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Abstract

Nowadays, social robots are increasingly being developed for a variety of

human-centered scenarios in which they interact with people. For this

reason, they should possess the ability to perceive and interpret human

non-verbal/verbal communicative cues, in a humanlike way. In addition,

they should be able to autonomously identify the most important interac-

tional target at the proper time by exploring the perceptual information,

and exhibit a believable behavior accordingly. Employing a social robot

with such capabilities has several positive outcomes for human society.

This thesis presents a multilayer context-aware gaze control system

that has been implemented as a part of a humanlike social robot. Using

this system the robot is able to mimic the human perception, attention,

and gaze behavior in a dynamic multiparty social interaction. The system

enables the robot to direct appropriately its gaze at the right time to the

environmental targets and humans who are interacting with each other

and with the robot. For this reason, the attention mechanism of the gaze

control system is based on features that have been proven to guide human

attention: the verbal and non-verbal cues, proxemics, the effective field

of view, the habituation effect, and the low-level visual features.

The gaze control system uses skeleton tracking and speech recognition,

facial expression recognition, and salience detection to implement the

same features.
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Abstract

As part of a pilot evaluation, the gaze behavior of 11 participants

was collected with a professional eye-tracking device, while they were

watching a video of two-person interactions. Analyzing the average gaze

behavior of participants, the importance of human-relevant features in

human attention triggering were determined. Based on this finding, the

parameters of the gaze control system were tuned in order to imitate the

human behavior in selecting features of environment.

The comparison between the human gaze behavior and the gaze be-

havior of the developed system running on the same videos shows that

the proposed approach is promising as it replicated human gaze behavior

89% of the time.
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Riassunto

Al giorno d’oggi, i robot sociali sono sempre più sviluppati per una varietà

di scenari antropocentrico, in cui interagiscono con le persone. Per questo

motivo, tali robot dovrebbero possedere la capacità di percepire e inter-

pretare segnali verbali e non verbali della comunicazione umana. Inoltre,

dovrebbero essere capaci di identificare autonomamente il target più im-

portante al momento opportuno esplorando le informazioni percettive ed

esibire di conseguenza un comportamento credibile. Impiegare un robot

sociale con tali capacità ha diversi risultati positivi per la società umana.

Questa tesi presenta un sistema basato sul contesto per il controllo

dell’attenzione di un robot sociale umanoide. Con questo sistema il robot

è in grado di imitare la percezione, l’attenzione e il comportamento dello

sguardo dell’uomo durante un’interazione sociale dinamica tra più parte-

cipanti. Il sistema consente al robot di indirizzare lo sguardo in modo ap-

propriato e al momento giusto verso target ambientali o verso persone che

stanno interagendo tra loro e con il robot. Per questo, il meccanismo di

attenzione del sistema di controllo dello sguardo si basa su caratteristiche

che si sono dimostrate guidare l’attenzione umana: segnali non verbali e

verbali, prossemica, il campo di vista effettivo, l’effetto dell’adattamento

e le caratteristiche di basso livello.

Il sistema di controllo dello sguardo utilizza l’identificazione dello

schel- etro, il riconoscimento vocale e delle espressioni facciali e l’individuazione
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Riassunto

della salienza.

Come studio pilota, è stato registrato il comportamento dello sguardo

di 11 partecipanti con un dispositivo professionale di eye tracking mentre

guardavano video relativi all’interazione tra due persone. Analizzando

il comportamento medio dello sguardo dei partecipanti, è stata determi-

nata l’importanza delle caratteristiche umane nella cattura dell’attenzione

umana. Sulla base di questi risultati, sono stati regolati i parametri del

sistema di controllo dello sguardo al fine di imitare il comportamento

umano nella selezione di caratteristiche dell’ambiente.

Il confronto tra il comportamento dello sguardo umano e quello del sis-

tema sviluppato applicato allo stesso video dimostra che l’approccio uti-

lizzato è promettente replicando il comportamento dello sguardo umano

per l’89% del tempo.
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Chapter 1

Introduction

Contents

1.1 Social Humanlike Robots . . . . . . . . . . . . . 3

1.2 Thesis Motivation . . . . . . . . . . . . . . . . . 6

1.3 Main Objectives and Thesis Scopes . . . . . . 8

1.4 Organization . . . . . . . . . . . . . . . . . . . . 10

Nowadays, robotic technologies are making their way into human soci-

ety as powerful devices that possess capability to perform complex tasks.

They are increasingly being designed and used to assist people in im-

proving the quality of life. For example, industrial robots as conventional

class of robots perform complex tasks in companies with highest efficiency

where human is not able to do. This class of robots are being designed

to accomplish limited tasks in a non-human centered scenario. Although

the conventional robots serve for humans but they do not have any direct

interaction with human.

In addition to the conventional robots, the new generation of robots

-social robots- are being developed to be used in tasks and positions along-

side human, and unlike the conventional robots, they are required to per-

form tasks in human-centered scenarios [12]. For example, they can be

used as tutor for educational purposes, as toys for kids, as therapeutic

aids, as companion for humans, as domestic stuff, and they can serve in
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Figure 1.1: Social robots inspired from animals: (a) Paro the therapeutic seal robot

developed at AIST [1]. (b) Leonardo developed at MIT Lab [2]. (c) AIBO the robotic

dog developed by Sony for entertainment [3].

many other positions in which they interact directly with humans.

Social robot class consists of three main groups that are being de-

veloped for various purposes: animal-inspired, humanoid, and human-

like (android) robots. Figure 1.1 shows examples of first group -animal-

inspired- social robot that have been designed to serve in human-centered

scenarios, i.e. therapeutic assistance [1], human-robot interaction and re-

search purposes [2], and entertainment purposes [3]. To function in such

positions, they should be able to make an effective interaction with hu-

man. In other words, in addition to the task-performing capabilities, they

must have the ability to make a meaningful and behaviorally acceptable

interaction with humans.

The second group of social robots are humanoid robots that usu-

ally have the body shape and size similar to humans. Due to vision

and audition capabilities, as well as their physical characteristics, hu-

manoid robots are able to communicate with people through verbal and

non-verbal communicative cues and perform task in collaboration with

human, in a dynamic environment. Thus, they can replicate the human

2
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Figure 1.2: Social humanoid robots: (a) ASIMO developed by Honda to be a multi-

functional mobile assistant [4]. (b) Atlas is a bipedal humanoid military robot pri-

marily developed by the American robotics company Boston Dynamics [5]. (c) Nao

is an autonomous humanoid robot developed by Aldebaran Robotics, a French robotics

company [6].

role in society as they can replicate human motions. However, due to

non-human face appearance, people perceive and accept them as non-

human creatures. Figure 1.2 shows examples of three famous humanoid

robots developed for multiple purposes such as education, military, and

entertainment [4] [5] [6].

1.1 Social Humanlike Robots

With the rapid advancement of bio-mimetic materials and advances in

control and computing techniques, the third group of social robots called

humanlike was born. A humanlike social robot mostly is being developed

3
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with an appearance similar to human, particularly in facial features and

skin. They are being designed to interact with humans and become more

integrated into human daily life.

Due to their appearance similarity with human, people perceive and

accept them as non-machine and believable creatures. It allows the hu-

manlike robots to be used for positions, as people treat them as human

and since they can replicate the human role in society. As a believable

creature, they can even potentially make an empathic and emotional re-

lationship with human.

This is the dream of social humanlike robots development that an

artificial creature be ultimately a companion for humans. For that aim,

the development of several humanlike robots is already under the way

that can be engaged in long-term and short-term interactions with human.

Figure 1.3 shows several humanlike robots developed to be used in various

human-centered positions. As shown, the appearance especially facial

features, skin and body shape of these robots are very similar to human.

Due to especial humanlike appearance, they can be beneficial for human

in various scenarios.

The underlining assumption of designing such robots, as revealed in

many scientific and practical researches, is that people unconsciously treat

with humanlike robots in the same way that they interact with other peo-

ple by demonstrating politeness, showing concern of their feeling, etc. It is

promising and most likely because of the human brain structure. It treats

with a creature with humanlike appearance and behavior in the same way

that it treats with other people. Thus, the main concern about social hu-

manlike robots, after designing a humanlike appearance (i.e., head, face,

hair, teeth, skin, body shape and size, etc.), is to enable them to ex-

hibit appropriately humanlike behaviors. Designing appearance together

with behavior models similar to the human, social humanlike robots will
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Figure 1.3: Social humanlike robots able to replicate facial features and head-eye move-

ments in a humanlike way: (a) Hiroshi Ishiguro (Right) and his robotic Doppelgänger

Geminoid HI-1 (Left) developed in Japan [7]. (b) Geminoid-F (Right) developed in

Japan [8]. (c) EveR-2 developed by the Korea Institute of Industrial Technology [9].

(d) FACE developed by Hanson robotic [10]. (e) Robotic android of Albert Einstein

developed by Hanson robotic [11].

benefit human life in various positions.

To make a behaviorally acceptable robot, firstly, the robot should be

able to respond appropriately the dynamic environment. For that, the

robot requires a human-level perceptual model to perceive and interpret
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human-relevant verbal and non-verbal communicative cues.

Then, the robot requires a human-level attention model to identify

the potential interactional target point of environment.

Finally, the robot requires a behavior model to generate an appro-

priate behavior (i.e., facial expressions, body gesture, vocal signals, gaze,

etc.), according to the target modality. Clearly to generate any behav-

ior that human perceive as natural, a motion model derived from human

data is required.

In short, the robot must be equipped with a system that can afford

to understand human-relevant features, autonomously identify the target

points and generate an appropriate human-level behavior for the robot.

Integrating the perception, attention, and behavior models enable a hu-

manlike robot to make a natural, intuitive, and enjoyable interaction with

human that has many positive outcome for human society.

1.2 Thesis Motivation

As discussed, an effective human-robot interaction is highly depended on

how appropriate the robot responds to human and how natural it is being

perceived by the human. To display an acceptable behavior, a human-

level attention system is fundamental in social robot development. It

closes the interaction loop between robot and environment and enables

the robot to afford a context-aware behavior (see Figure 1.5).

The system should performs two major tasks for the robot. On one

hand, it explores actively, the perceptual information of environment

and identifies the most important human/non-human target based on

a human-level selection mechanism.

On the other hand, the system controls the robot’s behavior according

to the target modality, in order to enable the robot to exhibit a natural

humanlike and believable behavior. Such a system should be used as
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a middle layer that correlates the robot’s behavior with current social-

context.

Before designing an attention system, implementing two additional

components are imperative: perceptual system and behavior control sys-

tem.

• Perceptual system:

A human-level perceptual system able to support familiar verbal and non-

verbal cues of human is fundamental for the robot development. Perceiv-

ing and interpreting a social-context, in the same way that human is

doing, allows the attention system to evaluate human and environmental

features and to select a right target point at the right time for the robot,

in a dynamic social interaction with multiple people.

• Behavior control system:

A behavior control system containing human-level behavioral models, al-

lows the attention system to control correctly the robot’s behavior. It

moves the robot’s actuators in a the way that robot shows a humanlike

motion. For example, the behavior control system adjusts the dynamic

of head and eyes and generates a humanlike gaze for the robot.

Fig. 1.4 shows our social humanlike robot FACE [13, 14], involved in

a social scenario where it interacts with a group of people. To display

behavior that humans perceive as natural, the robot should direct its

attention at the most important person at the right time based on the

current social-context. It thus requires a mechanism that is able to control

attention and gaze, based on social cues and information extracted by the

perceptual system from raw visual-auditory data.

To design attention systems for social robots, it is necessary to con-

sider the psychological, neurological and computational aspects of human
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Figure 1.4: The FACE humanoid robot interacts with a group of people. Picture cour-

tesy of Enzo Gargano.

attention [15–21] as well as the social cues and conventions. This informa-

tion can support the gaze control system to direct the robot’s attention at

the appropriate target, during a social interaction with multiple people.

1.3 Main Objectives and Thesis Scopes

The main aim of this work as shown in Figure 1.5 is designing, imple-

menting and evaluating a multilayer context-aware social Gaze Control

System (GCS) as a part of a social humanlike robot called FACE (Facial

Automaton for Conveying Emotion) [10, 22–24]. The system enables the

robot to engage autonomously multiple people in a social interaction by
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Figure 1.5: The general structure of the proposed gaze control system. Using this system

a robot is able to perceive and interpret human-relevant features, direct its attention to

the most important human and controls its behavior, accordingly.

generating an acceptable social gaze behavior for the robot.

GCS has three standalone-interconnected layers that simulate human

perception, attention, and gaze control system for our humanlike robot.

For that, development of GCS requires implementing these three layers

and underlying models. Thus, the objectives of this research are as fol-

lows:

• Design and implementation of a perceptual layer that perceives and

interprets the surrounding environment for the robot. It provides

a human-level understanding for the robot by recognizing human-

relevant verbal and non-verbal cues of multiple humans through

several parallel algorithm.
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• Design and implementation of an attention layer that actively iden-

tifies the most important human/non-human target exploring recog-

nized perceptual information of humans, based on the human-level

attention model.

• Design and implementation of a gaze control model that controls the

dynamic of head and eyes of the robot and generates a humanlike

gaze for the robot.

• Design and implementation of a communication unit that makes

bidirectional channels between layers, components and the robot,

in order to send and receive data.

These three interconnected layers together, manage low-level sensory

information, and make a high-level human-level interpretation of environ-

ment for the robot and enables it to interact autonomously with multiple

people in a dynamic social interaction, displaying appropriate and accept-

able gaze behavior.

1.4 Organization

The remainder of this thesis is organized as follows.

Chapter 2 extensively reviews the previous works in the area of hu-

man attention and gaze control modeling particularly, in social robotics

applications. It discusses the major limitations of the current existing

models for HRI application and explains why the current class of atten-

tion models are inefficient when they be used in a social robot.

The last part of the chapter describes an ideal human-based attention

and gaze control models that can be potentially benefits social robots

development and it is the focus of this thesis.
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Chapter 3 explains the theoretical aspects of several high-level human-

like features that have been proven to guide human attention in a social

human-human interaction. The high-level features that are the focus of

the thesis, and have been considered in attention and gaze modeling are

non-verbal and verbal cues, proxemics, the effective visual field of view,

the habituation effect, and people intention.

The chapter then introduces the new generation of attention system

for social robotic application that simulates human attention dealing with

the proposed high-level human-relevant features, and low-level visual fea-

tures instead of merely low-level visual features.

Chapter 4 presents the proposed context-aware social gaze control

system and its layers and components. It details the system structure

and describes the theoretical and informatics design and implementation

aspects of the system. It then describes the performance of the final

integration of the system and evaluation process, which shows the com-

patibility and data synchronicity between layers and components.

Chapter 5 describes a gaze tracking study that we carried using a

professional eye-tracker device, due to adjusting the weight parameter of

the attention model of gaze control system. It details the experiments

process and data-collecting steps. It then follows by data analysis and

explains the way that the parameter of the proposed system are tuned

according to the human data.

The last part of the chapter describes the test and the performance

of the system in compare to the human.

Finally, this thesis is concluded in chapter 6, and contributions of this

work to the state-of-the-art, and the future works are summarized.
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Chapter 2

Human Attention and Gaze Modeling

Contents
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Several studies in the past demonstrated that, human gaze behavior

in a complex scene viewing is highly correlated to the human attention

behavior in the same scene. In other words, people most often look at

the point of environment that is selected by the attention system. Thus,

to simulate human gaze behavior, several efforts investigated two aspects

of the problem: the strategy that human attention selects a target in a

complex-scene viewing (attention mechanism), and the dynamic of head

and eye movements when shift from one point to another to look at a

target (gaze behavior).

While the term attention and gaze behavior are often used inter-

changeable, each of them has a more subtle definition, which allows their
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delineation. For that, the work described in this chapter draws on re-

search and techniques from two main areas: attention and gaze modeling.

The chapter begins with Section 2.1 that reviews the previous works

in the area of human and robot attention modeling. It describes in detail,

the current existing classes of attention models and their applications

and strengths. It then discuss the main limitations and drawbacks of the

models in human-robot interaction applications.

Section 2.2 discusses that how the attention modeling results have

been used to explain human gaze models, and to implement robot gaze

models.

Considering the limitations of the current attention and gaze models

in human-robot interaction application, Section 2.3 proposes a context-

aware attention model that drives gaze behavior. In the proposed model,

number of shortcomings of the previous works are resolved, and thus it

is powerful to be employed in HRI applications. The last section reports

the summary.

2.1 State-of-the-art on Attention Modeling

Modeling human attention has been an active research field over the last

two decades. The main concern in this field resides in identifying which

features and phenomena influence human attention selection mechanism,

and how they influence human attention.

Investigations on human attention have described two different as-

pects of how the human mind in selecting its target in a scene viewing [25]:

top-down and bottom-up processing.

The first aspect is top-down processing [25, 26] also known as goal-

driven attention that is a voluntary process of selecting target of envi-

ronment that is under the control of the person who is attending the

environment. Clearly, the individual-relevant features affect top-down
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processing and attention selection mechanism. The individual-relevant

features refers to those features of individual that vary in person to per-

son. In other words, due to variety of these features, people show different

attention behavior in a same scene viewing.

Although modeling such features is a complex multidisciplinary issue,

but some efforts investigated the effect of some of them such as working

memory [27], personality and familiarity [28], culture [29,30], etc.

The second aspect is bottom-up processing [25,31] also known as the

scene-driven features that is an involuntary process of selecting target of

environment. The features of environment influence the human attention

selection mechanism. They can be either low-level visual features of envi-

ronment (e.g., color, intensity, etc.) or high-level features of objects (e.g.,

shape, distance, characteristic, etc.) and humans (body gesture, facial

expression, etc.) in environment.

Since the aim of this work is to design and implement an attention

system for a social robot, this chapter reviews those previous works that

investigated the effect of scene-driven features on human attention.

The following section describes the state-of-the-art in the area of at-

tention modeling and discusses the major limitations of this class of at-

tention system for HRI applications. At the last part of this section we

answer this question that why the current existing attention class is ineffi-

cient in HRI applications and why we need to emerge new attention class.

Then, we introduce new features and characteristics, which are essential

in designing a new attention class called humanlike attention class.

2.1.1 Salience-based Attention Class

- Origin

The extensive psychophysical literature in the field of human attention

modeling shows that the basic low-level visual features of a 2D image
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Figure 2.1: The attention targets are different from background in a single low-level

feature “color”, and they immediately attract human attention.

Figure 2.2: The attention targets are different from background in a single low-level

feature “orientation”, and they immediately attract human attention.

(e.g., color, orientation, etc.) attract and guide attention to specific points

(targets) of a visual scene [32, 33]. If a target differs in a single feature

(e.g., color, orientation) from its surrounding regions, it can be detected

very fast by attention [34] (See Figure 2.1 and Figure 2.2).

In a more complex visual scene such as Figure 2.3, where a target is

presented by a conjunction of two or more than two features, the attention

selection mechanism can successfully be explained using serial selection

driven by image features. In this case, the attention explores perceptual

information and after a while it will be attracted by a target that is

different from surrounding regions.

Treisman & Gelade [34] in an initiative work called “Feature Integra-

tion Theory” stated that which low-level visual features of an image are
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Figure 2.3: In a more complex scene attention target are presented in conjunction of

two or more than two low-level features.

important and how these feature should be combined to influence human

attention. Then, Koch & Ullman in [35] proposed a model to combine

these features and they introduced the concept of salience map, which is

a map that is created from original image and shows the salience of the

image regions. They also proposed winner-take-all model that selects the

most salient point of a salience map as the attention target.

The concept of salience map have been the origin of a large class of

attention system called salience-based attention system. Following this

principle many attention systems have been proposed.

- Implementation and Applications

Itti & Koch [36] proposed the first and complete implementation with

verification of salience-based attention class. The process of attention

selection for a given visual scene, in the original computational imple-

mentation of salience-based attention class, is illustrated in Figure 2.4.

The process is as follows: first, the algorithms extract visual low-level

features of the given visual scene, through parallel channels. Then, local

competition across image space and feature scales is computed yielding to

the so-called feature maps. Finally, individual feature maps are combined

by weighted sums creating the salience map. Based on the salience map,

the algorithms can then select attention targets, for example by applying
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Figure 2.4: The salience-based attention model identifies attention target (salient point)

by analyzing the low-level features of a given visual scene through parallel channels.

the “winner-takes-all” principle. The identified target points show the

points that have the most chance to attract human attention in a scene

viewing.

