38 research outputs found

    Deep reinforcement learning based Evasion Generative Adversarial Network for botnet detection

    Get PDF
    Botnet detectors based on machine learning are potential targets for adversarial evasion attacks. Several research works employ adversarial training with samples generated from generative adversarial nets (GANs) to make the botnet detectors adept at recognising adversarial evasions. However, the synthetic evasions may not follow the original semantics of the input samples. This paper proposes a novel GAN model leveraged with deep reinforcement learning (DRL) to explore semantic aware samples and simultaneously harden its detection. A DRL agent is used to attack the discriminator of the GAN that acts as a botnet detector. The agent trains the discriminator on the crafted perturbations during the GAN training, which helps the GAN generator converge earlier than the case without DRL. We name this model RELEVAGAN, i.e. [“relieve a GAN” or deep REinforcement Learning-based Evasion Generative Adversarial Network] because, with the help of DRL, it minimises the GAN's job by letting its generator explore the evasion samples within the semantic limits. During the GAN training, the attacks are conducted to adjust the discriminator weights for learning crafted perturbations by the agent. RELEVAGAN does not require adversarial training for the ML classifiers since it can act as an adversarial semantic-aware botnet detection model. The code will be available at https://github.com/rhr407/RELEVAGAN

    Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems

    Get PDF
    The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning, we identify and model the real capabilities and circumstances required by attackers to carry out feasible and successful adversarial attacks. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models

    GAN-CAN: A Novel Attack to Behavior-Based Driver Authentication Systems

    Get PDF
    openFor many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. Modern vehicles equipped with the Controller Area Network (CAN) bus technology collects a wealth of sensor data in real-time, covering aspects such as the vehicle, environment, and driver. This data can be processed and analyzed to gain valuable insights and solutions for human behavior analysis. For this reason, many researchers started developing behavior-based authentication systems. Many Machine Learning (ML) and Deep Learning models (DL) have been explored for behavior-based driver authentication, but the emphasis on security has not been a primary focus in the design of these systems. By collecting data in a moving vehicle, DL models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this thesis, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the CAN bus to inject suitably designed time-series data to mimic the legitimate driver. Our malicious time series data is generated through the integration of a modified reinforcement learning technique with Generative Adversarial Networks (GANs) with adapted training process. Furthermore we conduct a thorough investigation into the safety implications of the injected values throughout the attack. This meticulous study is conducted to guarantee that the introduced values do not in any way undermine the safety of the vehicle and the individuals inside it. Also, we formalize a real-world implementation of a driver authentication system considering possible vulnerabilities and exploits. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 99%. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes. Moreover, by considering the safety importance of the injected values, we demonstrate that GAN-CAN can successfully deceive the authentication system without compromising the overall safety of the vehicle. This highlights the urgent need to address the security vulnerabilities present in behavior-based driver authentication systems. In the end, we suggest some possible countermeasures to the GAN-CAN attack.For many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. Modern vehicles equipped with the Controller Area Network (CAN) bus technology collects a wealth of sensor data in real-time, covering aspects such as the vehicle, environment, and driver. This data can be processed and analyzed to gain valuable insights and solutions for human behavior analysis. For this reason, many researchers started developing behavior-based authentication systems. Many Machine Learning (ML) and Deep Learning models (DL) have been explored for behavior-based driver authentication, but the emphasis on security has not been a primary focus in the design of these systems. By collecting data in a moving vehicle, DL models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this thesis, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the CAN bus to inject suitably designed time-series data to mimic the legitimate driver. Our malicious time series data is generated through the integration of a modified reinforcement learning technique with Generative Adversarial Networks (GANs) with adapted training process. Furthermore we conduct a thorough investigation into the safety implications of the injected values throughout the attack. This meticulous study is conducted to guarantee that the introduced values do not in any way undermine the safety of the vehicle and the individuals inside it. Also, we formalize a real-world implementation of a driver authentication system considering possible vulnerabilities and exploits. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 99%. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes. Moreover, by considering the safety importance of the injected values, we demonstrate that GAN-CAN can successfully deceive the authentication system without compromising the overall safety of the vehicle. This highlights the urgent need to address the security vulnerabilities present in behavior-based driver authentication systems. In the end, we suggest some possible countermeasures to the GAN-CAN attack

    Metaverse-IDS: Deep learning-based intrusion detection system for Metaverse-IoT networks

    Get PDF
    Combining the metaverse and the Internet of Things (IoT) will lead to the development of diverse, virtual, and more advanced networks in the future. The integration of IoT networks with the metaverse will enable more meaningful connections between the 'real' and 'virtual' worlds, allowing for real-time data analysis, access, and processing. However, these metaverse-IoT networks will face numerous security and privacy threats. Intrusion Detection Systems (IDS) offer an effective means of early detection for such attacks. Nevertheless, the metaverse generates substantial volumes of data due to its interactive nature and the multitude of user interactions within virtual environments, posing a computational challenge for building an intrusion detection system. To address this challenge, this paper introduces an innovative intrusion detection system model based on deep learning. This model aims to detect most attacks targeting metaverse-IoT communications and combines two techniques: KPCA (Kernel Principal Component Analysis which was used for attack feature extraction and CNN (Convolutional Neural Networks for attack recognition and classification. The efficiency of this proposed IDS model is assessed using two widely recognized benchmark datasets, BoT-IoT and ToN-IoT, which contain various IoT attacks potentially targeting IoT communications. Experimental results confirmed the effectiveness of the proposed IDS model in identifying 12 classes of attacks relevant to metaverse-IoT, achieving a remarkable accuracy of and a False Negative Rate FNR less than . Furthermore, when compared with other models in the literature, our IDS model demonstrates superior performance in attack detection accuracy

