206 research outputs found

    Design and Experimental Evaluation of a Context-aware Social Gaze Control System for a Humanlike Robot

    Get PDF
    Nowadays, social robots are increasingly being developed for a variety of human-centered scenarios in which they interact with people. For this reason, they should possess the ability to perceive and interpret human non-verbal/verbal communicative cues, in a humanlike way. In addition, they should be able to autonomously identify the most important interactional target at the proper time by exploring the perceptual information, and exhibit a believable behavior accordingly. Employing a social robot with such capabilities has several positive outcomes for human society. This thesis presents a multilayer context-aware gaze control system that has been implemented as a part of a humanlike social robot. Using this system the robot is able to mimic the human perception, attention, and gaze behavior in a dynamic multiparty social interaction. The system enables the robot to direct appropriately its gaze at the right time to the environmental targets and humans who are interacting with each other and with the robot. For this reason, the attention mechanism of the gaze control system is based on features that have been proven to guide human attention: the verbal and non-verbal cues, proxemics, the effective field of view, the habituation effect, and the low-level visual features. The gaze control system uses skeleton tracking and speech recognition,facial expression recognition, and salience detection to implement the same features. As part of a pilot evaluation, the gaze behavior of 11 participants was collected with a professional eye-tracking device, while they were watching a video of two-person interactions. Analyzing the average gaze behavior of participants, the importance of human-relevant features in human attention triggering were determined. Based on this finding, the parameters of the gaze control system were tuned in order to imitate the human behavior in selecting features of environment. The comparison between the human gaze behavior and the gaze behavior of the developed system running on the same videos shows that the proposed approach is promising as it replicated human gaze behavior 89% of the time

    Expressive social exchange between humans and robots

    Get PDF
    Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 253-264).Sociable humanoid robots are natural and intuitive for people to communicate with and to teach. We present recent advances in building an autonomous humanoid robot, Kismet, that can engage humans in expressive social interaction. We outline a set of design issues and a framework that we have found to be of particular importance for sociable robots. Having a human-in-the-loop places significant social constraints on how the robot aesthetically appears, how its sensors are configured, its quality of movement, and its behavior. Inspired by infant social development, psychology, ethology, and evolutionary perspectives, this work integrates theories and concepts from these diverse viewpoints to enable Kismet to enter into natural and intuitive social interaction with a human caregiver, reminiscent of parent-infant exchanges. Kismet perceives a variety of natural social cues from visual and auditory channels, and delivers social signals to people through gaze direction, facial expression, body posture, and vocalizations. We present the implementation of Kismet's social competencies and evaluate each with respect to: 1) the ability of naive subjects to read and interpret the robot's social cues, 2) the robot's ability to perceive and appropriately respond to naturally offered social cues, 3) the robot's ability to elicit interaction scenarios that afford rich learning potential, and 4) how this produces a rich, flexible, dynamic interaction that is physical, affective, and social. Numerous studies with naive human subjects are described that provide the data upon which we base our evaluations.by Cynthia L. Breazeal.Sc.D