According to the Treisman & Gelade’s work [34] presented in “Feature

Integration Theory”, the conventional computational attention models

were implemented to find the salient point of a visual scene dealing with

three main features of a visual scene: intensity, color, and orientation.

Intensity is defined as average of three colors’ channel; color is defined

as red-green and blue-yellow channels; and orientation is implemented as

convolution with a oriented Gabor filter [37].

To enable conventional attention models to mimic human attention
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Table 2.1: Other low-level features and image processing techniques that have been added

by several studies to the conventional attention model, to improve its performance in

simulating human attention behavior.

No. Features and Image Processing Techniques Ref.

1 Human face [38]

2 Skin hue [39]

3 Motion [40]

4 Depth information [41]

5 Texture contrast [42]

6 Gist of the image [43]

7 Spatial resolution filter on image [44]

8 Horizontal line [43]

9 Wavelet filter on image [45]

10 Center-bias filter [46]

11 Optical flow [47]

12 Above ave. salience of image [42]

13 Center-surround contrast filter [48]

with higher accuracy rate, a larger number of features (e.g., motion, depth

information, etc.) had to be taken into account. Several studies have

been added different low-level visual features and applied several image

processing techniques to the original implementation of attention model,

which allow the model to consider a larger set of features in computing

the salient point. The additional features increase the performance of the

original model in simulating human attention. Table 2.1 reports the addi-

tional features and image processing techniques together with references

who proposed these features.

Salience-based attention class have been successfully applied to the

several research areas ranging from computer vision and graphic to the
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Table 2.2: The salience-based attention class have been successfully applied to several

filed of research

No Field of Study Ref.

1 Image segmentation [50]

2 Image matching [51]

3 Scene classification [52]

4 Object detection [53]

5 Object recognition [54]

6 Visual tracking [55]

7 Face segmentation and tracking [56]

8 Active vision [57]

9 Robot localization [58]

10 Robot navigation [59]

11 HRI applications [40,60,61]

robotics applications. Table 2.2 reports the works that employed this

class of attention system to their fields (the information of the table was

taken from [49]), however in this work, we are more interested to describe

works that are relevant to HRI especially social robot development, in

dynamic environment.

As reported in Table 2.1 and Table 2.2, salience-based attention class

is a powerful tool especially for the image processing application that are

required to analyze low-level features of an image to detect objects and

motions areas (Figure 2.5 and Figure 2.6), but the question raises whether

these class of attention models can be generalized to the real-world and

human-centered situations? Especially, in a social robotic application,

that the attention model should imitate the gaze behavior of speakers

and listeners involved in a social scenario. Is the salience-based attention

model effective in task-oriented circumstances?
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The next section answers this question and discusses the major limita-

tion of salience-based attention class. It then, talks about new generation

of attention model that can overcome these drawbacks and can be more

powerful in HRI, which is aim of this work.

- Major Limitations

Imagine you are in a meeting with your colleagues. They enter into

the room, one after another. During the meeting, they speak, show differ-

ent meaningful body gestures and facial expressions, discuss some issues,

and at the end, they leave the room one after another. The important

question raises here: where did you gaze, as the one participated, during

the meeting? Which parameters influenced the selection mechanism of

your attention? Do these parameters can be extracted by analyzing low-

level features of the visual scene? Is the salience-based attention class is

able to simulate your attention behavior?

The answers of these questions clearly show that since the target selec-

tion strategy of the model is only based on the low-level feature analysis,

it is not aware about high-level communicative features that guide human

attention in a social interaction and therefore it is incapable in simulating

human gaze behavior in such meeting.

Tatler et al. [62] reviewed the major limitations of salience-based

attention model and found this class of attention poor in accounting

many important aspects of complex scenes that cannot be explained only

through low-level features analysis.

In the design of social robot attention system, thus it is necessary

to take into account also the high-level communicative and social fea-

tures that are fundamental in human attention system. Following section

details important issues that demonstrate the inefficiency of the salience-

base attention class in social robotic applications.

21



2.1 State-of-the-art on Attention Modeling Attention/Gaze Modeling

Figure 2.5: The salience-based attention model is a powerful method capable of extract-

ing objects regions by analyzing low-level features of a scene. The image (a) shows the

given visual scene and image (b) shows the corresponding salience-map created by the

model. The circle on the image (b) shows the salient point (attention target) identified

by the model.
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Figure 2.6: The salience-based attention model is a powerful method capable of detecting

motion regions analyzing low-level features of a scene. The image (a) shows the given

visual scene and image (b) shows the corresponding salience-map created by the model.

The circle on the image (b) shows the salient point (attention target) identified by the

model.
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• Scene Context Guides Human Attention:

The main limitation of salience-based attention class is inability to dis-

criminate between different information when analyzing a scene image.

In other words, it identifies attention targets by analyzing the image in

a pixel-by-pixel way without emphasizing human and objects regions.

While, there are some evidences that show, human attention has its pri-

ority to choose region of a visual scene. For example with the presence

of human and object in a scene, the attention is directed more to them

and associated features, rather than the environment. Thus, it is wrong

if the same process is being used to identify a target point in the image,

with and without presence of humans/objects.

To prove this fact, Rothkopf et al. [63], in a gaze study analyzed

participants’ gaze behavior to figure out which points of environment

was looked by a human during a virtual walking experiment. They also

analyzed for the same scene, the identified points that were obtained by a

salience-based class. The comparison result between the participants and

salience-based model’s gaze behaviors showed that the identified target

points of them were totally different: humans mainly looked at objects

and only 15% of their fixation directed to the background while using

salience-based model 70% of fixation directed to the background. These

result shows that salience-based class is not capable of simulating human

attention in a human/object centered environment.

• Type of the Task Affects Human Attention:

The main assumption in designing the salience-based attention model is

simulating the attention of a person who watch a visual scene in a “task-

free” condition. This assumption gives license to the viewer to look at the

visual scene, without any purpose, which is not a reasonable assumption.
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There are several evidences [62] show that human fixation in a task-

free viewing is very different with human fixation when is engaged in a

task. To support this idea, Yarbus [64] in a very famous example showed

that human attention/fixation is dependent on the current task. He car-

ried out the following experiment to demonstrate his theory. Several

humans were asked to watch the same scene (a room with a family and

an unexpected visitor entering the room) under different conditions such

as “estimation the material circumstances of the family”, “estimation the

age of the people of the scene” and “freely viewing”. The result was inter-

esting: The human fixation/attention was differed considerably in each of

cases. It can be thus concluded that salience-based attention class, which

is designed based on the “task-free” assumption of humans, is not reason-

able way to simulate human attention, particularly in a social interaction

that a person is engaged to different tasks.

• Auditory Signals Affect Human Attention:

Auditory signals mostly cause unintentional shift of human attention and

must be taken into account in modeling human attention, while salience-

base attention class identifies its target points of a scene dealing only with

visual features. The effect of auditory signals on human attention will be

discussed in detail in the next chapters.

• Human Social Signals:

In a social human-human interaction scenario, intention of the interac-

tional partner that is expressed through social signals has been proven as

a factor that guides the attention to select its target. For example, the

attention behavior is different for a person that approaches to initiate a

social interaction and for a person that leave a social interaction. This

concept also has been demonstrated in the gaze study that we have done
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as a part of this work. The result shows human intention that can be

verbally/non-verbally expressed is an important factor that influence the

attention of others. Next chapters describe the study in detail.

• Other Parameters:

In spite of several well-known factors that influence human attention,

modeling some of them is an extremely or even impossible task. For

example, human’s cognitive process at the time of scene-viewing, memory

and internal emotional states are factors that influence human attention,

but due the diversity in person to person, it is difficult to model them.

These factors are beyond the focus of this thesis and we do not consider

them in our implemented attention model. We considers mostly those

factors that usually occur in a social interaction between people.

By reviewing literature, it can be concluded that the salience-based

attention class is poor in accounting of many aspect of a scene that guide

human attention in a social scenario. It can be thus, failed if be used in

a human-centered applications.

To overcome the several shortcoming of this class, emerging a new

class of attention system called “Visual-Auditory“ or “Humanlike” at-

tention class is essential.

2.1.2 Visual-Auditory Attention Class

Unlike the conventional attention class, the visual-auditory attention class

deals with both high-level human-relevant features and auditory signals

of environment, in order to identify a target point in a human-centered

scenario (e.g., social interaction). In spite of investigation of some works

in this area, there are still several open challenges in this topic.

Following section reviews works that are close to the aim of our work

in attention modeling for HRI applications. It, then discusses the missing
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Figure 2.7: ASIMO telling a Japanese fairy tale to two listeners.

components of each work that prevent generating a natural context-aware

attention and gaze behaviors.

In an attention/gaze study, Mutlu et al. [65] derived gaze patterns

(attention points) of human subject during storytelling, in order to de-

sign a model that replicates these patterns on a robot. For that, they first

collected the gaze patterns (locations of attention points, target selection

frequencies) of a professional storyteller during storytelling. Then, they

designed a model that generated the same gaze behavior on the humanoid

robot ASIMO, and evaluated the model. The results show that humans

can recall the story better when the robot looked at them during story-

telling. Another important result of this study was that, the frequency of

gaze has an effect on how women and men perceive the robot. They found

that women like the robot more, when it looks at them less frequently.

Figure 2.7 shows ASIMO during storytelling (taken from [65]).

However, this work used visual-auditory information to model the

same human behavior for the robot, but a different process has been

followed. They used a pre-programmed model rather than autonomous

humanlike attention model for their application that is not aware about

the scene-context. It just replicates pre-recorded behavior without under-
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Figure 2.8: The robot is able to locate speaker in a group.

standing the current-context. In a HRI application, robot should be able

to adjust its gaze in real-time according to the current social-context.

Trafton et al. [66] integrated vision and audition within a cognitive

architecture, which enabled a social robot to track conversations and

focus its attention to the speaker among multiple humans. As shown in

Figure 2.8 (taken from [66]) they evaluated their system on a social mobile

robot, which resulted in a natural conversation tracking in a dynamic

environment.

Although the proposed architecture correctly guided the robot’s at-

tention to the speakers at the right time, but it did not take into account

of many other communicative cues that have been proven to guide human

attention and are known to be fundamental for social attention modeling.

A cognitive architecture should be able to identify the attention target,

taking into account of all human-relevant features as well as social con-

ventions between people.
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Figure 2.9: A person in social distance to the receptionist.

Holthaus et al. [67] proposed a spatial model for a robot attention

system. It drives the attention of a receptionist robot according to the

spatial information of humans interacting with the robot. For that, the

robot localized and tracked humans in the field of view by monitoring

their distances. The Holtaus’s robot moved its head and body, when they

were getting closer to the robot, in order to initiate or terminate a so-

cial interaction with humans. Through a questionnaire-based evaluation,

Holthaus et al. found that even if the robot made random movements

when someone approached, external observer evaluate the interaction as

humanlike. This results show the importance of proxemics and contextual

reactions in the modeling of humanlike robot behavior. Figure 2.9 (taken

from [67]) shows the receptionist robot of this work in the scenario.

All of the discussed related works partially cover some of the current

challenges in the area of attention systems. However, we believe that

designing of a comprehensive attention, model able to specify the most

important attention target of environment based on low-level and high-

level environmental visual/auditory features analysis is essential for the

development of a new generation of social robots.
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This work proposes an innovative context-aware humanlike attention

model able to identify the most important target of environment dealing

with low-level visual features and high-level human-relevant features of

2D images, 3D images, and auditory signals. Moreover, the presented

framework provides a high-level image interpretation for social robots

similar to the human attention system that significantly improve the be-

haviors of the social robot, and it is imperative for human and robot

social exchange.

2.2 State-of-the-art on Gaze Behavior Modeling

As discussed, an ideal attention system of a social robot should be able

to identify in real-time the most important target point by analyzing

low-level visual feature and high-level human-relevant features in a social

scenario. In humans, when the attention system selects its target, human

sight line (gaze) most often moves, in order to attend to the selected

target.

Gaze is a coordinated motion of eye and head through which the

center of human visual attention moves to a specific point identified by

the attention system.

Several researchers investigated different aspects of human gaze be-

havior over the past years. Through analysis of the gaze behavior of

humans and monkeys, Goldring et al. [68] demonstrated that gaze be-

havior is beyond making/breaking eye contact and smooth tracking of

moving subjects. They showed that gaze behavior is regulated by com-

plex dynamics that allows a subject to use this attitude, not only for

observation but also for delivering meaningful information and drive the

conversation flow. Goldring et al. deeply studied the characteristics of

head and eye movement of human subjects to understand if they use the

same strategies when they gaze at visual, auditory and visual-auditory
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targets. They found that target modalities have an effect on human gaze

behavior characteristics identifying also some human gaze dynamic (head

and eye velocities, motion amplitudes delays) during gaze shifts between

targets.

Based on attention modeling research, various researchers proposed

models and implementation of robot/agent gaze control systems. An-

drist et al. [69] proposed an effective gaze model for virtual agents on

which they considered various gaze characteristics such as amplitude, ve-

locity and latency period in a gaze shift. They evaluated their gaze model

on a humanlike virtual gent. Andrist’s results show that when the agent

maintains its head orientation toward the participant to emphasize the

social interaction (affiliative gaze), it induces positive feeling to partici-

pants while when the agent maintains its head orientation, more toward

visual space to emphasize other information (referential gaze), it improves

the subjects learning capabilities. Figure 2.10 (taken from [69]) shows the

affiliative and the referential gaze of the virtual agent.

Itti et al. [40] presented a gaze model for target shift and smooth

tracking that has been implemented on an avatar. In their model, the

amplitudes of head and eye movements were estimated and linked with

the initial position of eye in its orbit. Figure 2.11 (taken from [40]) shows

the sample of the animation gaze model.

Although several works have addressed important issues in human

gaze behavior modeling and implementation but due to the complexity of

the gaze behavior, a comprehensive context-aware model that estimates

the gaze parameters (e.g., velocity, amplitude, latency, etc.), has not been

implemented yet.
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Figure 2.10: The affiliative and referential gaze of the virtual agent during an experi-

ment.

2.3 Proposed Solution for Attention and Gaze

Behavior Systems

Human attention and gaze behavior modeling as complex multidisci-

plinary tasks still have many open issues to solve. Modeling human

attention/gaze topic has been the heart of a large research groups in

several area such as human robot interaction. In HRI, an effective at-

tention model, on one hand, should be able to simulate human attention

in selecting the targets. On the other hand, it should be able to control

the dynamic of head-eye (gaze) movements in a way that robot displays

a humanlike and acceptable motion. Due to modeling complexity, a com-

prehensive model that cover both aspects (humanlike attention and gaze

control) is still lacking.
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Figure 2.11: Sample of animation gaze.

In this work, we propose a new model that fills the current existing

gap in this area. The model has two main components: a humanlike

target selection mechanism and humanlike gaze control mechanism.

The target selection mechanism correctly identifies the most impor-

tant target of environment dealing with low-level visual non-human fea-

tures and high-level human relevant visual and auditory features (Figure

2.12). While the gaze control mechanism generates a humanlike gaze mo-

tion for humanlike robot/3D avatar based on the human-inspired gaze

model [40, 68, 70]. Using the proposed model (context-aware gaze con-

trol model), a humanlike robot is able to interact with multiple humans

and produces humanlike behavior in a dynamic environment, which is

essential in HRI.

Next chapter describes all components of the proposed model and its

performance compare to human behavior.

2.4 Summary

This chapter extensively reviewed the previous works in the area of hu-

man attention and gaze control modeling particularly, in human-robot

interaction applications. It discussed the major limitations of the current

existing model for HRI application and explained why the current class

of attention model is inefficient in simulating human attention in a HRI

application. The last part of the chapter proposed potential solution for
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Figure 2.12: The proposed context-aware gaze control model capable of identifying at-

tention targets analyzing both low-level visual features and high-level human-relevant

features.

attention and gaze behavior systems, which are the focus of this thesis.

We believe that using the proposed model, we can overcome to several

shortcomings exist in the state-of-the-art.
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The previous chapter extensively reviewed the conventional class of

attention system called “salience-based” that identifies attention targets

dealing with the low-level features of a visual scene. The low-level fea-

tures were described as phenomenon that attracts human attention in an

environment that is out of human or a specific object. The concept of

high-level features then was discussed against low-level features as phe-

nomena that guide human attention in a human-centered situation.

Discussing several aspects of the salience-based attention model and

also the requirements for social robots development, we concluded that,

since the selection mechanism of the salience-based attention model is

only based on the low-level feature analysis, and due to this fact that
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human attention in a human-human interaction is affected by high-level

human-relevant features, the current class of attention system is inefficient

in simulating human attention especially in a human-centered scenario

and thus it is not a right option for social robotic applications.

We described characteristics of an attention system that identifies at-

tention targets dealing with both low-level features and high-level human-

relevant features which is the focus of this work.

In order to have a behaviorally appropriate HRI, robot should focus

its dynamic attention correctly toward a right target and at the right time

but the concern is how the robot’s attention should find its target point.

What are the features and phenomena that manipulate the attention?

In spite of numerous unknown factors that manipulate the human

attention, the effect of some high-level features on the attention is well

explored. The following chapter briefly describes a few phenomenon and

features that have been proven to guide human attention in a social sce-

nario. They play a pivot role in the proposed attention system.

3.1 Non-verbal/Verbal Cues

Non-verbal cues comprise a large number of wordless signals that a person

mostly uses to deliver a meaningful message to the interactional part-

ner. These cues compose a significant part of the interaction (about

two-thirds) between two humans [71].

People use their facial expressions, body gesture, head pose and gaze

to attract other people’s attention, to express their emotions, and in-

tentions and to manage the flow of interaction while speaking or listen-

ing [72]. Figure 3.1 shows a wide variety of non-verbal cues that people

usually use as communicative cues in a social interaction.

Therefore, detecting such high-level features is mandatory for human

attention modeling and social environment understanding. For example,
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Figure 3.1: Non-verbal cues comprise a large number of wordless signals that a person

mostly uses to deliver a meaningful message to the interactional partner.

imagine you are engaging in a social interaction with a group of friends. If

one of your friends suddenly raises hand or shows a specific facial expres-

sion (e.g., smiling) or body movement (e.g., sitting, rising), your attention

immediately will be attracted by that person to get more detail about the

purpose of that meaningful motions, then it shifts your gaze to look at

that person. We also experimentally proved this fact that high-level hu-

manlike features affect the human attention selection mechanism.

Due to this fact, before designing an attention system, a perceptual

system is designed to collect and recognize various high-level human-

relevant features. It allows attention model to select its target point based

on the dedicated selection mechanism, according to the human features.
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Table 3.1 reports the high-level features that are considered in human

attention modeling in this work.

Verbal cues consist of a variety of cues that directly affect the human

attention and cause involuntary gaze shift. Literature [29, 73] indicates

that, when someone speaks in a group, human attention immediately

locates the speaker among others, and tries to understand the content.

Vertegaal et al. [74], through a very accurate study using a gaze tracker

in a group of four people, found that listeners looked at the person who

was speaking 88% of the time. It means that, once a person speaks,

attracts other people attentions. We have also experimentally found the

importance of auditory signals and other features in triggering attention

in a social interaction.

In a careful human gaze study, with a professional gaze-tracking de-

vice, we found that the auditory signals have a profound effect in attract-

ing human attention in a social interaction, thus it should be considered

in the attention modeling.

Therefore, in the proposed attention model of this work, we take into

account the 3D position of speaker respect to the robot, and pronounced

words are considered as strong cues that manipulate the robot’s attention.

3.2 Proxemics

In addition to the gestural behavior, physical distance between people

influences implicit and explicit interaction between them. Hall [75] in-

vestigated the effect of the physical space as the important non-verbal

cue on the interpersonal communications. According to the anthropol-

ogist Edward T. Hall’s theory, there are four invisible bubbles in the

certain distances around our body that influence the social communica-

tion level between us. Figure 3.2 shows these spaces as Intimate (too

close), Personal, Social and Public (too far). Subject’s social cues thus,
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elicit different level of attention depending on their spatial locations. For

example, if a person shows a specific cue (i.e., hand motion, rising eye-

brow, smiling); the attention of the surrounding people will be attracted

based on their distances; It means that, the other people attention will be

drawn quickly if the person is in the personal space, while it takes longer

time if the person is in the social space and finally, there is a risk of losing

attention if the person is in the public space. Besides, in a multiparty

social interaction, humans prefer to interact with others that are in a

closer physical distance.