    DRLDO A Novel DRL based De obfuscation System for Defence Against Metamorphic Malware

    Get PDF
    In this paper, we propose a novel mechanism to normalise metamorphic and obfuscated malware down at the opcode level and hence create an advanced metamorphic malware de-obfuscation and defence system. We name this system as DRLDO, for deep reinforcement learning based de-obfuscator. With the inclusion of the DRLDO as a sub-component, an existing Intrusion Detection System could be augmented with defensive capabilities against ‘zero-day’ attack from obfuscated and metamorphic variants of existing malware. This gains importance, not only because there exists no system till date that use advance DRL to intelligently and automatically normalise obfuscation down even to the opcode level, but also because the DRLDO system does not mandate any changes to the existing IDS. The DRLDO system does not even mandate the IDS’ classifier to be retrained with any new dataset containing obfuscated samples. Hence DRLDO could be easily retrofitted into any existing IDS deployment. We designed, developed, and conducted experiments on the system to evaluate the same against multiple-simultaneous attacks from obfuscations generated from malware samples from a standardised dataset that contain multiple generations of malware. Experimental results prove that DRLDO was able to successfully make the otherwise undetectable obfuscated variants of the malware detectable by an existing pre-trained malware classifier. The detection probability was raised well above the cut-off mark to 0.6 for the classifier to detect the obfuscated malware unambiguously. Further, the de-obfuscated variants generated by DRLDO achieved a very high correlation (of ≈ 0.99) with the base malware. This observation validates that the DRLDO system is actually learning to de-obfuscate and not exploiting a trivial trick

    Functionality-preserving adversarial machine learning for robust classification in cybersecurity and intrusion detection domains: A survey

    Get PDF
    Machine learning has become widely adopted as a strategy for dealing with a variety of cybersecurity issues, ranging from insider threat detection to intrusion and malware detection. However, by their very nature, machine learning systems can introduce vulnerabilities to a security defence whereby a learnt model is unaware of so-called adversarial examples that may intentionally result in mis-classification and therefore bypass a system. Adversarial machine learning has been a research topic for over a decade and is now an accepted but open problem. Much of the early research on adversarial examples has addressed issues related to computer vision, yet as machine learning continues to be adopted in other domains, then likewise it is important to assess the potential vulnerabilities that may occur. A key part of transferring to new domains relates to functionality-preservation, such that any crafted attack can still execute the original intended functionality when inspected by a human and/or a machine. In this literature survey, our main objective is to address the domain of adversarial machine learning attacks and examine the robustness of machine learning models in the cybersecurity and intrusion detection domains. We identify the key trends in current work observed in the literature, and explore how these relate to the research challenges that remain open for future works. Inclusion criteria were: articles related to functionality-preservation in adversarial machine learning for cybersecurity or intrusion detection with insight into robust classification. Generally, we excluded works that are not yet peer-reviewed; however, we included some significant papers that make a clear contribution to the domain. There is a risk of subjective bias in the selection of non-peer reviewed articles; however, this was mitigated by co-author review. We selected the following databases with a sizeable computer science element to search and retrieve literature: IEEE Xplore, ACM Digital Library, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The literature search was conducted up to January 2022. We have striven to ensure a comprehensive coverage of the domain to the best of our knowledge. We have performed systematic searches of the literature, noting our search terms and results, and following up on all materials that appear relevant and fit within the topic domains of this review. This research was funded by the Partnership PhD scheme at the University of the West of England in collaboration with Techmodal Ltd

    Security Hardening of Botnet Detectors Using Generative Adversarial Networks

    Get PDF
    Machine learning (ML) based botnet detectors are no exception to traditional ML models when it comes to adversarial evasion attacks. The datasets used to train these models have also scarcity and imbalance issues. We propose a new technique named Botshot , based on generative adversarial networks (GANs) for addressing these issues and proactively making botnet detectors aware of adversarial evasions. Botshot is cost-effective as compared to the network emulation for botnet traffic data generation rendering the dedicated hardware resources unnecessary. First, we use the extended set of network flow and time-based features for three publicly available botnet datasets. Second, we utilize two GANs (vanilla, conditional) for generating realistic botnet traffic. We evaluate the generator performance using classifier two-sample test (C2ST) with 10-fold 70-30 train-test split and propose the use of ’recall’ in contrast to ’accuracy’ for proactively learning adversarial evasions. We then augment the train set with the generated data and test using the unchanged test set. Last, we compare our results with benchmark oversampling methods with augmentation of additional botnet traffic data in terms of average accuracy, precision, recall and F1 score over six different ML classifiers. The empirical results demonstrate the effectiveness of the GAN-based oversampling for learning in advance the adversarial evasion attacks on botnet detectors
    corecore