    Designing a robot to evaluate group formations

    Get PDF
    Robots are making their way in environments inhabited by people. Whether in domestic or public crowded environments, robots should take into consideration social norms and behaviors in order to become a social robot. This dissertation focuses on the problem of how to develop a robotic platform in order to validate human-robot interaction experiences in realistic environments. More specifically, we are concerned with social interactions in human-robot groups in public scenarios, where a variety of people can converge. Our final goal is the develop of a social robot based on certain theories of group behavior and the use of space, known as spatial relationships. The intermediate goals are related with the design and development of the experiences in the wild: as minor changes as possible in the scenario, definition of social tasks, gradual development of a robotic platform as transparent as possible from the robotic side. Initially, this research introduces several preliminary studies of human-robot interaction (HRI) with the PAL Robotics’ REEM robot at the CosmoCaixa Science Museum in Barcelona. Based on certain theories about the use of space as a form of social communication or interaction, the task under study with the commercial robot is as a museum guide, both when the group was in motion (\ie when it was being guided) as well as a group in a static place. Moreover, a second HRI study with REEM robot accomplishing the task of a teacher's assistant was carried out to analyze the perception of the robot's social presence and identity. Likewise, the development of a robotic platform, known as MASHI, for the study of HRI is presented. Based on the service to be completed by the robot, improvements in the experimental robotic platform (structure, morphology, head, face, arms) were carried out in continuous cycles following the development of HRI experiences. This structure should be hold as simple as possible in order to make it `transparent' in the social HRI study. Next, the field study of human-robot social interaction with the MASHI robot with the role of exhibition guide in a cultural center is presented. Based on direct observation techniques, a study is made of the different spatial relationships that are generated when a robot interacts with a person or groups of people. Finally, a novel approach to represent the spatial relationships of HRI in a qualitative way is introduced for future experiences. In this concluding study, we analyze different spatial arrangements generated in a social scenario with a robot within the guide role. As a main conclusion, it can be stated that people follow social norms, in the form of spatial relationships, when interacting with a robot that provide a social service in a public space. Children, however, recurrently challenge these social norms, probably because they are constantly learning about the norms that regulate our coexistence. Spatial relationships are clearly reinforced when the role assigned to the robot is more explicit and understood by people. Spatial relationships can be affected by the characteristics of the environment, either by the available space or by the elements arranged in it, as well as by the number of people who inhabit it. Overall, this dissertation points out that the provided service, and its understanding from the user’s side, is more important that the robotic skills of the robotic platform in order to improve user experiences in public environments.Los robots se abren paso en entornos habitados por personas. Ya sea en entornos domésticos o públicos, los robots deben tener en cuenta ciertas normas y comportamientos sociales para convertirse en un robot social. Esta disertación se centra en el problema de cómo desarrollar una plataforma robótica para validar experiencias de interacción humano-robot en entornos realistas. Más específicamente, nos preocupamos por las interacciones sociales en grupos humano-robot en escenarios públicos, donde una gran variedad de personas puede converger. Nuestro objetivo final es el desarrollo de un robot social basado en ciertas teorías de comportamiento grupal y el uso del espacio, conocidas como relaciones espaciales. Los objetivos intermedios están relacionados con el diseño y desarrollo de las experiencias `en la naturaleza': cambios mínimos como sea posible en el escenario, definición de tareas sociales, desarrollo gradual de una plataforma robótica lo más transparente posible desde el lado robótico. Inicialmente, esta investigación presenta varios estudios preliminares de interacción humano-robot (HRI) con el robot REEM de PAL Robotics en el Museo de Ciencias CosmoCaixa de Barcelona. Basado en ciertas teorías sobre el uso del espacio como una forma de comunicación o interacción social, la tarea en este estudio con el robot comercial es como guía de museo, tanto cuando el grupo estaba en movimiento (es decir, cuando estaba siendo guiado) como cuando el grupo estaba en un lugar estático. Además, se llevó a cabo un segundo estudio de HRI con un robot REEM que realizaba la tarea de un asistente de profesor para analizar la percepción de la presencia e identidad social del robot. Asimismo, se presenta el desarrollo de una plataforma robótica, conocida como MASHI, para el estudio de la HRI. En función del servicio que debe completar el robot, las mejoras en la plataforma robótica experimental (estructura, morfología, cabeza, cara, brazos) se llevaron a cabo en ciclos continuos siguiendo el desarrollo de las experiencias de HRI. Esta estructura debe mantenerse lo más simple posible para que sea 'transparente' en el estudio de HRI social. A continuación, se presenta el estudio de campo de la interacción social humano-robot con el robot MASHI con el papel de guía de exposición en un centro cultural. Con base en técnicas de observación directa, se realiza un estudio de las diferentes relaciones espaciales que se generan cuando un robot interactúa con una persona o grupos de personas. Finalmente, se introduce un enfoque novedoso para representar las relaciones espaciales de la HRI de forma cualitativa para las experiencias futuras. En este estudio final, analizamos diferentes arreglos espaciales generados en un escenario social con un robot con el rol de guía. Como conclusión principal, se puede afirmar que las personas siguen normas sociales, en forma de relaciones espaciales, cuando interactúan con un robot que brinda un servicio social en un espacio público. Los niños, sin embargo, desafían recurrentemente estas normas sociales, probablemente porque están aprendiendo constantemente sobre las normas que regulan nuestra convivencia. Las relaciones espaciales se refuerzan claramente cuando el rol asignado al robot es más explícito y entendido por las personas. Las relaciones espaciales pueden verse afectadas por las características del entorno, ya sea por el espacio disponible o por los elementos dispuestos en él, así como por el número de personas que lo habitan. En general, esta disertación señala que el servicio prestado, y su comprensión del lado del usuario, es más importante que las habilidades robóticas de la plataforma robótica con el fin de mejorar las experiencias del usuario en entornos público