On the other hand, proxemics phenomenon controls human behaviors

when respond to the other people. For example, when we talk to our

colleague in a social interaction, depending on the distance between us,

we tune the loudness of our voice.

Due to importance of the proxemics, the proposed attention model of

this work is able to classify people in trigging attention, based on their

distances (spaces), in four groups. The importance of people for the

attention model varies from high to low, according to their spaces. The

spaces and the associated distances are illustrated in Figure 3.2.

Although, the proxemics factor can be influenced by other environ-

mental features (e.g., lighting [76], setting [77], location in setting and

crowding [78], size [79], and permanence [75]) and individual-relevant

factors (e.g., involvement [80], sex [81], age [82], ethnicity [83], and per-

sonality [84]) but, due to limitation of sensing technologies in detection

and recognition of such features, we use a standard style (four spaces) for

proxemics, and we do not consider the effect of other factors (To see more

information about proxemics and its implementation please see [85]).

In addition to the Hall’s theory, there are several other behavioral

studies for example [86,87] argued that, people look at close targets more

frequently than distant target.
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Figure 3.2: According to the Hall’s theory, there are four invisible bubbles (spaces)

in the certain distances around the human body that influence implicit and explicit

interaction between people. The spaces from close to far are Intimate, Personal, Social

and Public, respectively

According to discussed phenomenon, we use, the concept of proxemics

(use of distance) as a sort of non-verbal cue that influences the total

attention elicited by a person, in the attention modeling.

3.3 Effective Visual Field of View

Unlike the conventional vision devices that uniformly sample the environ-

ment in the field of view, the human eye collects the visual information

at high resolution from a small central area called the fovea while, the
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peripheral area is sampled at lower resolution [70]. In other words, visual

stimulus angle, with respect to human sight line, affects human atten-

tion eliciting. Thus, human perception is more attracted by affective and

social cues (e.g., facial expressions), in a central small area, known as

effective field of view (eFOV). Clearly, the social cues in this area elicit

higher level of human attention. Furthermore, several human behavioral

studies indicates that, there is a strong eye tendency to look at the center

of the image, regardless of the entire image contents [88,89].

Based on these facts, we considered the angle between a detected

feature and the center of eFOV, as a sort of non-verbal cue that influences

human attention. As can be seen in Figure 3.3, we discretized angle

related non-verbal cue in three levels: High, Medium, and Low.

The physical distances as well as human orientation are considered

only for visual features in the FOV and not for auditory signals. Clearly,

the auditory signals affect human attention regardless of the spatial po-

sition even outside field of view.

3.4 Habituation Effect

To make an effective and believable human-robot interaction, the habitu-

ation should be implemented on the robot [90]. Infants responds strongly

to the new detected feature of environment, but respond less when they

get familiar with that [91]. The habituation effect inhibit robot attention

to be continually fascinated by only one target and allows it to see new

features and target of environment and select new target point. This

capability endows robot to display a dynamic attention behavior, when

interact with multiple targets.

The habituation effect is a process that makes human attention adapted

to the continuous existence of a new stimulus presented in environment.

It is an adaptive behavior that causes a decreasing of the interest to a
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Figure 3.3: Right side semicircle: The orientation of people respect to each other influ-

ence the level of engagement in a social interaction. The importance of people, based

on their orientation is grouped to High, Medium and Low.

new stimulus. This effect can be considered both for long-term and short-

term issues. For example for when a new feature such as a sound signal

is detected in environment, it highly attracts the attention of people at

the beginning, but after a while, despite the existence of the feature the

attention is adapted to that and the feature attract the lower level of

attention.

The concept of habituation is implemented in our robot’s attention
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Figure 3.4: The elicited human attention level by a new feature decreases within the

time from A1 to A2. Human attention is being adapted to a new detected feature within

the time.

module, as a time-variant function (Figure 3.4) that adjusts the level of

attention elicited by the selected target [60]. A detected target elicits

highest level of attention, but due to habituation function, it lost its

attractiveness linearly/exponentially within a time-constant.

3.5 Human Social Signals

Human social signals are known as important factor that influences the

level of human elicited attention. A person that expresses a social signal

to initiate a social interaction with us attracts our attention quickly. In

addition, according to our experimental gaze study, we found that a per-

son who enter and leave the social interaction attracts human attention;

however we showed that the levels of elicited attention are different when

a person recognizes different social signals.

Thus, in this thesis we consider human signals as the important factor
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Table 3.1: High-level human-relevant features of a scene that are essential in human

attention modeling.

No. Features

1 Body gesture and head pose (roll, yaw, pitch angles)

2 Facial expressions (happiness, sadness, surprise, anger)

3 Facial features (age, gender: male/female)

4 Entering/leaving times (sec)

5 Proxemics (spaces: public, social, personal, intimate)

6 Effective field of view (spaces: low, medium, high)

7 Habituation effect

that has impact on our attention model. For example, we consider enter-

ing time and leaving time for a person that enter into the room and wants

to initiate a social interaction and for a person that wants to leave the so-

cial interaction as high-level features that represent the human intention

and influence people attention.

3.6 Summary

This chapter reviewed several high-level humanlike features (reported in

Table 3.1) and phenomena that affect human attention in a social in-

teraction and cause voluntary/involuntary gaze shift toward people of

environment. The chapter also reviewed and discussed the associated

theoretical background of the high-level human-relevant features in at-

tention triggering.

Some of the high-level features/phenomena that have been proven to

guide human attention in a human-human interaction are non-verbal and

verbal cues, proxemics, the effective visual field of view, the habituation

effect, and people intention. We consider all these features in designing
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the attention model, presented in this work.

We believed that the new generation of attention system for social

robotic application should be able to identify target points for the robot,

dealing with the proposed high-level humanlike features as well as, the

low-level visual features, instead of solely low-level features.
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This chapter presents a system that enables social humanlike robots to

autonomously identify the most important target (human/ non-human)

of environment and adjust its gaze to look at the selected target, in a

dynamic multiparty social interaction. The system receives as input, the

constructed data of the Kinect and sends as output, the control signals

to the robot’s actuators.

The core of the system is an attention model called humanlike at-

tention, which performs two major tasks. On one hand, it actively ex-

plores the acquired perceptual information and identifies the most im-

portant human/non-human interactional target of environment through

a context-aware humanlike attention selection mechanism. On the other

hand, it controls the robot’s head and eyes -gaze- movement such that the

robot displays a behaviorally acceptable and believable gaze shift toward

selected targets, during a multiparty social interaction.

Two other important layer that are linked with the attention layers are

perception and gaze control. The perception layer collects the raw data

of environment and interprets the sensory information that are required

by the attention layer. The gaze control layer manipulates the dynamic

of the robot’s gaze, such that robot appropriately makes an eye contact

to the selected target by attention layer.

As shown in Figure 4.1 the proposed system functions as a middle

component between robot and environment and closes the interaction

loop between human and the robot. It enables the robot to monitor

environment in real time and adjusts its behavior according to the scene

content.
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Figure 4.1: The overview of the gaze control system.

As discussed in the chapter 2, the conventional attention class called

salience-based attention, identifies the most important target of a visual

scene, analyzing only low-level visual features such as color, intensity,

and etc., however as discussed in chapter 3, there are several impor-

tant human-relevant features and phenomena that cannot be expressed

through low-level features. Thus, we found that due to many limita-

tions and drawbacks of the selection mechanism of this class of attention

model, it is inefficient in HRI applications. Thus, we should move away

from that approach toward designing a humanlike attention model. Such

a model should be aware of both low-level visual features and high-level

human-relevant features when identifies the most important target of a
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visual-auditory scene. Hence, this work proposes a new class of attention

model, which identifies targets by analyzing both low-level and high-level

features of the environment. It explores the perceptual information of a

given visual-auditory scene and selects the most important point of envi-

ronment based on a humanlike selection mechanism. Then, the attention

model controls the robot gaze movement based on a gaze model that is

derived from real-data of humans.

4.1 System Overview

Figure 4.2 shows the modular structure of the proposed system that we

call it context-aware humanlike gaze control system (GCS). It consists of

three distinct layers: perception, attention and gaze control.

Employing several parallel algorithm, the perception layer collects

in real time the visual-auditory information of the environment, detects

and analyzes a variety of low-level visual features and high-level human-

relevant social cues, and provides a high-level interpretation of the envi-

ronment for the robot.

The attention layer actively explores the perceptual information ac-

quired by the perception layer and using a selection strategy, identifies

the most important region of environment on which the attention of the

robot has to be focused.

Using the humanlike gaze model, which is developed based on the

state-of-the-art [40, 68, 70], the gaze control layer updates the robot’s

head and eye positions and generates a believable gaze movement for the

robot.

Using the GCS, the robot has a humanlike understanding of the en-

vironment while it has a humanlike behavior in target selection and gaze

movements, in a multiparty social interaction. The GCS makes a bidirec-

tional channels between the robot and humans of environment that allows
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robot to adjust its behavior according to the current social context.

The following sections introduce the humanlike robot and its capabil-

ity in generating humanlike motion. Besides, it details the GCS layers and

components and explains how the layers contribute the GCS to generate

a humanlike context-aware gaze behavior.

4.2 FACE Robot

The proposed GCS has been designed and implemented on the humanlike

social robot called FACE (Facial Automation for Conveying Emotions)

that is created by Hanson Robotics [10, 22–24] (Figure 4.3). The robot

has a female appearance and its artificial skull is covered by a porous elas-

tomer material called FrubberTM which requires less force to be stretched

by servo motors than other solid materials. FACE has 32 servo motors

that allow it to replicate high-quality facial expressions (Figure 4.4) and

humanlike head and eye motions [13, 14, 92]. The movements of head

and eyes are in 4-DOF and 2-DOF, respectively. The kinematic struc-

ture of the actuation system enables the robot to generate realistic facial

expressions and gaze behavior [93,94].

4.3 Perception Layer

As shown in Figure 4.2, the perception layer is the first layer of the

gaze control system that is directly connected to the Kinect. It is de-

signed to simulate human perception by analyzing and interpreting both

environmental (non-human) and human-relevant features. It provides a

human-level understanding of environment for the robot.

The perception layer receives as input, the visual and auditory data

of environment constructed by the Kinect, deeply analyzes the scene by

several parallel algorithms and finally, it creates as output, the meta-scene
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Figure 4.2: Modular structure of our gaze control system: the perception layer re-

ceives visual-auditory information from Kinect, extracts low-level and high-level fea-

tures. Based on these features, the attention layer computes the most prominent target

points. The gaze control layer drives the robot’s actuators according to target positions

using a gaze model.

object that contains two important information: the high-level features

of humans presented in the scene, and the salient point that represent the
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Figure 4.3: FACE’s android actuator system consists of 32 servo motors together with

artificial skin, allows FACE to reproduce high-quality facial expressions and humanlike

gaze movements.

most important point of environment.

When a person enters to the Kinect field of view (FOV), the perception

layer creates a sub-object in the meta-scene object, and recognizes and

stores several high-level features associated with that person. In addition,

it analyzes the low-level visual features of the scene and identifies the

salient point in pixel (X,Y). Figure 4.5 shows the structure of constructed

meta-scene object and it reports high-level human-relevant features as

well as the salient point, recognized by perception layer.

As illustrated in Figure 4.2 the perception layer contains two parts:

data acquisition and feature extraction. These parts are deputed to prune

data and extract low-level and high-level features from visual-auditory

information of a social scene.
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Figure 4.4: FACE is capable of reproducing a wide variety of human facial expressions

and humanlike motions.

The perception layer acquires raw data through a Microsoft Kinect

device as RGB-D images running the Kinect for Windows SDK by Mi-

crosoft1. Kinect RGB-D camera records 2D video and depth images with

a resolution of 640x480 pixels at 30fps, and it has a built-in four-element

microphone array for audio beam acquisition.

Kinect acquired raw data are analyzed extracting a variety of low-level

visual features and high-level human-relevant features (verbal and non-

1http://www.microsoft.com/en-us/kinectforwindows/
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Figure 4.5: The perception layer receives visual-auditory scene constructed by sensor as

input and creates a meta-scene object that contains several high-level features of humans

presented in field of view. The meta-scene object contains humanlike information that

provides a high-level humanlike understanding of the environment for the robot.

verbal cues). The perception layer classifies all the extracted features

in different taxonomies and stores them in the meta-scene object and

streams it to the attention layer through a YARP [95] gateway.

GCS implementation aims to extract social relevant visual features

(i.e., human proxemics, orientation, facial properties, gestures, and entry

time) and auditory features (i.e., sound source angle and pronounced

words), through various parallel algorithms and or dedicated libraries.

In addition to the high-level human-relevant features, the perception

layer identifies the most important environmental target, analyzing low-

level visual features of 2D image by using a feature analysis engine called

SUN.

Table 4.1 summarizes the algorithms and libraries, which are used in

perception layer together with corresponding high-level features that are

extracted by these libraries. The following section describes in detail each

layer and components of the perception layer.
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Table 4.1: Human-relevant features and salient point extracted by the perception layer

Used Library Extracted Features

Kinect SDK Human 3D position of up to six people

Twenty body joints coordinates for 2 humans

Sound direction and beam angle

SHORE Positions of face, eyes, nose, and mouth

Eyes and mouth state (open/close)

Gender classification (male/female)

Age estimation (years)

Facial expressions

Face rotation (up to ±60 image plane)

Face recognition Name of human (according to pre-trained data

set)

Body Gesture and Gestures and body motion

Head Pose Recog-

nition

Head pose (roll, yaw, pitch angles)

fastSUN Virtual point (X,Y)

4.3.1 Face Detection and Facial features Analysis - facial

expressions, age, gender

Observation of human visual attention revealed that face-like shapes at-

tract human attention [96]. In addition, various features such as human’s

age and facial expressions (e.g., happiness, sadness, surprise, anger), di-

rectly regulate the social interactions between people [97]. In a social

context, it is imperative to know the age and gender of interactional

partners and to continuously receive feedback of facial expressions and
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mimics. Analogous to humans, robots should have the same ability in

localizing faces and understanding facial expressions and related social

features.

For face detection and facial features (i.e., facial expressions, age, and

gender) analysis, the perception layer uses the Sophisticated High-speed

Object Recognition Engine called SHORE [98,99].

SHORE is a robust detection engine that works based on the illumi-

nation invariant approach, and detects multiple faces in a single visual

frame and tracks them in real time within a video frame. SHORE en-

gine receives the 2D frame constructed by Kinect, detects faces in real

time, and assigns consistent ID to each face. It estimates various facial

features such as four universally agreed facial expressions (i.e., happiness,

sadness, anger, surprise) in percentage, age, gender (male/female), eyes

and mouth state (open/close), positions of face region, eyes, nose, and

mouth in pixel.

When the SHORE detects a new face, an internal timer will be gener-

ated that shows the entrance time of the user (see Table 4.1). Figure 4.6

and Figure 4.7 illustrate the SHORE capability in recognizing various

features of human face in a 2D scene, for a single and multiple faces.

SHORE as a reliable C++ library enables the perception layer to

sense the presence of human from distant and in any lighting conditions,

and track multiple frontal/rotated faces with the high degree of robust-

ness against background characteristics. It estimates correctly the human

facial expressions (i.e., happiness, sadness, anger, and surprise) which al-

lows the perception layer to monitor in real time the apparent emotion of

each human during a multiparty social interaction. SHORE precisely es-

timates the humans gender (as male or female) with almost 100% degree

of precision and estimates the age of each person in the FOV.

SHORE as an important component of the perception layer, empowers
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Figure 4.6: SHORE (Sophisticated High-speed Object Recognition Engine) detects mul-

tiple faces in a 2D image and tracks them in a real time video. It estimates several facial

features such as facial expression (i.e., happiness, sadness, anger, and surprise), age

(year), gender (male/female) and entering time. It assigns a consistent identification

number to each of the recognized faces and tracks it in real time.

the GCS to simulate more and more the human perception especially in

sensing the presence and the localization of multiple people as well as

in monitoring their apparent emotions and other facial features. Using

SHORE, the perception layer is able to assign a consistent identification

number to each of humans and re-assign the same ID in the case of lost

tracking, if the human does not change his/her position, which is essential

for a successful HRI.

SHORE provides the pixel address (X,Y) of each detected face as well

as the pixel address of the eyes, nose, and mouth in 2D visual frame. It

enables the perception layer to guide the robot to make an eye contact

with humans. Due to internal timer of SHORE, it stores the entrance
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Figure 4.7: SHORE is capable of analyzing facial features of multiple humans in an

image and track them in real time.

time for each human. This capability enable the perception layer to

recognize the new entry human to control the behavior of the robot (e.g.,

welcoming).

4.3.2 Multiple Face Recognition Using PCA

Facial features and expressions recognition are very important for social

context analysis but require the integration of subjects’ identity informa-

tion to allow the robot to adjust its behavior in a context-aware manner.

The GCS perception layer integrates a facial recognition engine based on

Principal Components Analysis (PCA) [100].

In the face recognition component, face images in a 2D frame are

detected and projected into a face space (feature space) that best encodes

59



4.3 Perception Layer Perception, Attention, and Gaze Control

the variation among known face images. The face space is defined by the

Eigenfaces, which are the Eigen-vector of the set of faces. Therefore, each

face is represented by a set of features that require less computation for

recognition compare to the whole face image.

The facial recognition module uses a pre-trained data set to assign

an identity to recognized faces and stores the extracted features in the

faces data set. Figure 4.8 shows an example of perception layer merged

information on which recognized the subject’s name, the ID, and the

facial information (i.e., estimated happiness ratio, age, gender and entry

time) from SHORE, are merged.

Using the SHORE ID along with the PCA result, the perception layer

is able to recognize faces even for non-fully-frontal faces (see Figure 4.9).

4.3.3 Body Gesture and Head Pose Estimation

People use body gestures and head poses as social signals when they

interact with each other [72, 101]. These social signals are strong non-

verbal cues that elicit human attention. For example, in a multiparty

interaction, if one of the humans raises his/her hand or waves the arm,

others will direct their attention to him/her. Robots thus need to be able

to react to these social cues.

The perception layer uses the skeleton tracking of the Kinect SDK to

recognize a person’s movements. The Kinect SDK locates up to six hu-

mans by merging information from RGB and depth images and recognizes

body joint coordinates for the two closest persons (Figure 4.10).

In order to estimate the head pose, the perception layer computes Eu-

ler angles (pitch, roll, and yaw) in real time, using SDK’s head data. In

addition, we implemented a dynamic body gesture and head pose recog-

nition engine, which continually monitors the body’s motion and head

pose in the absolute coordinate through extracted skeleton information,
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Figure 4.8: Example for final integration of face detection, facial expression/features

estimation and face recognition in the perception layer. The module detects a face and

extracts estimated happiness ratio, age, gender and entry time. It also compares the

detected face with the database in order to identify the name of the person.

and identifies meaningful motions.

4.3.4 Speaker Localization

The auditory streams cause an unintentional shift of attention that most

often shifts the gaze of the person towards the sound source. Hence, it

is essential for robots to locate the speaker in a multiparty interaction.
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Figure 4.9: Face recognition engine compares each of the detected face to the subjects’

database and assigned IDs to the detected faces.

The perception layer uses the Kinect SDK to calculate the sound source

direction with a triangulation algorithm. It computes the 3D position

and beam angle of sound signals received by the microphone array. The

algorithm considers only auditory signals that can be associated with

humans in the scene by comparing the direction of the sound to the 3D

positions of the detected humans.

In a real situation, human attention is also attracted by auditory

signals outside the visual field of view, which are not relevant to the

visual stimuli. However, due to the limitation of sensor detection range,

the system is designed to ignore sound signals, not related with multiparty

interaction, as environmental noise. This limitation of the system is one

of the issues that prevent natural gaze behavior from being generated.
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Figure 4.10: The perception layer uses the skeleton tracking of the Kinect SDK to

recognize a person’s movements. The Kinect SDK locates up to six humans by merging

information from RGB and depth images and recognizes body joint coordinates for the

two closest persons

Once a sound source is associated with a person, a dedicated engine is

used to recognize speech and convert it to text if possible. The human’s

recognized word are stored in the meta-scene objects along with a speak-

ing probability parameter calculated based on a comparison between the

sound angle and the human’s position.

4.3.5 Visual Salient Point as a Virtual Subject

In addition to the high-level human-relevant features extracted by dedi-

cated methods, the perception layer analyzes low-level visual features of

the 2D scene and identifies the most important no-human target (salient)
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point, using a SUN (Salience Using Natural statistics) based engine.

