2,472 research outputs found

    Corners-based composite descriptor for shapes

    Full text link
    In this paper, a composite descriptor for shape retrieval is proposed. The composite descriptor is obtained based upon corner-points and shape region. In an earlier paper, we proposed a composite descriptor based on shape region and shape contour, however, the descriptor was not effective for all perspective and geometric transformations. Hence, we modify the composite descriptor by replacing contour features with corner-points features. The proposed descriptor is obtained from Generic FourierDescriptors (GFD) of the shape region and the GFD ofthe corner-points. We study the performance of the proposed composite descriptor. The proposed method is evaluated using Item S8 within the MPEG-7 Still Images Content Set. Experimental results show that the proposed descriptor is effective.<br /

    2D shape classification and retrieval

    Get PDF
    We present a novel correspondence-based technique for efficient shape classification and retrieval. Shape boundaries are described by a set of (ad hoc) equally spaced points – avoiding the need to extract “landmark points”. By formulating the correspondence problem in terms of a simple generative model, we are able to efficiently compute matches that incorporate scale, translation, rotation and reflection invariance. A hierarchical scheme with likelihood cut-off provides additional speed-up. In contrast to many shape descriptors, the concept of a mean (prototype) shape follows naturally in this setting. This enables model based classification, greatly reducing the cost of the testing phase. Equal spacing of points can be defined in terms of either perimeter distance or radial angle. It is shown that combining the two leads to improved classification/retrieval performance.

    Asymmetric Feature Maps with Application to Sketch Based Retrieval

    Full text link
    We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.Comment: CVPR 201

    Content-based image retrieval using Generic Fourier Descriptor and Gabor Filters.

    Get PDF

    Multi-view Convolutional Neural Networks for 3D Shape Recognition

    Full text link
    A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.Comment: v1: Initial version. v2: An updated ModelNet40 training/test split is used; results with low-rank Mahalanobis metric learning are added. v3 (ICCV 2015): A second camera setup without the upright orientation assumption is added; some accuracy and mAP numbers are changed slightly because a small issue in mesh rendering related to specularities is fixe

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014
    • 

    corecore