    Designing a robot to evaluate group formations

    Get PDF
    Robots are making their way in environments inhabited by people. Whether in domestic or public crowded environments, robots should take into consideration social norms and behaviors in order to become a social robot. This dissertation focuses on the problem of how to develop a robotic platform in order to validate human-robot interaction experiences in realistic environments. More specifically, we are concerned with social interactions in human-robot groups in public scenarios, where a variety of people can converge. Our final goal is the develop of a social robot based on certain theories of group behavior and the use of space, known as spatial relationships. The intermediate goals are related with the design and development of the experiences in the wild: as minor changes as possible in the scenario, definition of social tasks, gradual development of a robotic platform as transparent as possible from the robotic side. Initially, this research introduces several preliminary studies of human-robot interaction (HRI) with the PAL Robotics’ REEM robot at the CosmoCaixa Science Museum in Barcelona. Based on certain theories about the use of space as a form of social communication or interaction, the task under study with the commercial robot is as a museum guide, both when the group was in motion (\ie when it was being guided) as well as a group in a static place. Moreover, a second HRI study with REEM robot accomplishing the task of a teacher's assistant was carried out to analyze the perception of the robot's social presence and identity. Likewise, the development of a robotic platform, known as MASHI, for the study of HRI is presented. Based on the service to be completed by the robot, improvements in the experimental robotic platform (structure, morphology, head, face, arms) were carried out in continuous cycles following the development of HRI experiences. This structure should be hold as simple as possible in order to make it `transparent' in the social HRI study. Next, the field study of human-robot social interaction with the MASHI robot with the role of exhibition guide in a cultural center is presented. Based on direct observation techniques, a study is made of the different spatial relationships that are generated when a robot interacts with a person or groups of people. Finally, a novel approach to represent the spatial relationships of HRI in a qualitative way is introduced for future experiences. In this concluding study, we analyze different spatial arrangements generated in a social scenario with a robot within the guide role. As a main conclusion, it can be stated that people follow social norms, in the form of spatial relationships, when interacting with a robot that provide a social service in a public space. Children, however, recurrently challenge these social norms, probably because they are constantly learning about the norms that regulate our coexistence. Spatial relationships are clearly reinforced when the role assigned to the robot is more explicit and understood by people. Spatial relationships can be affected by the characteristics of the environment, either by the available space or by the elements arranged in it, as well as by the number of people who inhabit it. Overall, this dissertation points out that the provided service, and its understanding from the user’s side, is more important that the robotic skills of the robotic platform in order to improve user experiences in public environments.Los robots se abren paso en entornos habitados por personas. Ya sea en entornos domésticos o públicos, los robots