SUN is a Bayesian framework for identifying salience regions of a

visual scene, using natural statistics [102]. It is designed to identify po-

tential targets in a 2D image that attract human attention in a complex

scene viewing. To achieve this, the model estimates the probability of

a target at every location given the observed visual features. Through

a competition between feature space or salience map, the model identi-

fies the salient point that is the most important point of the given scene

as no-human target or virtual point (VP), with a very little computa-

tional cost while leaves plenty of CPU cycles for other tasks. Figure 4.11

shows a visual scene and the associated salience map reconstructed by

the SUN-based engine. As shown, the features regions of the visual scene

are illustrated in the salience map, as bright regions and the salient point

or VP is identified as the brightest point of the salience map.

To enable the perception layer to identify salient target in real time,

we integrated the fastSUN [103] component to the layer, which is an

efficient implementation of the SUN algorithm for real time application.

The fastSUN receives the constructed 2D scene through Kinect, cre-

ates corresponding salience map according to the features regions of the

scene, and identifies in real time the potential target point in pixel (X,Y)

analyzing low-level visual feature of scene and without considering high-

level features. It identifies in real time salient point that is called in this

work, as Virtual Point (VP). In fact, the VP as a point of visual scene

shows a salient point of environment in term of low-level visual features.

The position of VP actively change, according to the scene-context. Pres-

ence of VP in the perception layer allows the robot attention to be at-

tracted by the environment when the interactional partners do not show

any specific feature or social cues. In other words, when humans are

not interesting enough, the robot’s attention prefers to switch on envi-
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Figure 4.11: The perception layer analyzes low-level visual features of the 2D scene and

identifies the most important no-human target (salient) point on using a method that is

based on the attention model called SUN (Salience using Natural Statistics). The upper

part of image is the original scene image while the lower part shows the reconstructed

salience map. The region of features are illustrated as bright areas.
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ronment instead of humans. Such capability significantly improves the

believability of the robot gaze behavior.

The perception layer stores the address of identified salient point in

pixel (X,Y) into the meta-scene object and updates its address in real

time.

4.3.6 Subjects Database

Once the perception layer has identified the virtual point and recognized

high-level features, a database of all people seen by the perceptual layer

(Figure 4.12) is stored as the meta-scene object. The meta-scene object

has a hierarchical structure through which an arbitrary number of people

can be inserted. Each person’s object includes the person’s unique ID

and the associated high-level features.

Once a new person has been identified by PCA identification algo-

rithm and by SHORE, a new person instance is created in the meta-scene

object, which is populated with the features, extracted by the perceptual

layer. Since PCA engine recognizes frontal faces, new pictures are con-

tinuously taken by RGB image and stored in the PCA training set. PCA

unrecognized humans are inserted into the meta-scene object using a tem-

porary ID (taken from SHORE) which is re-assigned, once the operator

has inserted the new person name through the GCS interface.

The meta-scene object, in fact is a high-level interpretation of the

environment and it provides a humanlike understanding for the robot.

It enables the robot to understand the sensory information in the way

that human being does. Using the meta-scene object, the robot is able to

explore perceptual information and selects its target as well as adjust its

behavior according to the target status. For example, if a person intent

to initiate a social interaction, robot can greet that person.

Due to importance of the meta-scene object, it should be accessible for
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Figure 4.12: The extracted high-level human-relevant features of multiple humans, by

the perception layer.

other layers and components especially attention layer. For that reason,

through the .NET object serialization, the meta-scene object is converted

into an XML structure, which is streamed through a dedicated YARP

port between the GCS layers and modules.

4.3.7 Communication Channel Through YARP

As discussed, the GCS is responsible for providing a human-level under-

standing of environment as well as controlling the robot’s actuators in

real time. Since on one hand, data acquisition and low-level/high-level

feature extraction, and on the other hand, controlling the robot in real
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Figure 4.13: YARP creates a bidirectional wireless communication channel between

the perception and the attention layers. YARP sender delivers a created meta-scene

object from the perception layer to the attention layer. YARP receiver, receives the

meta-scene object and converts it in a manageable object.

time take a lot of processing cycle, GCS layers are not able to operate at

same machine. To solve this problem, we used two different machines for

perception and attention/gaze control layer. The YARP [95] is created

as a wireless data communication channel between the perception and

attention layers.

YARP (Yet Another Robot Platform) is an open-source software pack-

age, written in C++ that makes a reliable communication channel be-

tween two machines, sensors and actuators in order to send and receive

data. YARP communication gateway is established in order to make

a bidirectional connection between modules and layers. The perception

layer acquires data from Kinect and creates meta-scene object containing

features of subjects as well as the virtual point, identified in the FOV.

It then sends the created object to the attention layer by yarp sender.

The attention layer that is connected to the gaze control layer receives

the meta-scene object and through a selection mechanism, specifies tar-

get points. It sends the pixel address of the identified target to the gaze
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Figure 4.14: The attention layer receives the meta-scene object as XML streamed

through yarp receiver, and then deserializes it back in a manageable object.

control layer, in order to drive robot’s actuators to shift its gaze.

4.4 Attention Layer

As Figure 4.14 shows, the attention layer receives the meta-scene object

as XML streamed through yarp receiver, and then deserializes it back

in a manageable object to be useable for the attention layer. The aim

of designing the attention layer is endowing the GCS to find the most

prominent region (target) of the scene that the robot should focus on.
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There are two types of target that the attention layer should select:

human subject and virtual subject. The attention layer selects a human

subject, based on a target selection strategy, in order to engage people

to the social interaction or perform a specific task. While, it selects the

virtual subject (salient point) that has been identified by perception layer,

when the humans are not enough interesting for the robot. The virtual

subject enables the robot to have a dynamic believable motion.

4.4.1 Target Selection Strategy

The core of the attention layer is a model that calculates the elicited

attention (EA) level as a score, for each human presented in the scene.

The score of each human is calculated according to his/her high-level

features. It means that, if a person shows more features, gets higher

score with respect to other humans presented in the scene. Evaluating

subjects, the attention layer selects a winner in real time as the one with

highest score, who is the most important (interesting) for the robot.

Since the numerical values quantifying the features are not within the

same range, they are normalized (Xn) to the range [0, 1] by considering the

maximum values that features can have according to the sensor properties

and features ranges. The overall EA/score of each human in the scene is

calculated based on four main components: social features (F), proxemics

(P), orientation (O), and a memory component (EAM)

EASj (t) = FSj + P (r) +O(θ) + EAMSj (4.1)

where EAMSj is a parameter that refers to the memory of the robot

not yet included in the database and consequently set to zero.

The social feature elicitation contribution FSj is calculated as a weighted

summation of social normalized features Xn, which can be written as
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FSj = (
n∑

i=1

Wi.Xn) (4.2)

where weight Wi is set according to the the feature’s importance. The

weight parameter adjustment is the most important issue that results a

humanlike gaze behavior for the robot. It have to be determined based on

the priority that humans have in selection features in a social interaction.

For example in a group, in a simple case, if a person speaks, others

shift gaze to make eye contact with speaker. In a more complex social

scenario, the gaze behavior of people should be determined. For that

reason, we conducted a gaze tracking study with a gaze tracker device in

a social human-human interaction and determined the average priorities

that people shows in selecting features of environment. The feature’s

importance and priority are explained in chapter 5. Figure 4.15 shows

the graphical user interface designed in order to adjust the weights of the

attention layer by operator.

The values of P (r) and O(θ) in Equation 5.1 reflect the proxemics

and orientation contributions in the model (described in sections 3.2 and

3.3). When humans have almost the same distances and orientations with

respect to the sensor, these parameters reflect the same values for them.

Due to the unavailability of sensory data in nearby and distant areas, the

attention layer reflects the proxemics effect only for personal and social

spaces and the orientation effect only for high and medium spaces. These

effects can be expressed as

P (r) = Fpr.(1−
|r|
rmax

) O(θ) = FOθ.(1−
|θ|
θmax

) (4.3)

where |r| and |θ| denote the current distance and orientation of hu-

mans with respect to the robot. Fpr and FOθ convert continuous distance

and orientation into discrete values, respectively. These discrete values
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represent four proxemics spaces (intimate, personal, social, and public)

for Fpr, and the three zones of the eFOV (high, medium and low) for

FOθ (see Figure 4.16). rmax is the maximum distance and θmax is the

maximum angle detectable by the sensor. Clearly, the levels of P (r) and

O(θ) are at their maximum when a human is in the intimate space and

the center of the eFOV of the robot.

Since the human’s orientation is calculated with respect to the robot’s

current head position, the Kinect sensor should simultaneously turn with

the robot’s head to capture the same scene as the robot. For this reason,

a servomotor is used to horizontally rotate the Kinect at the same angle

as the robot’s head (±β) (see Figure 4.16).

The attention layer shows a strong tendency to move to the VP when

the human subjects are not enough interesting for the robot and their

scores are lower than a threshold. Hence, a virtual point (VP) is po-

sitioned according to the low-level features of the scene, to attract the

robot’s attention like a virtual human.

The EA is simultaneously calculated for six humans in the robot’s

field of view. The attention layer selects the winner (i.e., the human with

the highest EA level) through a competition among humans and the VP

Max(EAS1 , EAS2 , ..., EAS6 , V P ) → Kwinner → (X,Y ) (4.4)

where Kwinner is the winner’s ID.

The attention layer then extracts the winner’s head position (X,Y )

or virtual subject pixel address (X,Y) from the meta-scene object and

sends it to the gaze layer.
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Figure 4.15: Graphical user interface designed in order to adjust the weights of the

attention layer by operator.

4.4.2 Habituation Function

The habituation effect is activated, once the robot makes eye contact

with the selected human (winner). The attention layer multiplies the

habituation function (HF) by the winner’s score (EASk
), in order to make

a time-variant decreasing score (EASwinner(t)) for the winner, as

EASwinner(t) = EASk
. HF (t) (4.5)

where
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Figure 4.16: The Kinect sensor horizontally rotates at the same angle as the robot’s

head in order to capture the same scene.

HF (t) = Peak . Max(0, (1− ∆t

τ
)) (4.6)

and τ is a time constant and Peak is the maximum amplitude of HF.

Following [60] we set the time constant and peak parameters to 10 and

30 seconds, respectively. The HF value linearly decreases to zero within

the time constant τ . When the robot’s gaze reaches the new winner,

∆t is reset to zero and HF will be maximized. The model searches for

a new winner in real time while decays the score of the last winner to

zero. Employing this system, the winner’s attractiveness for the robot

decreases gradually over time thus allowing other people to attract the

robot’s attention. It empowers the robot to show a more natural and

dynamic behavior.

This capability allows the robot to display different emotions through

gaze behavior. For example, according to evidences, a happy person

makes longer eye contact or an anxious person makes shorter eye contact
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with the higher frequency, thus the amount of time constant τ enables

robot to shows these emotions.

4.4.3 Time-based Filter

Due to the mechanical limitations of the robot’s head and eye actuators,

the robot’s gaze is not capable of synchronizing with the rapid changes

in target positions. To solve this problem, a time-based filter is used that

ignores rapid changes of attention point.

The attention layer sends the winner’s position to the gaze control

(GC) layer in real time, which is entrusted with generating gaze param-

eters according to the target position. The GC layer continually receives

updates from the attention layer and decides how to direct the robot‘s

gaze to the selected human.

4.5 Gaze Control Layer

The gaze control layer receives the target address and remap the address

(X,Y) to the robot’s actuator control coordinates. It then generates the

robot’s control signals in order to move the eye and head actuators in the

way that robot shows a humanlike gaze motion.

4.5.1 Head and Eye Movements

A gaze is composed of two components: eye movement and head move-

ment. The summation of these components (gaze) is relatively con-

stant [68] (Figure 4.17). The amplitude of the gaze can be written as:

θg = θe + θh (4.7)
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Figure 4.17: A gaze is composed of two components: eye movement and head move-

ment. The summation of these components (gaze) is relatively constant.

where θe is the eye angle in its orbit with respect to the head (inter-

nal coordinates), θh is the head angle with respect to the environment

(global coordinates) and θg is the gaze angle in the global coordinate sys-

tem. Since the gaze angle is constant, any combination of head and eye

is possible; where the angle of the eye increases, the angle of the head

decreases and vice versa.

Assuming that the eyes are at the center of their orbit before gaze

shift, θe(t = 0) = θ0 is equal to zero. In order to accomplish a gaze,

the eye moves until it reaches the threshold θthr and the head movement

starts to compensate for the eye movement. If the eye’s current position

is not at the center of its orbit, θthr varies. In fact, the initial angle of the

eye (θ0) and the position of the selected human determine whether the

gaze needs to be accomplished by eye movement alone or together with

head movement.

In order to ensure a humanlike gaze shift, we use a humanlike gaze
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model [68,70], which is derived from a motion capture of human subjects,

using high-speed video-based eye and head tracking. The equations for

θthr and θh were estimated, using empirical data. In this model, θthr

varies depending on the initial position of the eye in its orbit (θ0), and

were obtained as

θthr = −0.28θ0 + 11.2 (4.8)

where θ0 is positive if the initial eye deviation has the same direc-

tion as the subsequent movement. This equation is obtained from [70].

The constant numbers express head and eye dynamics in vertical and

horizontal movements.

Following this notation, to accomplish a given gaze (θg), θh can be

obtained as

θh =


0 if −θthr < θg < θthr

θthr + k(θg − θthr) Otherwise

(4.9)

where

k = 0.0185θ0 + 0.715 (4.10)

and k is a parameter that controls eye and head movement, in order

to generate a humanlike gaze shift. This equation is derived from [70]

based on empirical data (Figure 4.18).

4.5.2 Head and Eye Velocities

Investigation on humans and monkey’s gaze behavior revealed that the

gaze is not simply shift head and eyes to a target point. In a movement

especially social gaze, the velocity of head-eye is an important factor
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Figure 4.18: Depending on the initial eye position, gaze is accomplished by either only

eye movement or head-eye movements.

that show meaningful information to the interactional partner. For that,

we should apply a velocity model to the gaze control layer such that it

performs a humanlike movement.

The head and eye velocities vary according to target eccentricity and

modality [68]. However, the auditory and visual targets influence the

velocities of the head and eyes in different ways. In this work, it is assumed

that visual and auditory stimuli have the same effect on the robot’s gaze.

When the attention layer selects the target’s coordinate in a pixel (X,Y),

the GCS gaze control layer calculates the amount of target eccentricity

with respect to the current sight line of the robot.

The authors of [68] showed that there is a relatively linear relationship

between target eccentricity and head and eye velocities. Thus, due to the

limitation of the robot’s mechanical structure, three levels of velocities

are defined as high, medium and low for the robot’s actuators. The GCS
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gaze control layer calculates the level of the head and eye velocities as a

function of head and eye amplitudes, assuming that the eye always moves

faster than the head.

The concept of velocity is implemented in the GCS by the amount

of gaze angle (in degrees) over time needed to reach the target point (in

seconds). Velocity can be expressed for the head as

[V hhigh, V hmedium, V hlow] = [75, 45, 22] ◦/sec (4.11)

and for the eye as

[V ehigh, V emedium, V elow] = [450, 150, 90] ◦/sec (4.12)

4.5.3 Head and Eye Latencies

Latency is the delay in reaction time when people shift their gaze to a

target. It is influenced by target eccentricity and modality. Head latency

is longer than eye latency [104], and varies approximately in the range of

50 ms to 300 ms.

Auditory stimuli have the longest reaction latencies for central targets,

θg < 20, and the visual targets elicit the longest reaction latencies in

θg > 40 (see [68]). In order to reach the target points, the model generates

rapid saccadic eye movements with a 50 ms delay, then after a 200 ms

delay, it generates head movements for the robot. Two constant values

( le , lh) denote eye and head latencies in the model, respectively.

The GCS gaze control layer estimates the gaze parameters for eyes

and head, based on the proposed gaze model and target eccentricity as

( θthr , θe , Ve ) and ( θthr , θh , Vh) for the robot actuators. It also gener-

ates reaction latency. All of the derived information is sent to the Robot

Control (RC) layer, which is directly connected to the robot actuators.
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Figure 4.19: Sample gaze of FACE when it gazes at a target point. For a small move-

ment only the eye actuator is driven while for the large movements head-eye actuators

are driven.

Figure 4.19 shows how the robot control layer drive the robot’s actu-

ators in order to reach the robot’s gaze to a target point.

4.6 Summary

This chapter described a context-aware gaze control system (GCS) that

empowered a humanoid social robot to interact autonomously with a

group of people in a social scenario. The proposed system consisted of

three layers for perception, attention, and gaze control, which mediated
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the robot and the environment.

The perception layer that was connected to the input sensor was re-

sponsible to create a humanlike understanding for the robot. It created

and sent a meta-scene object that contained all features of human pre-

sented in the scene to the attention layer.

The attention layer was deputed to select the most important target

point of environment, through an attention mechanism. It sent the pixel

address of target to the gaze control layer.

The gaze control layer, which was connected directly to the robot

control, moved the robot actuators based on the humanlike gaze control

model to generate a humanlike gaze movement for the robot.

The YARP as a communication channel was established, in order to

make an interconnection among layers and modules. Overall integration

of the system with the robot showed that the system was able to select

properly the target point of environment and generated a humanlike gaze

motion for the robot.
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Proof of Concept Evaluation
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5.1 Overview

Chapter 4 described a context-aware gaze control system (GCS) that en-

abled a humanlike social robot to select autonomously its target point

exploring low-level and high-level features of the environment. As dis-

cussed, the GCS actively identifies the most important target point based

on a scoring strategy. The system calculates a score for each human in

the FOV and selects a human with highest score as winner. The overall

score of each human in the scene is calculated based on four main compo-

nents: social features (F), proxemics (P), orientation (O), and a memory

component (EAM)

EASj (t) = FSj + P (r) +O(θ) + EAMSj (5.1)

where EAMSj is a parameter that refers to the memory of the robot

not yet included in the database and consequently set to zero.

The social feature elicitation contribution FSj is calculated as a weighted

summation of social normalized features Xn, which can be written as

FSj = (
n∑

i=1

Wi.Xn) (5.2)

where weight Wi is set based on the feature’s importance. The weight

parameter adjustment is the most important issue that results a human-

like gaze behavior for the robot and it must be determined based on the

priority that humans have in selection features in a social interaction.
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To identify the importance of features in attracting human attention, a

gaze tracking study was performed with a professional eye tracker device.

In this study, the gaze behaviors of 11 participants were collected in a

social interaction, similar to our scenario. The purpose of the study

was to tune the parameters of the GCS such that the system displays

a humanlike gaze behavior in a social interaction. Thus, one aim was

to determine which social cues have the most prominent effect on the

attention of the study participants. The second aim was to compare how

well the GCS was able to replicate human gaze behavior on the same

context (input videos).

This chapter describes in detail, the humans gaze study, the evaluation

process of the GCS and discusses the obtained results.

5.2 Participants

A total of 11 participants (9 males and 2 females), from the Department of

Mechanical Engineering at the Technical University of Munich took part

in this experiment. The mean age of the participants was 27.3 (range

22–35). Eight of the participants were native German speakers, the three

other participants spoke English, but were not native English speakers.

The participants received a chocolate for taking part in the experiment.

5.3 Experiment Procedure

The participants were asked to watch a video showing two humans dis-

cussing different research topics. In this video, two humans enter the

room separately, sit down on two chairs with the same distance from the

camera, and then leave the room separately. During the discussion, both

humans talk to the video camera from time to time, as if they were in-

teracting with a third person (the robot/the experiment participants), in
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Table 5.1: Attention of participants towards person A and B while speaking, while

performing non-verbal cues, and the average from the entire video (Avg. att.)

Person Speaking (%) Non-verbal (%) Avg. att. (%)

Person A 41.8 20.3 54.4

Person B 32.5 23.1 43.6

order to help with experiment participant engagement.

The video was taken in parallel with an HD video camera and a Kinect

RGB-D camera placed side by side. The scene captured by HD video

camera was shown to the participants for human gaze analysis, while

the Kinect-acquired RGB-D data was used as input for the GCS for the

system behavior performance analysis.

