. In this figure, the deformed solution obtained

with the coarse and the finer meshes are in good agreement.

Fig. 5 shows the ratio of the current to initial radius at the

necking section vs. the axial displacement. It is a

comparison between numerical (this work and Simo and

Hughes [7]) and experimental results [19]. The results are in

good agreement with experimental and previously reported

computations.

4.2. Impact of a copper rod

The impact of a copper rod on a rigid wall problem,

known as the Taylor impact problem, is a standard

benchmark for dynamics computer codes. This problem

simulates a high velocity impact of a copper rod on a rigid

wall, it is used by many authors such as Liu et al. [20]. The

initial dimensions of the rod are r0 ¼ 3.2 mm and

l0 ¼ 32.4 mm. The impact is assumed to be frictionless

and the impact velocity is set to 227 m/s. The final

Fig. 4. Necking of a circular bar: final meshes obtained for 50 (left) and 400

(right) elements.

Fig. 5. Necking of a circular bar: ratio of the current to initial radius at the necking section versus axial displacement.

Table 2

Material properties of the OHFC copper rod for the Taylor test

Young’s modulus E 117.0 GPa

Poisson ratio n 0.35

Density r 8930 kg/m3

Initial flow stress s0
v 400.0 MPa

Linear hardening h 100.0 MPa

configuration is obtained after 80 ms. The constitutive law is

elastoplastic with a linear isotropic hardening, material

properties given in Ref. [20] corresponding to an OFHC

copper reported in Table 2. Here again, only half of the

axisymmetric geometry of the rod has been meshed in the

model. Two different meshes were used, the first one with

250 elements (50 £ 5), and the second one with 2000

elements (20 £ 100).

Fig. 6 shows the equivalent plastic strain contour plot for

both meshes. Comparison between left- and right-hand sides

of this figure shows a good level of agreement both for the

final geometry and for the equivalent plastic strain contour

plot with previously reported results. Table 3 reports a

comparison for the final length lf, the footprint radius rf and

the maximum equivalent plastic strain �1
p
max obtained with

our finite element code and other numerical results such as

the one obtained by Liu et al. [20] or the same simulation

problem with the Abaqus Explicit [21] program. The

differences between the solutions are reasonable.

5. Conclusions

An object-oriented simulator was developed for the

analysis of large inelastic deformations and impact

processes. Several benchmark test problems were examined

to demonstrate the accuracy of the developed algorithms.

The benefits of using an OOP approach in comparison with

traditional programming language approaches were pre-

sented in this paper. The use of OOP provides us with the

ability of better representing, through the definition of

classes and inheritance, the physical, mathematical and

geometric structures of the kinematics and constitutive

aspects of a FEM analysis. The main purpose of this FEM

development is to serve as a testbed for new and more

efficient algorithms related to various parts of a FEM

program, such as new contact algorithms (here, the contact

is included but has not been presented) or more efficient

constitutive integration schemes. One of the main advan-

tages of the present FEM code is that the class hierarchies

adopted allow the implementation of additional constitutive

models such as new constitutive laws, new elements or

contact laws by derivating this new feature from existing

one using the inheritance feature.

One of the future use of this simulator is related to

inverse problem when one wants to make a parameter

identification of the material coefficients. This FEM code is

continuously developed and new features are implemented

such as a new constitutive algorithm including damage

effects or the use of various multi-grid resolution

algorithms.

References

[1] Ortiz M, Simo JC. An analysis of a new class of integration algorithms

for elastoplastic constitutive relations. Int J Numer Meth Engng 1986;

23:353–66.

[2] Zabaras N, Arif AFM. A family of integration algorithms for

constitutive equations in finite deformation elasto-viscoplasticity. Int J

Numer Meth Engng 1992;33:59–84.

[3] Stroustrup B. The Cþþ programming language, 2nd ed. Reading,

MA: Addison-Wesley; 1991.

[4] Langer SH, comparison A. A comparison of the floating-point

performance of current computers. Comput Phys 1998;12(4):338–45.

[5] Cross JT, Masters I, Lewis RW. Why you should consider object-

oriented programming techniques for finite element methods. Int J

Numer Meth Heat Fluid Flow 1999;9:333–47.

[6] Hughes TJR. The Finite element method; linear static and dynamic

finite element analysis. New York: Prentice-Hall; 1987.

[7] Simo JC, Hughes TJR. Computational inelasticity. Berlin: Springer;

1998.

[8] Miller GR. An object oriented approach to structural analysis and

design. Comput Struct 1991;40(1):75–82.

[9] Mackie RI. Object oriented programming of the finite element

method. Int J Numer Meth Engng 1992;35:425–36.

[10] Zabaras N, Srikanth A. Using objects to model finite deformation

plasticity. Engng Comput (Spec Issue Object Oriented Comput Mech

Tech) 1999;15:37–60.

[11] Nikishkov GP. Performance of a finite element code written in Java.

Adv Comput Engng Sci 2000;1:264–9.

[12] Lawson C, Hanson R, Kincaid D, Krogh F. Basic linear algebra

subprograms for fortran usage. ACM Trans Math Software 1979;5:

308–29.

Fig. 6. Impact of a copper rod: equivalent plastic strains for the two meshes

used.

Table 3

Comparison of numerical results for the Taylor test impact

FEM code rf lf �1
p
max

DynELA 2000 7.17 21.42 3.26

DynELA 250 7.12 21.43 3.21

Abaqus 7.08 21.48 3.23

Liu 7.15 21.42 –

[13] Daehlen M, Tveito A. Numerical methods and software tools in

industrial mathematics. Basel: Berkhauser; 1997.

[14] Haney S, Crotinger J. How templates enables high-performance

scientific computing in Cþþ . Comput Sci Engng 1999;66–72.

[15] Haney SW. Is Cþþ fast enough for scientific computing? Comput

Phys 1994;8(6):690.

[16] Zabaras N, Bao Y, Srikanth A, Frazier WG, continuum A. Lagrangian

sensitivity analysis for metal forming processes with applications to

die design problems. Int J Numer Meth Engng 2000;48:679–720.

[17] Mason J, Levine D. Lex and Yacc, 2nd ed. No. 1-56592-000-7; 1992.

[18] Pantalé O. User manual of the finite element code DynELA v. 0. 9. 5.

Av d’Azereix 65016 Tarbes, France: Laboratoire LGP ENI Tarbes;

2001.

[19] Norris DM, Morran JRB, Scudder JK, Quinones DF. A computer

simulation of the tension test. J Mech Phys Solids 1978;26:1–19.

[20] Liu WK, Chang H, Chen JS, Belytschko T. Arbitrary Lagrangian–

Eulerian Petrov–Galerkin finite elements for nonlinear continua.

Comput Meth Appl Mech Engng 1988;68:259–310.

[21] Abaqus, reference manual, Hibbitt, Karlsson and Sorensen Inc, 100

Medway Street, Providence, RI 02906-4402, USA; 1989.

	An object-oriented programming of an explicit dynamics code: application to impact simulation
	Introduction
	Governing equations, discretization and numerical integration
	Basic kinematics and constitutive equations
	Constitutive law
	Time integration

	Object-oriented design
	Overview of object-oriented programming
	Basic classes and linear algebra
	Finite element classes
	Pre-processing language

	Numerical validations
	Necking of a circular bar
	Impact of a copper rod

	Conclusions
	References