deben tener en cuenta ciertas normas y comportamientos sociales para convertirse en un robot social. Esta disertación se centra en el problema de cómo desarrollar una plataforma robótica para validar experiencias de interacción humano-robot en entornos realistas. Más específicamente, nos preocupamos por las interacciones sociales en grupos humano-robot en escenarios públicos, donde una gran variedad de personas puede converger. Nuestro objetivo final es el desarrollo de un robot social basado en ciertas teorías de comportamiento grupal y el uso del espacio, conocidas como relaciones espaciales. Los objetivos intermedios están relacionados con el diseño y desarrollo de las experiencias `en la naturaleza': cambios mínimos como sea posible en el escenario, definición de tareas sociales, desarrollo gradual de una plataforma robótica lo más transparente posible desde el lado robótico. Inicialmente, esta investigación presenta varios estudios preliminares de interacción humano-robot (HRI) con el robot REEM de PAL Robotics en el Museo de Ciencias CosmoCaixa de Barcelona. Basado en ciertas teorías sobre el uso del espacio como una forma de comunicación o interacción social, la tarea en este estudio con el robot comercial es como guía de museo, tanto cuando el grupo estaba en movimiento (es decir, cuando estaba siendo guiado) como cuando el grupo estaba en un lugar estático. Además, se llevó a cabo un segundo estudio de HRI con un robot REEM que realizaba la tarea de un asistente de profesor para analizar la percepción de la presencia e identidad social del robot. Asimismo, se presenta el desarrollo de una plataforma robótica, conocida como MASHI, para el estudio de la HRI. En función del servicio que debe completar el robot, las mejoras en la plataforma robótica experimental (estructura, morfología, cabeza, cara, brazos) se llevaron a cabo en ciclos continuos siguiendo el desarrollo de las experiencias de HRI. Esta estructura debe mantenerse lo más simple posible para que sea 'transparente' en el estudio de HRI social. A continuación, se presenta el estudio de campo de la interacción social humano-robot con el robot MASHI con el papel de guía de exposición en un centro cultural. Con base en técnicas de observación directa, se realiza un estudio de las diferentes relaciones espaciales que se generan cuando un robot interactúa con una persona o grupos de personas. Finalmente, se introduce un enfoque novedoso para representar las relaciones espaciales de la HRI de forma cualitativa para las experiencias futuras. En este estudio final, analizamos diferentes arreglos espaciales generados en un escenario social con un robot con el rol de guía. Como conclusión principal, se puede afirmar que las personas siguen normas sociales, en forma de relaciones espaciales, cuando interactúan con un robot que brinda un servicio social en un espacio público. Los niños, sin embargo, desafían recurrentemente estas normas sociales, probablemente porque están aprendiendo constantemente sobre las normas que regulan nuestra convivencia. Las relaciones espaciales se refuerzan claramente cuando el rol asignado al robot es más explícito y entendido por las personas. Las relaciones espaciales pueden verse afectadas por las características del entorno, ya sea por el espacio disponible o por los elementos dispuestos en él, así como por el número de personas que lo habitan. En general, esta disertación señala que el servicio prestado, y su comprensión del lado del usuario, es más importante que las habilidades robóticas de la plataforma robótica con el fin de mejorar las experiencias del usuario en entornos públicosPostprint (published version