The video lasted 7:20 minutes and consisted of three sub-scenes. In

the first and third sub-scene, the people in the videos talked in English,

in the second sub-scene, they spoke in German. In each sub-scene, only

one person spoke at a time, while the non-speaking participant executed

diverse gestural and postural acts, in order to attract the attention of the

viewer. Gestures and movements included: stretching while being seated,

raising an arm, getting up from the chair to get a drink, and retrieving

a smart phone from their pocket. Table 5.1 shows the average features

that person A and person B have shown during the video. Table 5.4

and Table 5.5 detail the behavior of person A and person B in the first

recorded scene while Figure 5.11 and Figure 5.12 illustrate the average

gaze behavior of participants during watching the scene.

While the participants watched the video, they wore a DIKABLIS

eye tracking system to record gaze behavior (Figure 5.1). The eye tracker

included a field camera in order to capture the scene and an infrared

camera to capture a video of the left eye.

The participants sat roughly 75 cm away from a 23 inch display 5.2.
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Figure 5.1: The DIKABLIS eye tracking system has two separate cameras: the field

camera looks to the front in order to capture the scene the participants are looking at,

and an infrared camera captures a video of their left eyes.

Before starting the experiment the DIKABLIS eye tracker was calibrated,

both for improving its pupil detection and gaze estimation capabilities.

Experiments were carried out in a room with controlled lighting to prevent

any external light sources interfering with the eye tracking system.

5.3.1 Eye-tracker Calibration

The DIKABLIS eye-tracker device should be calibrated for each partici-

pant, in order to estimate correctly the user gaze on the environment in

real-time. The device calibration can be done in two steps: user’s pupil

detection and gaze estimation.

The user’s pupil detection have to be done in order to ensure the full

detection of participant’s pupil, when it moves in its orbit, in order to
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Figure 5.2: The participants sat roughly 75 cm away from a 23-inch display while they

wore the eye-tracker device.

gaze at a target. For that, the infrared camera of the eye tracker device

has to be fixed at the right point. Besides, the lighting condition must be

adjusted such that reflects the minimum light to the participant’s pupil.

Figure 5.3 shows a sample of well-calibrated device where the user’s pupil

is detected in its whole its movement range.

The next step of calibration is due to estimating the user’s gaze point

correctly on the environment. For that, we asked user to look at a few

fixed points of the environment, then we calibrated the device by adding

offset values to the vertical, and horizontal axises of the gaze point. The

test was done, when the user gazed at the distant as well as close target

such as screen. At the final step, we asked user to gaze at the corners of
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Figure 5.3: Pupil detection step: The user’s pupil detection have to be done in order

to ensure the detection of pupil in its whole movement orbit when it shifts to gaze at

the target.

the display to ensure the device precision. Figure 5.4 shows a sample of

a calibrated system.

After the calibration steps, the gaze tracker is ready to collect, the

participants gaze behavior.

5.4 Data Collection and Analysis

5.4.1 Data Collection

Using the eye tracking device together with the DIKABLIS recorder soft-

ware, two separated video files are generated from pupil (through infrared

camera) and from field (through front camera). The DIKABLIS analysis

software produces a single video file of the field camera with an overlaid

cross-hair showing where the participants look.

We showed to the participants the three sub-scene of a social interac-

tion between two people while they assumed to be a member of the social

interaction. Then, we recorded their gaze behaviors during watching the

scenes. At the end of the experiments, we collected 11 video of all partic-

ipants where their gaze point were indicated on the screen by a red-cross

(see Figure 5.5).
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Figure 5.4: Gaze detection step: Users gazed at the specific points in order to ensure

the precision of the eye-tracker.

5.4.2 Data Analysis

ELAN [105] is used, as a powerful annotation software, to annotate the

participants’ recorded videos on a frame-by-frame basis: timing looking

at either person A (the person on the left in the scene), person B (person

on the right), or at the environment (other regions). We also annotated

when and how often the person not speaking provided a non-verbal social

cue. Table 5.1 summarizes how often the experiment participants looked

at each person and how often the person was either speaking or providing

a non-verbal cue.

After annotation, log files containing time duration (in ms) and po-

sition (i.e., person A, person B, environment) of the participants’ gaze

fixations were exported. The average attention of the participants was

calculated using Matlab.

Analyzing the average attention/gaze behavior of the participants,

we identified two types of gaze shift: saccadic and non-saccadic. Saccadic

gaze was the eye movement where it quickly gazes at the target and then

returns to the previous target. While non-saccadic gaze shift was the eye

movement that takes a longer time.

In order to identify the verbal/non-verbal cues that cause non-saccadic

and saccadic gaze shift to person A, person B and the environment, we an-
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Figure 5.5: Dikublis Analyzer generate a single video in which the participants gaze

point are shown as a cross.

alyzed the average participants’ gaze behavior obtained by using Matlab.

The average gaze pattern of participants was divided into 15 segments

(A–N) identifying regions where the observers’ attention were on an in-

dividual person (A or B). The various peak points of the average gaze

pattern were also selected by identifying verbal and non-verbal cues that

attracted participants’ attention thus triggering the gaze shift.

The GCS parameters were extracted according to the target selection

priorities of participants on the basis of the method described in Section

5.6.

After the GCS parameters had been extracted through human gaze

analysis and interpretation, the GCS generated gazes were compared to

the average gaze pattern of participants. The Kinect-acquired RGB-D

data was used as input to the GCS module, which generated a new video

similar to the one, obtained through the DIKABLIS eye tracker analysis

software. A red circle identifying the FACE robot gaze point was streamed

through YARP to the robot control library. The GCS generated video was

annotated using ELAN with the same modalities used for the participant’s

video annotations. The error between the two gaze paths was calculated

as an average of the absolute difference between the human gaze and GCS
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Figure 5.6: ELAN Environment.

pattern functions (error function).

5.5 Gaze Behavior Results

5.5.1 Participants Gaze Behavior

We collected the participants gaze behavior using the eye-tracking de-

vice, and then generated a single video that the participants’ gaze were

indicated on the environment as a red-cross. Since the movement of the

red-cross on the generated video shows the participants’ gaze behavior, we

annotated the video using ELAN to figure out the correlation between the

gaze behaviors and the actors’ features of the scene at the corresponding

time. Annotating the participants gaze behavior, 11 log files were gen-

erated in which the time and the positions that participant gazed were

obtained. Figure 5.6 shows the ELAN software environment.

Analyzing the generated log files using Matlab, we obtained the av-

erage gaze behavior graphs of all participants in which the average gaze
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Figure 5.7: At the top of the figure, the Average participant attention on person A

and person B are shown. At the bottom of the image, the average verbal/non verbal

behavior of person A and person B are shown.

behavior to the person A and B and environment were illustrated. Fig-

ure 5.8(a) shows the average participants attention/gaze on the person A,

and Figure 5.8(b) the average participants attention/gaze on the person

B, respectively. Table 5.1 reports average gaze behavior of participant to

the person A and person B, together with the high-level that two actors

showed during the three sub-scenes (see Figure 5.7).

In order to obtain the overall gaze behavior, high-frequency gaze shifts

were filtered through a second order low-pass filter, that resulted the

graph with dotted line in Figure 5.8.
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(a) Average attention of 11 participants on person A.

(b) Average attention of 11 participants on person B.

Figure 5.8: Average attention on person A and person B in the recorded video.
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Figure 5.9: Average participant attention on person A, person B, and the environment.

The segments identify regions when the gaze is kept on a person (A or B). The peaks

identify specific events that triggered the participant’s attention.

5.5.2 Non-saccadic Gaze Shift

As shown in Figure 5.9 and Figure 5.10 the average human gaze behav-

ior can be divided into saccadic (high frequency) and non-saccadic (low

frequency) movements. For example, peak 1 of segment A shows that

100% of the participants looked at person A. Analyzing the video at cor-

responding peak time shows that peak 1 corresponds to the instant when

person A entered the room and initiated the conversation with the ob-

server. Similarly, at Peak 2 of segment B, person B entered the room

while person A was still there. At this point 82% of participants looked

at person B and the rest of the participants kept their focus on person A.

With the same methodology, we analyzed the entire average gaze pattern

(Figure 5.9) by identifying various social verbal and non-verbal cues that

attracted participants’ attention. Social cues identified in the videos and

associated peak numbers are reported in Table 5.2.
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Table 5.2: Social cues identified in the average gaze pattern and their associated peak

numbers

Social Cue Peak Number

Entering 1,2,14,16,17,25

Speaking 3,8,9,14,16,18,19,22,24,26,27,28,29

Leaving 12,15,21,22,29,31

Table 5.3: Analysis of saccadic gaze behavior

Social Cue Section

Facial Expression A,B,E,F,K

Body Gesture C,D,G,H,M,N

5.5.3 Saccadic Gaze Shift

To identify social cues that cause a saccadic gaze shift, the non-filtered

data were analyzed. Figure 5.10 details the saccadic gaze shift during the

experiment. As illustrated, while almost all participants were attracted by

person B (sections B1-B6), some of them had several very quick and short

gaze shifts to person A (A1-A4). With the same methodology, beside

the cues that caused non-saccadic gaze shifts (i.e., entering, speaking,

and leaving), analyzing the non-filtered average gaze behavior, the cues

that caused saccadic gaze shift were identified: Facial expressions, body

gestures and hand motions. Saccadic triggering cues are reported together

with the associated log segment in Table 5.3.

5.5.4 Detail Analysis of the Participants Gaze Behavior

The following section describes in detail, the first scene (2:40 min) of the

eye-tracking experiment that watched by participants and lists the cues
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Figure 5.10: Participants gaze shift between person A (in section A1-A4) and person B

(in section B1-B6) in the video. Analyzing the corresponding videos demonstrates that

peak points are associated with the verbal/non-verbal cues that person A and person B

performed.

that caused saccadic/non-saccadic gaze shift considering time that these

cues have been shown on the video. In addition, it shows the correspond-

ing participants gaze behavior during watching the video. The above

information helps us to get more details about the effect of social cues

(signals) on the human attention and shows how some cues in a social

interaction cause non-saccadic gaze shift while some other cause saccadic

gaze shift.

To see a more clear image of the gaze movements, the average partic-

ipants gaze behavior was illustrated in two figures where Figure 5.11 and

5.12 show the first and second part of the scene respectively. Moreover,

Table 5.4 and Table 5.5 describe the activities and cues that actors of the

scene (person A and B) showed during the scene. Thus, analyzing the

participants gaze behavior graphs (Figure 5.11 and 5.12) and considering
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Table 5.4: Detail of the activities and cues that person A and person B showed in the

first recorded scene - part 1

From (sec) To (sec) Person A Person B

0 10 enter –

10 20 sit, speak –

20 30 sit enter

30 40 speak,mov. mov.,sit,facialexp.

40 50 speak speak

50 60 speak speak

60 70 hand motion speak

70 80 body mov., facial exp. speak

Figure 5.11: Detail of the average attention of 11 participants during watching the first

scene - part 1.

the content of the scene at the corresponding time period (Table 5.4 and

Table 5.5) allow us to track the effect of the different social cues on the

human attention.
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Table 5.5: Detail of the activities and cues that person A and person B showed in the

first recorded scene - part 2

From (sec) To (sec) Person A Person B

80 90 speak sit

90 100 sit speak

100 110 hand/body mov. speak

110 120 hand/body mov. speak

120 130 hand/body mov. speak

130 140 speak, hand/body mov. sit, speak

140 150 speak,sit speak

150 160 sit leave

Figure 5.12: Detail of the average attention of 11 participants during watching the first

scene - part 2.

As illustrated in Figures 5.11 and 5.12, the vertical axis shows the

percentage of participants that gaze at person A and person B. As ex-

pected, at some moments, almost all participants gazed at person A or B
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in the video however, in some other moments, only half or less than half

of them gazed at the targets. Besides, the participants gazed at the same

target with different durations in different times. This fact shows that

the cues of environment have not had the same effect on the participants’

attention.

As some examples of data analysis, the gaze behavior and associated

cues in the video are detailed as follows. For example, within the period

(0-22 sec) person A entered into the room while person B was outside

the room. As illustrated, person A was attracted the attention of all par-

ticipants. However, within the period (25-30 sec) that person B entered

into the room, most of the participants shifted gaze to person B. Or for

example, at the time like (t = 60) in which both person A and B showed

cues, participants showed different gaze behaviors.

Analyzing the recorded scene and the average participants gaze be-

havior in the frame-by-frame basis, we identified the features and their

importance in attraction human attention. With the same methodology,

we identified which features make saccadic and non-saccadic gaze shifts.

5.6 GCS Parameter Estimation and Priorities

Features

As discussed, the most important factor that enables the GCS to generate

a humanlike behavior is weight parameter of the attention model however,

gaze data analysis results showed that there is no generic gaze behavior

that can be used to implement a unique model as a standard for humanlike

gaze patterns. Especially in cases where speaking and hand or body

motions occurred at the same time, participants demonstrated different

gaze behaviors. However, through the analysis the maximum peaks in

saccadic and non-saccadic gaze shifts of participants, the priorities of
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verbal and non-verbal cues in attracting human attention were estimated.

The strongest cue attracting the attention of all participants was the

new-entry (person A/person B) who joined the interaction. Even when

person A was speaking with a participant and at the same time person

B arrived, all participants were attracted by the new-entry (person B).

Thus, the highest priority should be given to the new-entry.

The second priority is given to the auditory signals (speaker). Once

person A/B started speaking, all participants were attracted by the speaker.

It should be noted that, if one person showed body gesture while another

one was speaking, most participants were distracted by the body gesture

for a very short time and gazed back to the speaker quickly, which shows

the higher importance of auditory signals.

In addition, a few of participants were attracted by the speaker all

the time and ignored the body gesture/hand motion of the other person.

Therefore, the third priority goes to body gesture/hand motion.

The last two priorities are given to the person leaving and facial ex-

pressions, respectively, which attracted less attention compare to other

cues.

The identification of a set of parameters that enables the GCS to

generate in the FACE robot, a similar gaze to that observed in humans,

both saccadic and non-saccadic movements triggering cues, were consid-

ered. The weight parameter Wi of GCS introduced in Equation (5.2) was

calculated considering a maximum value of 100, based on the identified

empirical priority order extracted, by analyzing the maximum peaks for

each cue (Figure 5.10) during the video. The priority order and the as-

signed GCS weight are reported in Table 5.6. In addition to Table 5.6, we

set a distinction factor for those features that cause a saccadic gaze shift.

This enables GCS to have both saccadic and non-saccadic gaze behavior.
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Table 5.6: Verbal and non verbal cues identified as attention triggers and their associ-

ated GCS weight calculated on the basis of human observed priorities

Priority Social Cue GCS Weight

1 (highest priority) Entering 100

2 Speaking 100

3 Hand motion/body gesture 65

4 Leaving 55

5 (lowest priority) Facial expressions 45

5.7 Gaze Control System Behavior

After the weight parameter of the attention model had been tuned based

on the empirical data of humans, it is expected that the GCS shows the

humanlike behavior in the same social interaction.

To test the performance of the GCS, the Kinect-acquired RGB-D

streams were used as input to the GCS. With the same method, a new

video was captured from the screen, similar to the one obtained through

the DIKABLIS eye tracker analysis software. A red circle identifying the

FACE robot gaze point was streamed through YARP to the robot control

library (Figure 5.13).

The GCS generated video was annotated using ELAN with the same

modalities used for the participant’s video annotations and the system

behavior plotted using Matlab (Figure 5.14).

The error between the two gaze behaviors was calculated as a mean

of the absolute difference between the human gaze and GCS behaviors

(error function).
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Figure 5.13: The gaze control system’s behavior was recorded in which the identified

targets by the system was indicated with a red-cross.

5.8 Human and GCS Generated Gaze Behavior

Comparison

As discussed, through an in-depth gaze study, we obtained the average

gaze behavior of humans in the social interaction and the GCS behavior

in the same scene of social interaction.

In order to obtain the performance of the GCS, its results should be

compared to the human data. Since we identified two gaze movements

(i.e., saccadic and non-saccadic), the performance of the system in repli-

cating these behaviors should be evaluated.
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(a) Gaze control system attention on person A.

(b) Gaze control system attention on person B.

Figure 5.14: Gaze control system attention on person A and person B in the same

recorded video.
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5.8.1 GCS Performance in Replicating Non - saccadic Gaze

Behavior

To evaluate the ability of the system in replicating non-saccadic gaze

shifts, the filtered gaze data of humans and the system are compared.

Figure 5.15 shows the comparison of the average gaze of participants to

the GCS generated pattern for the same scenes. The upper image shows

the attention on person A; the lower image shows the attention on person

B. The graph shows that the system follows the human gaze behavior for

the entire duration of the video.

We derived the error function as difference between human average

gaze behavior and the system behavior at person A and person B as

follows

error(t) = Fhuman(t)− Fgcs(t) (5.3)

where Fhuman(t) shows the average gaze behavior of humans and

Fgcs(t) shows the system gaze behavior for the same scene. Figure 5.16

illustrates the error function between humans behavior and the system

behavior during the same scene. The mean of the absolute error func-

tion shows that the system is able to replicate the average human gaze

behavior with a replication factor of 89.4% throughout the video.

5.8.2 GCS Performance in Replicating Saccadic Gaze Be-

havior

To evaluate the capability of the system in replicating saccadic gaze shifts,

the non-filtered gaze data of humans and the system are compared. Fig-

ure 5.17 compares the average gaze of participants to the GCS generated

pattern for the same scenes. The upper image shows the attention on

person A; the lower image shows the attention on person B. The graph
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Figure 5.15: Comparison of human and robot gaze behavior.

Figure 5.16: error between human and robot gaze behavior.

shows that the system follows the human gaze behavior for the entire

duration of the video.

Considering saccadic eyes movements (red continuous line in Figures
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Figure 5.17: Non-filtered data comparison of human and robot gaze behavior.

Figure 5.18: Non-filtered error between human and robot gaze behavior.

5.8(a) and 5.8(a)), the accuracy rate of the GCS decreases to 75.2%,

which is likely due to limitations in sensor detection range and speed in

comparison to the human eye.
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5.9 Discussion

A context-aware social gaze control system, which enables the social hu-

manlike robot FACE to display humanlike gaze behavior has been pre-

sented chapter 4. The underlying attention mechanism of the imple-

mented gaze control system used high-level social features, such as non-

verbal and verbal cues, proxemics, an effective visual field of view, and the

habituation effect, to determine where the robot should direct its atten-

tion. In order to enable the proposed system in generating a humanlike

behavior, we tuned the GCS’s parameters based on the human attention

priority in selecting features in a dynamic human-human interaction. To

identify the feature priorities, we performed a gaze tracking study with

an eye tracker.

Although the GCS with the tuned parameters should perfectly display

gaze behavior similar to human, experimental results showed that the

GCS is able to replicate average human behavior for both non-saccadic

(89.4% accuracy) and saccadic (75.2% accuracy) movements with some

errors. The lower accuracy especially in the case of saccadic movement

replication may be due to several points.

Diversity in human gaze behavior: individual human gaze behavior is

correlated especially in saccadic movements to the factors such as person-

ality, age, and gender [29]. Thus, gaze behavior is different from person

to person. Our model replicates the average gaze behavior of the partic-

ipants of our experiment. These personal differences are not replicated

in the GCS due to the extraction of average based parameters. However,

these differences are common in humans and consequently not perceived

as being strange but more as personal and unique peculiarities.

Limitations of the input sensor used: compared to the human eye, the

Kinect sensor has a narrower field of view and a much lower resolution,

which affects the attention computation of the GCS. The most influencing
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system limitation was probably the sensor range of the Kinect, which is

between 800 mm and 4000 mm while humans are able to see much further.

Thus, the experiment participants were able to detect people who entered

the room shown in the video, when they were for example in their public

space (see Figure 3.2). The maximum sensor range of Kinect is similar

to that of a human’s social space.

Unmodeled human attention features: although our human attention

model already considers many features that guide human attention, there

are still other unknown factors that we did not use in our model. For

example, Figure 5.9 shows the participants looking at the environment

over time.

In addition, there are further external features that guide the atten-

tion selection mechanism, which we did not include in the current imple-

mentation. For example, taking into account the auditory information

that comes from outside visual FOV and considering the intentions of

people during a social interaction could help the attention mechanism to

generate a more natural humanlike social gaze behavior.

However, as shown in Figure 5.15 and Figure 5.17, the proposed imple-

mentation of the GCS is able to select the appropriate gaze target points

at the right time, which is essential for the development of believable

social robots.