    Artificial Intelligence: Robots, Avatars, and the Demise of the Human Mediator

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    生命維持にかかわる生理現象を介した人間 : ロボットのコミュニケーションと身体情動モデルの設計

    Get PDF
    関西大学In this dissertation, we focus on physiological phenomena of robots as the expressive modality of their inner states and discuss the effectiveness of a robot expressing physiological phenomena, which are indispensable for living. We designed a body-emotion model showing the relationship between a) emotion as the inner state of the robot and b) physiological phenomena as physical changes, and we discuss the communication between humans and robots through involuntary physiological expression based on the model. In recent years, various robots for use in mental health care and communication support in medical/nursing care have been developed. The purpose of these systems is to enable communication between a robot and patients by an active approach of the robot through sound and body movement. In contrast to conventional approaches, our research is based on involuntary emotional expression through physiological phenomena of the robot. Physiological phenomena including breathing, heartbeat, and body temperature are essential functions for life activities, and these are closely related to the inner state of humans because physiological phenomena are caused by the emotional reaction of the limbic system transmitted via the autonomic nervous system. In human-robot communication through physical contact, we consider that physiological phenomena are one of the most important nonverbal modalities of the inner state as involuntary expressions. First, we focused on the robots\u27 expression of physiological phenomena, proposed the body-emotion model (BEM), which concerns the relationship between the inner state of robots and their involuntary physical reactions. We proposed a stuffed-toy robot system: BREAR―which has a mechanical structure to express the breathing, heartbeat, temperature and bodily movement. The result of experiment showed that a heartbeat, breathing and body temperature can express the robot\u27s living state and that the breathing speed is highly related to the robot\u27s emotion of arousal. We reviewed the experimental results and emotional generation mechanisms and discussed the design of the robot based on BEM. Based on our verification results, we determined that the design of the BEM-which involves the perception of the external situation, the matching with the memory, the change of the autonomic nervous parameter and the representation of the physiological phenomena - that is based on the relationship between the autonomic nervous system and emotional arousal is effective. Second, we discussed indirect communication between humans and robots through physiological phenomena - which consist of the breathing, heartbeats and body temperature - that express robots\u27 emotions. We set a situation with joint attention from the robot and user on emotional content and evaluated whether both the user\u27s emotional response to the content and the user\u27s impression of relationship between the user and the robot were changed by the physiological expressions of the robot. The results suggest that the physiological expression of the robot makes the user\u27s own emotions in the experience more excited or suppressed and that the robot\u27s expression increases impressions of closeness and sensitivity. Last, we discussed the future perspective of human-robot communication by physiological phenomena. Regarding the representation of the robots\u27 sense of life, it is thought that the user\u27s recognition that the robot is alive improves not only the moral effect on the understanding of the finiteness of life but also the attachment to the robot in long-term communication. Regarding the emotional expression mechanism based on life, it is expected that the robot can display a complicated internal state close to that of humans by combining intentionally expressed emotions and involuntary emotional expressions. If a robot can express a combination of realistic voluntary expressions, such as facial expressions and body movements, in combination with real involuntary expressions by using the real intentions and lying, it can be said that the robot has a more complicated internal state than that of a pet. By using a robot expressing a living state through physiological phenomena, it can be expected that the effect of mental care will exceed that of animal therapy, and we expect to provide care and welfare support in place of human beings

    Artificial Intelligence: Robots, Avatars, and the Demise of the Human Mediator

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    Artificial Intelligence: Robots, Avatars and the Demise of the Human Mediator

    Get PDF
    As technology has advanced, many have wondered whether (or simply when) artificial intelligent devices will replace the humans who perform complex, interactive, interpersonal tasks such as dispute resolution. Has science now progressed to the point that artificial intelligence devices can replace human mediators, arbitrators, dispute resolvers and problem solvers? Can humanoid robots, attractive avatars and other relational agents create the requisite level of trust and elicit the truthful, perhaps intimate or painful, disclosures often necessary to resolve a dispute or solve a problem? This article will explore these questions. Regardless of whether the reader is convinced that the demise of the human mediator or arbitrator is imminent, one cannot deny that artificial intelligence now has the capability to assume many of the responsibilities currently being performed by alternative dispute resolution (ADR) practitioners. It is fascinating (and perhaps unsettling) to realize the complexity and seriousness of tasks currently delegated to avatars and robots. This article will review some of those delegations and suggest how the artificial intelligence developed to complete those assignments may be relevant to dispute resolution and problem solving. “Relational Agents,” which can have a physical presence such as a robot, be embodied in an avatar, or have no detectable form whatsoever and exist only as software, are able to create long term socio-economic relationships with users built on trust, rapport and therapeutic goals. Relational agents are interacting with humans in circumstances that have significant consequences in the physical world. These interactions provide insights as to how robots and avatars can participate productively in dispute resolution processes. Can human mediators and arbitrators be replaced by robots and avatars that not only physically resemble humans, but also act, think, and reason like humans? And to raise a particularly interesting question, can robots, avatars and other relational agents look, move, act, think, and reason even “better” than humans

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable
    corecore