5.10 Summary

This chapter described a gaze tracking study using a professional eye-

tracker device that is carried due to adjusting the weight parameter of

the attention model of the GCS. Analyzing the average gaze behavior of

11 participants, the priorities that humans have in selecting features in a

social interaction were identified. According to the obtained gaze analysis

results, the system attention parameters were tuned.
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To test the performance of the system, the same scene were used that

we had showed to the participants as input for the GCS, and analyzed

the behavior of the system. The comparison between average human

gaze behavior and the system behavior showed that the GCS is able to

replicate human gaze behavior with high degree of precision, in a social

interaction. The result showed that the GCS, as an essential component

of the humanlike robot was able to select right target point and at the

right time which is important for an effective HRI.
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Chapter 6

Conclusion and Future Work
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An innovative context-aware social gaze control system (GCS) has

been implemented as a part of a humanlike robot called FACE. Employ-

ing GCS, the robot, possesses the perceptual capabilities similar to hu-

mans, that is fundamental in regulating the robot’s behavior to perform

a meaningful human-robot interaction. The robot, is able to perceive

and interpret its surrounding environment in the same way that human

being does. Using GCS, the robot and humans have the same attention

mechanism to identify the same types of stimuli salient at the same time.

Integrating the system, the humanlike robot is able to autonomously ana-

lyze the environment, identify its target regarding the current social scene
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and generate a context-aware gaze shift to the selected target such that

the dynamic of the head and eyes movements are similar to humans.

In short, robot is now able to autonomously spend an hour with multi-

ple people in a dynamic environment, while during the interaction exhibits

a context-aware social humanlike gaze behavior in a such a way that it is

being perceived by human as natural, that is a fundamental step toward

developing a believable creature which yields several positive outcome for

human society.

This thesis discussed in detail the human-robot interaction problem

from two perspectives: theoretical and technical. The first part of the

thesis discussed the psychological parameters and phenomena that affect

human attention and gaze behavior in a social interaction, and should be

considered when developing humanlike model for social robotic applica-

tion. The second part presented the proposed system that is developed

to fill the existing gap in the state-of-the-art. Finally, the last part of

this thesis discussed the results and efficiency of the system as well as the

evaluation process that was done with real data of humans.

The following sections summarizes the proposed system, contributions

of the work to the state-of-the-art, and the future work.

6.1 Conclusion

In this thesis different methods and algorithms were proposed, to take a

step forward in the field of human attention and gaze behavior modeling

for social humanlike applications. The proposed systems are concluded

as follows.
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6.1.1 Human-level Perceptual System

As a fundamental component of social humanlike robots, a human-level

perceptual system that simulates human perception was developed. The

system receives as the input RGB-D images and sound signals constructed

by Kinect and creates as the output a human-level interpretation of en-

vironment for the robot. The system consists of several well-integrated

real time perceptual components that work together and in parallel, to

actively recognize several high-level human-relevant features and to iden-

tify non-human environmental salient points. The main aims of designing

a human-level perceptual system is essentially twofold: on one hand, to

recognize and estimate the high-level and low-level features that are re-

quired by the attention in order to identify its target point, and on the

other hand, to give the robot the ability to make a social exchange with

the selected target according to the detected perceptual information of

that target. The perceptual system consists of the following components.

• Using a high speed object recognition engine called SHORE, the

perceptual system detects multiple faces (frontal/rotated) in a sin-

gle frame and tracks them in a real-time video while it assigns a

consistent identification number to each of detected faces. In ad-

dition, SHORE recognizes wide variety of facial features including

four universally agreed facial expressions (i.e., happiness, sadness,

surprise, and anger) in percentage, gender (male/female), estimates

age (years) the eyes and mouth state (open/close), and locates face,

eyes, nose, and mouth in pixel (X,Y). SHORE has an internal timer

that stores the entry time in FOV of humans.

• Using Microsoft Software Development Kit (SDK), the perceptual

system locates the 3D positions (X,Y,Z) of 6 people while it extracts

full skeleton information (the 3D positions of 20 body joints) for 2
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closer human. A dynamic gesture recognition system monitors the

extracted body joints position in order to detect specifics motions

and meaningful gestures.

• Using PCA-based face recognition engine, the perception layer com-

pares the detected faces with the subject data-based in order to

identify the subjects name. It enables the robot to adjust its long-

term and short term interaction with people in specific social ways.

• Using a salience-based engine called fastSUN, the perceptual sys-

tem analyzes low-level features of an image and identifies the most

important environmental point as salient point in pixel (X,Y).

The perceptual system was developed to create a human-level inter-

pretation that simulates human attention for the robot. As discussed,

the system collects several high-level communicative features of human

and environment and creates a meta-scene object that is a human-level

interpretation of environment.

6.1.2 Human-level Attention System

As a fundamental component of social humanlike robots, a human-level

attention system that simulates human attention was developed. It re-

ceives in real-time as input the meta-scene object constructed by the per-

ceptual system and actively identifies the most important human/non-

human point that the robot should gaze at, based on a feature-based

human-level attention model. The model evaluates all features of the

humans presented in the scene and computes a score for each of people

by summation of weighted features. Clearly, it selects one with highest

score as winner, among people and environmental point identified by the

perceptual system. Thus, if the people are not interesting enough for the
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robot, the attention model shifts to the environment otherwise it selects

a human for interaction.

The attention, system computes scores based on the evaluation of

those features that have been proven to guide human attention in a social

interaction. In addition it weights the features according to the priorities

that human attention has in selecting features. This priority is identified,

through an in-depth gaze study, using a professional eye-tracking device.

6.1.3 Gaze Control System

As a fundamental component of social humanlike robots, a gaze control

system that controls the robot’s gaze movement, was developed. It re-

ceives in real-time as input, the identified target point’s address in pixel

from the attention system and controls the eyes and head of the robot in

such a way that robot displays a humanlike, meaningful and believable

gaze movements. System moves the robot’s head and eyes actuators, ad-

justing their amplitudes, speed, latencies, and priorities. As result, the

robot gaze moves from one point to another in a humanlike way.

6.1.4 Data Communication Unit

Due to required computational processing cycle, the perceptual and at-

tention systems were implemented in two different machines. YARP as

a reliable wireless communication channel was developed for data com-

munication between different systems and components. For example, it

transfers the created meta-scene object by perceptual system to the at-

tention system, which is implemented in different machine with different

IP.
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6.1.5 System Evaluation

As part of a pilot evaluation, the gaze behavior of 11 participants were col-

lected using a professional eye-tracking device. Participants were shown

videos of two-person interactions and tracked their gaze behavior. An-

alyzing human gaze data, we identified two types of gaze behavior as

saccadic and non-saccadic. A comparison of the human gaze behavior

to the behavior of the gaze control system running on the same videos

showed that the system replicated human gaze behavior with an accuracy

of 89.42% for non-saccadic movements and 75.23% for high-speed saccadic

movements. The system allows the control of the robot in performing the

social attentive tasks in which believable behaviors are mandatory.

6.2 Main Contributions to the State-of-the-art

Many efforts have been conducted to design attention systems which guide

robot gaze fixation based on the salience of low-level features presented

in the visual scene (colors, intensity, orientation, and etc.). However,

due to several shortcoming, the salience-based attention model dramati-

cally failed in replicating human attention and gaze behavior in a human-

centered scenario. For that this thesis presented a social context-aware

gaze control system for humanlike robot applications that considers both

low-level visual features and high-level human-relevant social features in

the robots attention. The attention mechanism of the system identi-

fies targets based on the low-level visual feature analysis and high-level

human-relevant feature analysis. Parameters of the system were tuned

based on the gaze study according to the human attention/gaze behavior

in selecting features of environment, in a social interaction.

An innovative gaze model was developed based on the previous stud-

ies. It controls not only the amplitudes of head and eye movements
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but also their velocities, latencies and movements’ priorities. Using this

model, robots shows the humanlike motion when it shifts its gaze in a

social interaction.

The overall integrated GCS system has been implemented as a part

of a humanlike social robot called FACE, and drive its dynamic attention

and gaze in real-time in a multiparty social interaction.

6.3 Future Work

System evaluation showed that the major limitation of the GCS is due

to the narrow field of view of the used Kinect camera. As a future plan

to circumvent this problem, by either using more than one Kinect or by

replacing the Kinect camera with other sensors.

Moreover, the possibility to continuously adapt the GCS weight and

parameters according to the robot emotional mood will be investigated.

This mood based GCS tune will allow the FACE android to adapt its

behavior not only based on the social scenario on which it is trying to be

involved, but also in accord to its internal emotional state.
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Designing and Evaluating a Social Gaze-Control
System for a Humanoid Robot

Abolfazl Zaraki, Daniele Mazzei, Manuel Giuliani, and Danilo De Rossi

Abstract—This paper describes a context-dependent social gaze-
control system implemented as part of a humanoid social robot.
The system enables the robot to direct its gaze at multiple humans
who are interacting with each other and with the robot. The at-
tention mechanism of the gaze-control system is based on features
that have been proven to guide human attention: nonverbal and
verbal cues, proxemics, the visual field of view, and the habitua-
tion effect. Our gaze-control system uses Kinect skeleton tracking
together with speech recognition and SHORE-based facial expres-
sion recognition to implement the same features. As part of a pilot
evaluation, we collected the gaze behavior of 11 participants in an
eye-tracking study. We showed participants videos of two-person
interactions and tracked their gaze behavior. A comparison of the
human gaze behavior with the behavior of our gaze-control system
running on the same videos shows that it replicated human gaze
behavior 89% of the time.

Index Terms—Active vision, context-dependent social gaze be-
havior, human–robot interaction, scene analysis, social attention.

I. INTRODUCTION

W ITH the rapid advancement of humanlike robots and
of related computing methods in robotics, social robots

that interact with humans are becoming more integrated into
daily life [1]. Social robots are designed for tasks and scenarios
that require close interaction and collaboration with humans.
Thus, in addition to task-performing capabilities, social robots
must be able to display socially acceptable behavior. For exam-
ple, Fig. 1 shows the facial automaton for conveying emotion
(FACE) humanoid robot [2], [3], involved in a social scenario
where it interacts with a group of people. To display behavior
that humans perceive as natural, the robot should direct its atten-
tion at the most important person at the right time based on the
current social context. Social robots thus require a mechanism
that is able to control attention and gaze on the basis of social

Manuscript received March 17, 2013; revised October 17, 2013 and
December 18, 2013; accepted January 19, 2014. This work was partially funded
by the European Commission under the 7th Framework Program projects
EASEL, “Expressive Agents for Symbiotic Education and Learning,” under
Grant 611971-FP7-ICT-2013-10, and JAMES, “Joint Action for Multimodal
Embodied Social Systems,” under Grant 270435-FP7-STREP. This paper was
recommended by Associate Editor B. F. Mettler.

A. Zaraki and D. Mazzei are with the Research Center “E. Piaggio,” University
of Pisa, 56122 Pisa, Italy (e-mail: ab.zaraki@gmail.com; mazzei@di.unipi.it).

M. Giuliani is with the Department of Cyberphysical Systems, Fortiss GmbH,
80805 Munich, Germany (e-mail: giuliani@fortiss.org).

D. De Rossi is with the Department of Information Engineering, University
of Pisa, 56122 Pisa, Italy and also with the Research Center “E. Piaggio,” Uni-
versity of Pisa, Italy (e-mail: d.derossi@centropiaggio.unipi.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/THMS.2014.2303083

Fig. 1. FACE humanoid robot interacts with a group of people. Picture cour-
tesy: E. Gargano.

cues and information that are extracted from raw visual-auditory
data.

To design attention systems for social robots, it is necessary
to consider the psychological, neurological, and computational
aspects of human attention [4]–[10] as well as the social cues and
conventions. This information can support a robot gaze-control
system (GCS) to direct attention at the appropriate target during
interactions with humans.

This paper presents a modular context-dependent social GCS
which has been implemented as part of the Hanson humanoid
robot FACE [11]–[14]. The GCS enables the robot to analyze
high-level features and cues of a complex social scene in or-
der to direct the gaze at the most important social target. The
selection of these points is based on high-level visual and audi-
tory features, which are extracted from two-dimensional (2-D)
videos, depth data, and auditory signals. The GCS captures
and analyzes incoming sensory inputs, identifies humans in the
robot’s environment, and extracts their high-level social features
(i.e., facial expressions, age, gender, body gestures, head pose,
distances, orientation, and speaking probability), using paral-
lel algorithms. Using the extracted high-level social features,
an attention model selects the most prominent attention target.
The GCS continuously adjusts the robot gaze parameters using
an algorithm that is based on an implementation of Itti et al.’s
model [15]. As a proof of concept, we evaluated a prototype in
a social context comparing GCS-generated attention points and
gaze trajectories with human gaze data that are acquired using
an eye tracking device.

2168-2291 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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II. BACKGROUND AND RELATED WORK

Section II-A discusses human and robot attention modeling
and Section II-B reviews how attention modeling can support
human gaze models and the implementation of robot gaze
models.

A. Attention Modeling

The main aim when modeling human attention is to iden-
tify which features guide human attention in a complex scene
and how these features influence human attention. Researchers
have described two different aspects of the human attention tar-
get selection process: top-down and bottom-up processing [16].
Predicting human attention is a complex issue, which involves
both aspects of attention processing and needs models that sim-
ulate the working of the mind [17] which is beyond the scope of
this paper. The attention modeling in this study focuses on the
bottom-up cues (features) without a top-down cognitive effect.

The low-level visual features of an image (i.e., color, inten-
sity, and orientation) guide human attention to specific target
points of a visual scene [18]–[21]. In the computational imple-
mentation of salience-based attention models of [18], attention
selection for a given visual scene is as follows. First, the algo-
rithms extract visual low-level features of the given scene. Next,
local competition across image space and feature scales is com-
puted yielding feature maps. Finally, individual feature maps are
combined by weighted sums creating the salience map. Based
on the salience map, the algorithm can then select attention
targets, for example by applying the “winner-takes-all” princi-
ple. Salience-based attention models have been used in several
robotics applications [15], [21]–[23]. Some researchers have
also extended salience-based attention models, by adding low-
level features and using image-processing techniques, including
human face region [24], depth and motion information [25], and
spatial resolution of an image [26].

For human–robot interaction, attention models must be ca-
pable of mimicking the gazes of speakers and listeners. Tatler
et al. [27]’s review of the major limitations of salience-based
attention modeling showed that such models do not account
for many important aspects of complex scenes that cannot be
explained only through low-level features analysis. Therefore,
when designing a social robot attention system, high-level com-
municative and social features (e.g., verbal/nonverbal cues) must
be accounted for, which are fundamental to the human attention
system.

Mutlu et al. [28] derived a gaze model (attention points) of
a human during story telling by first collecting gaze patterns
(locations of attention points, target selection frequencies, and
fixation durations) of a professional storyteller. They designed
and evaluated a model that reproduced human natural gaze be-
havior on the humanoid robot ASIMO. They assessed the ef-
ficacy of their gaze model by manipulating the frequency and
fixation duration of the robot’s gaze between two participants.
Participants recalled the story better when the robot looked at
them during storytelling, although women liked the robot more
when it looked at them less frequently. Although Mutlu’s gaze
model generated a natural gaze, it was not aware of the social

context of the dynamic scene, and displayed only a predefined
gaze pattern.

Trafton et al. [29] integrated vision and audition within a cog-
nitive architecture, which enabled a social robot to track con-
versations and focus its attention on the speaker. They evaluated
their system on a social mobile robot. The proposed architecture
correctly guided the robot’s attention to the correct speakers, but
it did not account for many of the human communicative cues
(e.g., gesture, motions, proxemics) known to be fundamental for
social attention calculation.

Holthaus et al. [30] proposed a spatial model for a robot at-
tention system. The system drives the attention of a receptionist
robot according to the spatial information of humans interact-
ing with the robot. The robot located and tracked humans in
its field of view (FOV) by monitoring their distance. The robot
moves its head and body in order to initiate or terminate a so-
cial interaction with humans when they are getting closer to
the robot. Through a questionnaire-based evaluation, Holthaus
et al. found that even if the robot made random movements
when someone was approaching, external observers evaluated
the interaction as humanlike. Although the results show the im-
portance of proxemics and contextual reactions when modeling
humanlike robots to enable robots to have a natural social gaze
behavior, their system lacks other factors (e.g., gesture anal-
ysis, auditory signal analysis) that have been proven to guide
attention in human attention modeling.

With regard to the current challenges in attention systems for
social robots, we hypothesize that a comprehensive attention
model should specify the most prominent target points on the
basis of high-level environmental visual and auditory features
analysis. Here, we propose a features-based attention model
based on empirical data and not on a neurological model. We
show that the proposed attention model can emulate human so-
cial gaze behavior based on high-level human-relevant features
of 2-D images, 3-D images, and auditory signals. Our frame-
work also provides a similar high-level image interpretation for
social robots to the human attention system. Thus, the GCS
enables a social robot to naturally interact with multiple peo-
ple in a dynamic environment and take into account the social
context.

B. Gaze Modeling

A gaze is a coordinated motion of eye and head movements
through which the center of human visual attention is moved to
a specific point that is identified by the human attention system
on the basis of various attractive cues.

Through analysis of the gaze behavior of humans and mon-
keys, Goldring et al. [31] demonstrated that gaze behavior is
regulated by complex dynamics that support observation and
deliver meaningful information, thus driving the conversation
flow. They studied the characteristics of the human head and
eye movement to understand the strategies when people gazed
at visual, auditory, and visual-auditory targets. They found that
target modalities have an effect on human gaze characteristics,
some of which they identified (head and eye velocities, motion
amplitude delays) during gaze shifts between targets.
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Several models and implementations of robot/agent GCSs
have been proposed. Andrist et al. [32] proposed an effective
gaze model for virtual agents with various gaze characteristics
such as amplitude, velocity, and latency period in a gaze shift.
They evaluated their gaze model on a humanlike virtual agent.
Andrist’s results show that when the agent maintains its head
orientation toward the participant to emphasize the social inter-
action (affiliative gaze), it induces positive feelings. In addition,
when the agent maintains its head orientation more toward vi-
sual space to emphasize other information (referential gaze), it
improves the participants learning capabilities.

Itti et al. [15] presented a gaze model for target shift and
smooth tracking which was implemented using an avatar. In
their model, the amplitudes of head and eye movements were
estimated and linked with the initial position of the eye in its
orbit.

However, due to the complexity of human gaze behavior,
a comprehensive context-dependent model that estimates gaze
parameters (e.g., velocity, amplitude, latency), has not yet been
implemented for robots and avatars.

In this study, an innovative GCS, which is based on a combina-
tion of work presented in [15], [31], and [33], was implemented
and tested in order to control the head and eye movements (gaze)
of the FACE robot.

III. SOCIAL CUES FOR ATTENTION ELICITATION

The GCS calculates the robot’s attention on the basis of vari-
ous social cues that are extracted as the high-level interpretation
of raw images, sounds, and depth data acquired through the
robot’s hardware. In this section, we describe nonverbal/verbal
cues, proxemics-derived features, an effective visual FOV, and
habituation effects in humans and their implementation in the
GCS.

A. Nonverbal/Verbal Cues

Nonverbal cues are wordless signals that are used to deliver a
meaningful message and consist of approximately two-thirds of
human–human interaction [34]. People use facial expressions,
body gestures, head poses, and gazes to attract other people’s
attention, to express their emotions and intentions and to manage
the flow of interaction [35].

Verbal cues such as vocalization, prosody, and speech, in
particular, directly affect human attention. Argyle and Dean
[36], [37] found that humans are able to immediately locate
single speakers in a group. Using a gaze tracker, Vertegaal et al.
[38] showed that in a group of four people, listeners looked at
the person who was speaking 88% of the time.

A gesture recognition system was therefore integrated in the
GCS to recognize the motions and gestures of humans. Verbal
cues are analyzed in the GCS combining the human-tracked in-
formation with a speech angle detection device, thus identifying
the speaker in the social context in which the robot is involved.

B. Proxemics

Proxemics, i.e., the physical distance between two humans,
influences implicit and explicit interaction between people. Hall

Fig. 2. Left semicircle: according to Hall’s theory, there are four reaction
bubbles at certain distances around the human body that influence implicit and
explicit interaction between people. The intimate distance is used to embrace
or touch a person, the personal distance for interactions between family and
close friends, the social distance for interactions between acquaintances, and the
public distance for speaking in public. Right semicircle: human sight is centered
on the eFOV. We regard social signals shown in the eFOV and in the areas left
and right of the eFOV as having a high, medium, or low relevance, depending
on the distance of the eFOV.

[39] investigated the effect of physical space as an important
nonverbal cue in the interpersonal communication. He defined
four “reaction bubbles,” which are circles (intimate, personal,
social, and public distances) located around the human body
at varying distances (see the left semicircle of Fig. 2). Human
social cues elicit different levels of attention depending on their
spatial location. For example, if a human raises his/her hand or
eyebrow, the attention of the surrounding people will be attracted
to different extents, based on their distances. Their attention will
be drawn more often toward the human giving the social cue, if
the human is in their personal space, while they look less often
at this person if he/she is located in their social space. Tatler
et al. [40] and Bahill et al. [41] showed that people look at
close targets more frequently than at distant targets. Thus, in the
GCS, distance is considered as a nonverbal cue that influences
the attention.

C. Effective Visual Field of View

The human eye collects visual information at high resolution
from a small central area called the fovea, while the peripheral
FOV is sampled at lower resolutions [33]. Human attention is
more attracted by affective and social visual features in a small
central area known as the effective field of view (eFOV). Social
visual features collected in this area elicit higher levels of human
attention. Behavioral studies indicate that humans have a strong
tendency to look at the center of an image, regardless of the
content of the whole image [42], [43]. Thus, we consider the
angle between a human position in the scene and the center of
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Fig. 3. Modular structure of the GCS: the perception layer receives audiovisual
information and extracts human social cues. Based on these cues, the attention
layer computes the most prominent target points. Using a gaze model, the GC
layer drives the robot’s actuators according to target positions.

eFOV as a nonverbal cue that influences the robot’s attention
toward the human. The right semicircle in Fig. 2 shows the
relevance levels implemented in the GCS: a human located in
the eFOV is considered as highly relevant; signals viewed in a
30◦ radius left or right of the eFOV with medium relevance, and
all other human social signals as low relevance. In this study,
we used the concept of the eFOV only for visual features of a
human presented in FOV.

D. Habituation Effect

The habituation effect is a decrease in response to a stimulus
after repeated presentations [44]. In the GCS, habituation is
implemented as a time-variant function that adjusts the level of
attention elicited by the selected target, similar to the work of
Breazeal et al. [22].

IV. GAZE-CONTROL SYSTEM

Our GCS consists of three distinct layers: perception, at-
tention, and gaze control (GC) (see Fig. 3). The GCS collects
visual-auditory information from the environment, detects and
analyzes a wide range of human social cues. It then selects the
most important region to focus attention on. In order to ensure
humanlike head and eye movements, attention selected points
are passed to a gaze dynamic control layer implemented on the
basis of [15], [31], and [33].

In this section, we describe the three GCS layers together
with details of the FACE robot hardware and control software.

TABLE I
PARAMETERS EXTRACTED BY THE PERCEPTION LAYER

A. Perception Layer

The perception layer contains two parts: data acquisition and
feature extraction. These parts prune data and extract high-level
features from the visual-auditory information of a social scene.
The perception layer acquires raw data through a Microsoft
Kinect device running the Kinect for Windows SDK.1 A Kinect
RGB-D camera records 2-D video and depth images with a
resolution of 640 × 480 pixels at 30 fps and has a built-in
four-element microphone array for audio beam acquisition.

Kinect-acquired raw data are analyzed by extracting a variety
of verbal and nonverbal cues that are classified using different
taxonomies and stored in a meta-scene object which is streamed
to the attention layer through a YARP [45] gateway.

The GCS implementation aims to extract socially relevant
visual features (i.e., human proxemics, orientation, facial prop-
erties, gestures, and entry time) and auditory features (i.e., sound
source angle and pronounced words), through various parallel
algorithms and/or dedicated libraries. The algorithms/libraries
and extracted features are summarized in Table I.

1) Face Detection, Facial Expression Analysis, and Face
Recognition: Observation of human visual attention revealed
that face-like shapes attract human attention [46]. In addition,
various features such as a human’s age and facial expressions
(i.e., happiness, sadness, surprise, anger), directly regulate the
social interactions [47]. In a social context, it is imperative to
know the age and gender of the interactional partners and to
continuously receive feedback of facial expressions and mim-
ics. Like humans, robots should have the same ability to lo-
cate faces and understand facial expressions and related social
features.

For facial expressions analysis, the perception layer uses the
sophisticated high-speed object recognition engine (SHORE)
[48], [49]. SHORE is a robust detection engine that is based on
the illumination invariant approach that detects multiple faces in
a single frame and tracks them in real time. The SHORE engine
receives the 2-D frame that is acquired from Kinect, detects
faces, assigns consistent IDs to each face, and estimates various
facial features which are reported in Table I.

1http://www.microsoft.com/en-us/kinectforwindows/
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Fig. 4. Example for face-related feature extraction: the module detects a face
and extracts the estimated happiness ratio, age, gender, and entry time.

Recognizing facial features and expressions is very important
for social context analysis but requires information on the iden-
tity of the humans to be integrated to enable the robot to adjust
its behavior in a context-dependent manner.

The GCS perception layer integrates a facial recognition en-
gine that is based on principal component analysis (PCA) [50].
The facial recognition module uses a pretrained dataset to as-
sign an identity to the recognized faces and stores the extracted
features in the face dataset. Fig. 4 shows an example of the per-
ception layer merged information where the person’s name and
facial information recognized from the SHORE engine (i.e., esti-
mated happiness ratio, age, gender, and entry time) are merged.

2) Body Gesture and Head Pose: People use body gestures
and head poses as social signals when they interact with each
other [35], [51] and these signals are one of the strongest nonver-
bal cues that elicit human attention. For example, in a multiparty
interaction, if one of the humans raises his/her hand or waves
the arm, others will direct their attention to him/her. Robots thus
need to be able to react to these social cues.

The perception layer uses the skeleton tracking of the Kinect
SDK to recognize a person’s movements. The Kinect SDK lo-
cates up to six humans by merging information from RGB and
depth images and recognizes body joint coordinates for the two
closest persons. In order to estimate the head pose, the percep-
tion layer computes Euler angles (pitch, roll, and yaw angles),
using SDK’s head data in real time. In addition, we implemented
a dynamic body gesture and head pose recognition engine which
continually monitors the body’s motion and head pose through
extracted skeleton information, and identifies meaningful mo-
tions.

3) Speaker Location: The auditory streams cause an unin-
tentional shift of attention that usually shifts the gaze toward
the sound source. Hence, it is essential for robots to localize the

speaker in a multiparty interaction. The perception layer uses
the Kinect SDK to calculate the sound source direction with a
triangulation algorithm. It computes the 3-D position and beam
angle of sound signals received by the microphone array. The
algorithm considers only auditory signals that can be associated
with humans in the scene by comparing the direction of the
sound to the 3-D positions of the detected humans. In a real
situation, human attention is also attracted by auditory signals
outside the visual FOV, which are not relevant to the visual
stimuli. However, because of the limitation of the sensor detec-
tion range, the system is designed to ignore sound signals, not
related to multiparty interaction, as environmental noise. This
limitation of the system is one of the issues that prevent natural
gaze behavior from being generated.

Once a sound source is associated with a person, a dedicated
engine is used to recognize speech and convert it to text if
possible. A human’s recognized words are stored in the meta-
scene objects along with a speaking probability parameter that
is calculated on the basis of a comparison between the sound
angle and the human’s position.

4) Database: A database of all people seen by the perceptual
layer is stored as the meta-scene object. The meta-scene object
has a hierarchical structure through which an arbitrary number of
people can be inserted. Each person object includes the person’s
unique ID and the associated high-level features.

Once a new person has been identified by the PCA identifica-
tion algorithm and by SHORE, a new person instance is created
in the meta-scene object which is populated with the features,
extracted by the perceptual layer. Since the PCA engine recog-
nizes frontal faces, new pictures are continuously taken by the
RGB image and stored in the PCA training set. PCA unrecog-
nized humans are inserted into the meta-scene object using a
temporary ID which is reassigned once the new person name
has been inserted by the operator through the GCS interface.

Through the NET object serialization, the meta-scene object
is converted into an XML structure which is streamed through
a dedicated YARP port between the GCS layers and modules.

B. Attention Layer

The attention layer receives the meta-scene object as XML
streamed through YARP, and then deserializes it back in a man-
ageable object. The aim of the attention layer is to find the most
prominent region of the scene that the robot should focus on.

1) Target Selection Strategy: The core of the attention layer
calculates the elicited attention (EA) level of each human present
in the scene, on the basis of various features. Since the numerical
values quantifying the features are not within the same range,
they are normalized (Xn ) to the range [0, 1] by considering the
maximum values that features can have according to the sensor
properties and features ranges. The overall EA of each human
in the scene is calculated on the basis of four main components:
social features (F), proxemics (P), orientation (O), and a memory
component (EAM):

EASj
(t) = FSj

+ P (r) + O(θ) + EAMSj
(1)
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Fig. 5. Green line shows the sight line of FACE, while S1 to S4 represent the
human’s 2-D position according to distances and orientations.

where EAMSj
is a parameter that refers to the memory of the

robot not yet included in the database and consequently set to
zero.

The social feature elicitation contribution FSj
is calculated as

a weighted summation of social normalized features Xn , which
can be written as

FSj
=

(
n∑

i=1

Wi.Xn

)
(2)

where weight Wi is set on the basis of the feature’s importance.
We explain the feature’s importance and priority in Section V-F.

The values of P (r) and O(θ) reflect the proxemics and orien-
tation contribution in the model (described in Sections III-B and
III-C). Because of the unavailability of sensory data in nearby
and distant areas, the attention layer reflects the proxemics ef-
fect only for personal and social spaces and the orientation effect
only for high and medium spaces. These effects can be expressed
as

P (r) = Fpr .

(
1 − |r|

rmax

)
O(θ) = FOθ .

(
1 − |θ|

θmax

)
(3)

where |r| and |θ| denote the current distance and orientation of
humans with respect to the robot. Fpr and FOθ convert contin-
uous distance and orientation into discrete values, respectively.
These discrete values represent four proxemics spaces (intimate,
personal, social, and public) for Fpr , and the three zones of the
eFOV (high, medium, and low) for FOθ (see Fig. 5). rmax is the
maximum distance and θmax is the maximum angle detectable
by the sensor. Clearly, the levels of P (r) and O(θ) are at their
maximum when a human is in the intimate space and the center
of the eFOV of the robot.

Since the human’s orientation is calculated with respect to the
robot’s current head position, the Kinect sensor should simulta-
neously turn with the robot’s head to capture the same scene as
the robot. For this reason, a servomotor is used to horizontally
rotate the Kinect at the same angle as the robot’s head (±β).

The attention layer shows a strong tendency to move to the
center of image [42], [43]. Hence, a virtual point (VP) is posi-
tioned at the center of the image, to attract the robot’s attention
like a virtual human. The EA is simultaneously calculated for

six humans in the robot’s FOV. The attention layer selects the
winner (i.e., the human with the highest EA level) through a
competition among humans and the VP

Max( EAS1 , EAS2 , . . . , EAS6 , VP) → Kwinner → (X,Y )
(4)

where Kwinner is the winner’s ID.
It finally extracts the winner’s head position (X,Y ) from the

meta-scene object and sends it to the gaze layer.
2) Habituation Function: The habituation effect is activated,

once the robot makes eye contact with the selected human (win-
ner). The attention layer multiplies the habituation function (HF)
by the winner’s score (EASk

), in order to make a time-variant
decreasing score (EASw in n e r (t)) for the winner, as

EASw in n e r (t) = EASk
· HF(t) (5)

where

HF(t) = Peak · Max
(

0,

(
1 − Δt

τ

))
(6)

and τ is a time constant and peak is the maximum amplitude
of the HF. Following [22], we set the time constant and peak
parameters to 10 and 30 s, respectively. The HF value linearly
decreases to zero within the time constant τ . When the robot’s
gaze reaches the new winner, Δt is reset to zero and HF will be
maximized. The model searches for a new winner in real time
while decreasing the score of the last winner to zero. Employing
this system, the winner’s attractiveness for the robot decreases
gradually over time thus allowing other people to attract the
robot’s attention. It empowers the robot to show a more natural
and dynamic behavior.

3) Time-Based Filter: Because of the mechanical limitations
of the robot’s head and eye actuators, the robot’s gaze is not capa-
ble of synchronizing with the rapid changes in target positions.
To solve this problem, a time-based filter is used. The attention
layer sends the winner’s position to the gaze control (GC) layer
in real time, which is entrusted with generating gaze parame-
ters according to the target position. The GC layer continually
receives updates from the attention layer and decides how to
direct the robot’s gaze to the selected human.

C. Gaze Control Layer

1) Head and Eye Movements: A gaze is composed of two
components: eye movement and head movement. The summa-
tion of these components (gaze) is relatively constant [31]. The
amplitude of the gaze can be written as

θg = θe + θh (7)

where θe is the eye angle in its orbit with respect to the head
(internal coordinates), θh is the head angle with respect to the
environment (global coordinates), and θg is the gaze angle in the
global coordinate system. Since the gaze angle is constant and
any combination of head and eye is possible, where the angle
of the eye increases, the angle of the head decreases and vice
versa. Assuming that the eyes are at the center of their orbit
before gaze shift, θe(t = 0) = θ0 is equal to zero. In order to
accomplish a gaze, the eye moves until it reaches the threshold
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θthr and the head movement starts to compensate for the eye
movement. If the eye’s current position is not at the center of its
orbit, then θthr is changed. In fact, the initial angle of the eye
(θ0) and the position of the selected human determine whether
the gaze needs to be accomplished by the eye movement alone
or together with the head movement.

In order to ensure a humanlike gaze shift, we use a humanlike
gaze model [31], [33], which is derived from a motion capture
of human subjects, using high-speed video-based eye and head
tracking. The equations for θthr and θh were estimated, using
empirical data. In this model, θthr varies depending on the initial
position of the eye in its orbit (θ0), and can be obtained as

θthr = −0.28θ0 + 11.2 (8)

where θ0 is positive if the initial eye deviation has the same
direction as the subsequent movement. This equation is obtained
from [33]. The constant numbers express head and eye dynamics
in vertical and horizontal movements.

Following this notation, to accomplish a given gaze (θg ), θh

can be obtained as

θh =
{

0, if −θthr < θg < θthr

θthr + k(θg − θthr), otherwise
(9)

where

k = 0.0185θ0 + 0.715 (10)

and k is a parameter that controls the eye and head movement,
in order to generate a humanlike gaze shift. This equation is
derived from [33] on the basis of empirical data.

2) Head and Eye Velocities: The head and eye velocities
vary according to target eccentricity and modality [31]. How-
ever, the auditory and visual targets influence the velocities of
the head and eyes in different ways. In this study, it is assumed
that visual and auditory stimuli have the same effect on the
robot’s gaze. When the attention layer selects the target’s coor-
dinate in a pixel (X,Y), the GCS GC layer calculates the amount
of target eccentricity with respect to the current sight line of the
robot.

In [31], a relatively linear relationship between target ec-
centricity and head and eye velocities has been shown. Thus,
because of the physical limitation of the mechanical structure
of the robot used, we define three levels of velocities as high,
medium, and low for the robot’s actuators. The GCS GC layer
calculates the level of the head and eye velocities as a function
of head and eye amplitudes, assuming that the eye always moves
faster than the head. The concept of velocity is implemented in
the GCS by the amount of gaze angle (in degrees) over time
needed to reach the target point (in seconds). Velocity can be
expressed for the head as

[V hhigh , V hmedium , V hlow ] = [75, 45, 22] ◦/sec (11)

and for the eye as

[V ehigh , V emedium , V elow ] = [450, 150, 90] ◦/sec. (12)

3) Head and Eye Latencies: Latency is the delay in reaction
time when people shift their gaze to a target. It is influenced
by target eccentricity and modality. Head latency is longer than

Fig. 6. FACE’s android actuator system consists of 32 servo motors together
with artificial skin, allowing FACE to reproduce high-quality facial expressions
and humanlike head and eye movements.

eye latency [52], and varies approximately in the range of 50 to
300 ms. Auditory stimuli have the longest reaction latencies for
central targets θg < 20, and the visual targets elicit the longest
reaction latencies in θg > 40 (see [31]). In order to reach the
target points, the model generates rapid saccadic eye movements
with a 50 ms delay, then after a 200 ms delay, it generates head
movements for the robot. Two constant values (le , lh ) denote
eye and head latencies in the model.

The GCS GC layer estimates the gaze parameters for eyes and
head, based on the proposed gaze model and target eccentricity
as (θthr , θe , Ve ) and (θthr , θh , Vh ) for the robot actuators. It also
generates reaction latency. All the derived information is sent to
the robot control (RC) layer which is directly connected to the
robot actuators.

V. PROOF OF CONCEPT EVALUATION

In order to assess the performance of the GCS and the under-
lying model, a gaze tracking study was performed. The purpose
of the proof of concept evaluation was to tune the parameters
of the GCS. Thus, one aim was to determine which social cues
have more of a prominent effect on the attention of the study
participants. A second aim was to compare how well the GCS
was able to replicate human gaze behavior on the same context
(input videos).

A. Facial Automaton for Conveying Emotion Robot

We implemented our GCS on the humanoid social robot
FACE created by Hanson Robotics [11]–[14] (see Fig. 6). The
robot has a female appearance and its artificial skull is covered
by a porous elastomer material called FrubberTM which re-
quires less force to be stretched by servo motors than other solid
materials. FACE has 32 servo motors to replicate high-quality
facial expressions and humanlike head and eye motions [2], [3].
The movements of head and eyes are in 4 degrees of freedom
(DOF) and 2 DOF. The kinematic structure of the actuation
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system enables the robot to generate realistic facial expressions
and gaze behavior [53], [54].

B. Participants

A total of 11 participants (nine males and two females), from
the Department of Mechanical Engineering at the Technical Uni-
versity of Munich took part in this experiment. The mean age of
the participants was 27.3 (range 22–35). Eight of the participants
were native German speakers, the three other participants spoke
English, but were not native English speakers. The participants
received a chocolate for taking part in the experiment.

C. Experiment Procedure

The participants were asked to watch a video showing two
humans discussing different research topics. In the video, the
two humans enter the room separately, sit down on two chairs,
and then leave the room separately. During the discussion,
both humans talk to the video camera from time to time, as
if they were interacting with a third person (the robot/the exper-
iment participants), in order to help with experiment participant
engagement.

The video was taken in parallel with an HD video camera
and a Kinect RGB-D camera placed side by side. The scene
captured by HD video camera was shown to the participants for
human gaze analysis, while the Kinect-acquired RGB-D data
were used as input for the GCS.

The video lasted 7:20 min and consisted of three subscenes.
In the first and third subscene, the people in the videos talked in
English, in the second subscene, they spoke in German. In each
subscene, only one person spoke at a time, while the nonspeak-
ing participant executed diverse gestural and postural acts in
order to attract the attention of the viewer. Gestures and move-
ments included: stretching while being seated, raising an arm,
getting up from the chair to get a drink, and retrieving a smart
phone from their pocket.

While the participants watched the video, they wore a DIK-
ABLIS eye tracking system to record gaze behavior (see Fig. 7).
The eye tracker included a field camera in order to capture the
scene and an infrared camera to capture a video of the left eye.
The participants sat roughly 75 cm away from a 23-inch display.
Before starting the experiment, the DIKABLIS eye tracker was
calibrated to enable it to detect the whole pupil. Experiments
were carried out in a room with controlled lighting to prevent any
external light sources interfering with the eye tracking system.

D. Data Collection and Analysis

The DIKABLIS eye tracker analysis software produces a
video of the field camera with an overlaid cross-hair showing
where the participants look. We used ELAN [55] to annotate
these videos on a frame-by-frame basis: timing looking at ei-
ther person A (the person on the left in the scene), person B
(person on the right), or at the environment (other regions). We
also annotated when and how often the person not speaking
provided a nonverbal social cue. Table II summarizes how of-
ten the experiment participants looked at each person and how

Fig. 7. DIKABLIS eye tracking system has two separate cameras: the field
camera looks to the front in order to capture the scene the participants are
looking at, and an infrared camera captures a video of their left eyes.

TABLE II
ATTENTION OF PARTICIPANTS TOWARD PERSON A AND B WHILE SPEAKING,

WHILE PERFORMING NONVERBAL CUES, AND THE AVERAGE FROM THE ENTIRE

VIDEO (AVG. ATT. PART.)

often the person was either speaking or providing a nonverbal
cue. After annotation, log files containing time duration (in mil-
liseconds) and position (i.e., person A, person B, environment)
of the participants’ gaze fixations were exported. The average
attention of the participants was calculated using MATLAB. In
order to identify the verbal/nonverbal cues that cause nonsac-
cadic gaze shift to person A, person B, and the environment,
we analyzed the human gaze behavior obtained by averaging
the participants’ logs. The average gaze pattern of participants
was divided into 15 segments (A–N), identifying regions where
the observers’ attention was on an individual person (A or B).
The various peak points of the average gaze pattern were also
selected by identifying verbal and nonverbal cues that attracted
participants’ attention thus triggering the gaze shift.

The GCS parameters were extracted according to the target
selection priorities of participants on the basis of the method
described in Section V-F.

After the GCS parameters had been extracted through human
gaze analysis and interpretation, the GCS-generated gazes were
compared with the average gaze pattern of participants. The
Kinect-acquired RGB-D data were used as input to the GCS
module which generated a new video similar to the one ob-
tained through the DIKABLIS eye tracker analysis software. A
red circle identifying the FACE robot gaze point was streamed
through YARP to the RC library. The GCS-generated video was
annotated using ELAN with the same modalities used for the
participant’s video annotations. The error between the two gaze
paths was calculated as an average of the absolute difference
between the human gaze and GCS pattern functions.
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Fig. 8. Average attention on person A and person B in the recorded video.
(a) Average attention of 11 participants on person A. (b) Average attention of
11 participants on person B.

Fig. 9. Average participant attention on person A, person B, and the environ-
ment. The segments identify regions when the gaze is kept on a person (A or
B). The peaks identify specific events that triggered the participant’s attention.

E. Gaze Behavior Results

Fig. 8(a) shows the attention on person A, and Fig. 8(b) shows
the attention on person B, respectively. In order to obtain the
overall gaze behavior, saccadic gaze shifts were filtered through
a second-order low-pass filter, which is shown as a dotted line
in the figures.

As shown in Figs. 9 and 10, the average human gaze behavior
can be divided into saccadic (high-frequency) and nonsaccadic
(low-frequency) movements. For example, peak 1 of segment A
shows that 100% of the participants looked at person A. Peak 1
corresponds to the instant when person A entered the room and
initiated the conversation with the observer. Similarly at Peak 2
of segment B, person B entered the room while person A was

Fig. 10. Participants gaze shift between person A (in Section A1–A4) and
person B (in Section B1–B6) in the video. Analyzing the corresponding videos
demonstrates that peak points are associated with the verbal/nonverbal cues that
person A and person B performed.

TABLE III
SOCIAL CUES IDENTIFIED IN THE AVERAGE GAZE PATTERN AND THEIR

ASSOCIATED PEAK NUMBERS

TABLE IV
ANALYSIS OF SACCADIC GAZE BEHAVIOR

still there. At this point, 82% of participants looked at person B
and the rest of the participants kept their focus on person A.
With the same methodology, we analyzed the entire average
gaze pattern (see Fig. 9) by identifying various social verbal and
nonverbal cues that attracted participants’ attention. Social cues
that were identified in the videos and associated peak numbers
are reported in Table III.

To identify social cues that cause a saccadic gaze shift, the
nonfiltered data were analyzed. Fig. 10 details the saccadic gaze
shift during section D in Fig. 9. While almost all participants
were attracted by person B (Sections B1– B6), some of them
had several quick and short gaze shifts to person A (A1–A4).
In addition to the entering, speaking, and leaving of social cues,
analyzing the nonfiltered average gaze behavior of other cues
which trigger saccadic gaze shift was conducted. Facial ex-
pressions, body gestures, and hand motions were selected as
saccadic triggering cues. Saccadic triggering cues are reported
together with the associated log segment in Table IV.

F. Gaze-Control System Parameter Estimation and Priorities
Features

Gaze data analysis results showed that there is no generic
gaze behavior that can be used to implement a unique model
as a standard for humanlike gaze patterns. Especially in cases
where speaking and hand or body motions occurred at the same
time, participants demonstrated different gaze behaviors. How-
ever, through the analysis the maximum peaks in saccadic and
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TABLE V
VERBAL AND NONVERBAL CUES IDENTIFIED AS ATTENTION TRIGGERS AND

THEIR ASSOCIATED GAZE-CONTROL SYSTEM WEIGHT CALCULATED ON THE

BASIS OF HUMAN-OBSERVED PRIORITIES

nonsaccadic gaze shifts of participants, the priorities of verbal
and nonverbal cues in attracting human attention were estimated.
The strongest cue attracting the attention of all participants was
the new entry (person A/person B) who joined the interaction.
Even when person A was speaking with a participant and at the
same time person B arrived, all participants were attracted by the
new entry (person B). Thus, the highest priority must be given
to the new entry. The second priority is given to the auditory
signals (speaker). Once person A/B started speaking, all partici-
pants were attracted by the speaker. It should be noted that if one
person showed body gesture while another one was speaking,
most participants were distracted by the body gesture for a very
short time and gazed back to the speaker quickly, which shows
the higher importance of auditory signals. In addition, a few par-
ticipants were attracted by the speaker all the time and ignored
the body gesture/hand motion of the other person. Therefore, the
third priority goes to body gesture/hand motion. The last two
priorities are given to the person leaving and facial expressions,
respectively, which attracted less attention compared with other
cues.

The identification of a set of parameters enables the GCS to
generate in the FACE robot a similar gaze to that observed in
humans; both saccadic and nonsaccadic movements triggering
cues were considered. The weight parameter Wi of the GCS
introduced in (2) was calculated considering a maximum value
of 100, on the basis of the identified empirical priority order
extracted, by analyzing the maximum peaks for each cue (see
Fig. 10) during the video. The priority order and the assigned
GCS weight are reported in Table V. In addition to Table V, we
set a distinction factor for those features that cause a saccadic
gaze shift. This enables the GCS to have both saccadic and
nonsaccadic gaze behavior.

G. Human and Gaze-Control System-Generated Gaze
Comparison

Fig. 11 compares the average gaze of participants with the
GCS-generated pattern. The upper image shows the attention on
person A; the lower image shows the attention on person B. The
graph shows that the system follows the human gaze behavior
for the entire duration of the video. The mean error shows that
the system is able to replicate the average human gaze behavior
with a replication factor of 89.4% throughout the video. When
considering saccadic eyes movements [red continuous line in
Fig. 8(a) and (b)], the accuracy rate of the GCS decreases to
75.2%, which is likely due to limitations in sensor detection
range and speed in comparison with the human eye.

Fig. 11. Comparison of human and robot gaze behavior.

VI. DISCUSSION

In this paper, a context-dependent social GCS which enables
the social humanoid robot FACE to display humanlike gaze be-
havior has been presented. The underlying attention mechanism
of the implemented GCS used high-level social features, such as
nonverbal and verbal cues, proxemics, an effective visual FOV,
and the habituation effect, to determine where the robot should
direct its attention.

Experimental results showed that the GCS is able to replicate
average human behavior for both nonsaccadic (89.4% accuracy)
and saccadic (75.2% accuracy) movements. The lower accuracy
in the case of saccadic movement replication may be because of
several points.

Diversity in human gaze behavior: Individual human gaze be-
havior is correlated especially in saccadic movements to factors
such as personality, age, and gender [37]. Thus, gaze behavior
is different from person to person. Our model only replicates
the average gaze behavior of the participants in our experiment.
These personal differences are not replicated in the GCS be-
cause of the extraction of average-based parameters. However,
these differences are common in humans and consequently not
perceived as being strange but more as personal and unique
peculiarities.

Limitations of the input sensor used: Compared with the hu-
man eye, the Kinect sensor has a narrower FOV and a much
lower resolution, which affects the attention computation of the
GCS. The most influencing sensor limitation was probably the
sensor range of the Kinect, which is between 800 and 4000 mm.
Humans are able to see much further. Thus, the experiment
participants were able to detect people who entered the room
shown in the video when they were in their public space (see
Fig. 2). The maximum sensor range of Kinect is similar to that
of a human’s social space.

Unmodeled human attention features: Although our human
attention model already considers many features that guide hu-
man attention, there are still other unknown factors that we did
not use in our model. For example, Fig. 9 shows the participants
looking at the environment over time. In addition, there are
further external features that guide the attention selection mech-
anism which we did not include in the current implementation.
For example, taking into account the auditory information that
comes from outside visual FOV and considering the intentions
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of people during a social interaction could help the attention
mechanism to generate a more natural humanlike social gaze
behavior.

However, as shown in Fig. 11, the proposed implementation
of the GCS is able to select the appropriate gaze target points
at the right time, which is essential for the development of
believable social robots.
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HEFES: an Hybrid Engine for Facial Expressions Synthesis tocontrol
human-like androids and avatars

Daniele Mazzei, Nicole Lazzeri, David Hanson and Danilo De Rossi

Abstract— Nowadays advances in robotics and computer
science have made possible the development of sociable and
attractive robots. A challenging objective of the field of hu-
manoid robotics is to make robots able to interact with people
in a believable way. Recent studies have demonstrated that
human-like robots with high similarity to human beings do
not generate the sense of unease that is typically associated to
human-like robots. For this reason designing of aesthetically
appealing and socially attractive robots becomes necessary for
realistic human-robot interactions.

In this paper HEFES (Hybrid Engine for Facial Expressions
Synthesis), an engine for generating and controlling facial
expressions both on physical androids and 3D avatars is
described. HEFES is part of a software library that controls
a human robot called FACE (Facial Automaton for Conveying
Emotions). HEFES was designed to allow users to create facial
expressions without requiring artistic or animatronics skills and
it is able to animate both FACE and its 3D replica.

The system was tested in human-robot interaction studies
aimed to help children with autism to interpret their interl ocu-
tors’ mood through facial expressions understanding.

I. INTRODUCTION

In the last years, more and more social robots have been
developed due to rapid advances in hardware performance,
computer graphics, robotics technology and Artificial Intel-
ligence (AI).

There are various examples of social robots but it is
possible to roughly classify them according to their aspect
in two main categories: human-like and not human-like.
Human-like social robots are usually associated to the per-
nicious myth that robots should not look or act like human
beings in order to avoid the so-called ’Uncanny Valley’ [1].
MacDorman and Ishiguro [2] explored observers’ reactions
to gradual morphing of robots and humans pictures and
found a peak in judgments of the eeriness in the transition
between robot and human-like robot pictures according to
the Uncanny Valley hypothesis. Hanson [3] repeated this
experiment morphing more attractive pictures and found that
the peak of eeriness was much smoother, approaching to
a flat line, in the transition between human-like robot and
human beings pictures. This indicates that typical reactions
due to the Uncanny Valley were present only in the transition
between classic robots and cosmetically atypical human-like
robots. Although more studies demonstrate the presence of
the Uncanny Valley effect, it is possible to design and create
human-like robots that are not uncanny using innovative
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technologies that integrate movies and cinema animation
with make-up techniques [4].

The enhancement of the believability of human-like robots
is not a pure aesthetic challenge. In order to create machines
that look and act as humans, it is necessary to improve the
robot’s social and expressive capabilities in addition to the
appearance. Therefore, facial expressiveness is one of the
most important aspect to be analyzed in designing human-
like robots since it is the major emotional communication
channel used in interpersonal relationships together with
facial and head micro movements [5].

Since the early 70’s, facial synthesis and animation have
raised a great interest among computer graphics researchers
and numerous methods for modeling and animating human
faces have been developed to reach more and more realistic
results.

One of the first models for the synthesis of faces was
developed by Parke [6], [7]. The Parke parametric model is
based on two groups of parameters: conformation parameters
which are related to the physical facial features, such as the
shape of the mouth, nose, eyes, etc., and expression parame-
ters which are related to facial actions such as wrinkling the
forehand for anger or open the eyes wide for surprise.

Differently, physically-based models manipulate directly
the geometry of the face to approximate real deformations
caused by the muscles including skin layers and bones.
Waters [8], using vectors and radial functions, developed a
parameterized model based on facial muscles dynamic and
skin elasticity.

Another approach used for creating facial expressions is
based on interpolation methods. Interpolation-based engines
use a mathematical function to specify smooth transitions
between two or more basic facial positions in a defined time
interval [9]. One, two or three-dimensional interpolations
can be performed to create an optimized and realistic facial
morphing. Although interpolations are fast methods, they are
limited in the number of realistic facial configurations they
can generate.

All geometrically-based methods described above can
generate difficulties in achieving realistic facial animations
since they require artistic skills. On the other hand, animation
skills are required only for creating a set of basic facial
configurations since an interpolation space can be use to
generate a wide set of new facial configurations starting from
the basic ones.

In this work a facial animation engine called HEFES was
implemented as fusion of a muscle-based facial animator
and an intuitive interpolation system. The facial animation



system is based on the Facial Action Coding System (FACS)
in order to make it compatible with both physical robots and
3D avatars and usable in different facial animation scenarios.
The FACS is the most popular standard for describing facial
behaviors in terms of muscular movements. The FACS is
based on a detailed study of the facial muscles carried out
by Ekman and Friesen in 1976 [10] and is aimed at classi-
fying the facial muscular activity according to Action Units
(AUs). AUs are defined as visually discernible component
of facial movements which are generated through one or
more underlying muscles. AUs can be used to describe all
the possible movements that a human face can express.
Therefore an expression is a combination of several AUs,
each of them with their own intensity measured in 5 discrete
levels (A:Trace, B:Slight, C:Marked pronounced, D:Severe,
E:Extreme maximum).

II. M ATERIALS AND METHODS

A. FACE

FACE is a robotic face used as emotions conveying system
(Fig. 1). The artificial skull is covered by a porous elastomer
material called FrubberTM that requires less force to be
stretched by servo motors than other solid materials [11].
FACE has 32 servo motors actuated degrees of freedom
which are mapped on the major facial muscles to allow FACE
to simulate facial expressions.

Fig. 1. FACE and the motor actuation system

FACE servo motors are positioned following the AUs
disposition according to the FACS (Fig. 2) and its facial
expressions consist of a combination of many AUs positions.
Thanks to the fast response of the servo motors and the me-
chanical properties of the skin, FACE can generate realistic
human expressions involving people in social interactions.

B. SYSTEM ARCHITECTURE

HEFES is a subsystem of the FACE control library deputed
to the synthesis and animation of facial expressions and
includes a set of tools for controlling FACE and its 3D avatar.
HEFES includes four modules: synthesis, morphing, anima-
tion and display. The synthesis module is designed to allow

Fig. 2. Mapping between servo motors positions and Action Units of FACS

users to manually create basic facial expressions that are
normalized and converted according to the FACS standard.
The morphing module takes the normalized FACS-based
expressions as input and generates an emotional interpolation
space where expressions can be selected. The animation
module merges concurrent requests from various control
subsystems and creates a unique motion request resolving
possible conflicts. Finally, the display module receives the
facial motion request and converts it in movements according
to the selected output display.

1) The synthesis module allows users to generate new fa-
cial expressions through the control of the selected emotional
display, i.e. FACE robot or 3D avatar. Both modules provide
a graphical user interface (GUI) with as many slider controls
as the number of servo motors (FACE robot) or anchor points
(3D avatar) which are present in the corresponding emotional
display.

In the Robot editor, each slider defines a normalized
range between 0 and 1 for moving the corresponding servo
motor which is associated to an AU of the FACS. Us-
ing the Robot editor, the six basic expressions, i.e. hap-
piness, sadness, anger, surprise, fear and disgust, defined
as ’universally accepted’ by Paul Ekman [12], [13], were
manually created. According to the ”Circumplex Model of
Affect” theory [14], [15], each generated expression was
saved as an XML file including the set of the AUs values,
the expression name and the corresponding coordinates in
terms of Pleasure and arousal. In the Circumplex Model of
Affect expressions are associated with Pleasure that indicates
the pleasant/unpleasant feelings and with Arousal which is
related to a physiological activation.

The 3D virtual editor is a similar tool used to deform a
facial mesh. The 3D editor is based on a user interface on
which a set of slider controls is used to actuate various facial
muscles. Expressions are directly rendered on the 3D avatar
display and saved as XML files as in the Robot Editor.

2) The morphing module generates, on the base of the
Posner’s theory, an emotional interpolation space, called
Emotional Cartesian Space (ECS) [16]. In the ECS the x
coordinate represents the valence and the y coordinate rep-
resents the arousal. Each expression e(v, a) is consequently



Fig. 3. The architecture of the facial animation system based on four main modules: synthesis, morphing, animation and display.

associated with a point in the valence-arousal plane where
the neutral expression e(0, 0) is placed in the origin (Fig. 3,
Morphing module). The morphing module takes the set of
basic expressions as input and generates the ECS applying
a shape-preserving piecewise cubic interpolation algorithm
implemented in MatlabTM. The output of the algorithm is a
three-dimensional matrix composed of 32 planes correspond-
ing to the 32 AUs. As shown in Fig. 4, each plane represents
the space of the possible positions of a single AU where
each point is identified by two the coordinates, valence and
arousal. The coordinates of each plane range between -1 and
1 with a step of 0.1 therefore the generated ECS produces
21x21 new normalized FACS-based expressions that can be
performed by the robot or the 3D avatar independently. Since
the ECS is not a static space, each new expression manually
created through the synthesis module can be used to refine
the ECS including it in the set of expressions used by
the interpolation algorithm. The possibility of updating the
ECS with additional expressions allows users to continuously
adjust the ECS covering zones in which the interpolation
algorithm could require a more detailed description of the
AUs (II-B.1).

3) The animation module is designed to combine and
merge multiple requests coming from various modules which
can run in parallel in the robot/avatar control library. The
facial behavior of the robot or avatar is inherently concurrent
since parallel requests could interest the same AU generating
conflicts. Therefore the animation module is responsible for
mixing movements, such as eye blinking or head turning,
with requests of expressions. For example, eye blinking
conflicts with the expression of amazement since normally
amazed people react opening the eyes wide.

The animation module receives as input a motion request,
which is defined by a single AU or a combination of
multiple AUs, with an associated priority. The animation
engine is implemented as a Heap, a specialized tree-based
data structure used to define a shared timer that is responsible
for orchestrating the animation. The elements of the Heap,

Fig. 4. The emotional Cartesian plane for the right eyebrow (motor #24
corresponding to the AU 1 in Fig. 2).

called Tasks, are ordered by their due time therefore the root
of the Heap contains the first task to be executed. In the Heap
there can be two types of tasks, Motion Task and Interpolator
Task, that are handled in a different way. Both types of tasks
are defined by the expiring time, the duration of the motion
and the number of steps in which the task will be divided. A
Motion Task also includes 32 AUs, each of them with their
associated values and a priority. When a movement request
is generated, a Motion Task is sent to the Animation Engine
and inserted into the Heap which will be reordered according
to the due time. The animation engine is always running to
check whether some tasks into the Heap are expired. For each



expired task, the animation engine removes it from the Heap
and executes it. If the task is a Motion Task, the animation
engine calculates the amount of movement to be performed
at the current step, stores the result in correspondence to the
relative AU and reschedules the task into the Heap if the
task is not completed. If the task is an Interpolation Task,
the animation engine calculates the new animation state by
blending all the steps, previously calculated, for each AUs
according to their priority. At the end, the Interpolator Task
is automatically rescheduled into the Heap with an expiring
time of 40ms.

The output of the animation module is a motion task
composed of 32 normalized AUs values that is sent to the
emotional display module.

4) The display module represents the output of the sys-
tem. We implemented two dedicated emotional displays: the
FACE android and the 3D avatar. According to a calibration
table, the FACE android display converts normalized AUs
values into servo motor positions that are expressed as duty
cycles in the range 500-2500. Each motor has a different
range of movements due to its position inside the FACE.
For this reason, the display module includes a control layer
to avoid the exceeding the servo motor limits according
to minimum and maximum values stored in the calibration
tables.

The 3D avatar display is a facial animation system based
on a physical model described in [17] that approximates the
anatomy of the skin and the muscles. The model is based on
a non-linear spring system which can simulate the dynamics
of human face movements while the muscles are modeled
as mesh of force deformed springs. Each skin point of the
mesh is connected with its neighbors by non-linear springs.
Human face includes a wide range of muscles types, e.g.
rectangular, triangular, sheet, linear, sphincter. Sinceservo
motors act as linear forces, the type of muscle satisfying
this condition is the linear muscle that is specified by two
points: the attachment point which is normally fixed and the
insertion point which defines the area where the facial muscle
performs its action. Facial muscle contractions pull the skin
surface from the area of the muscle insertion point to the
area of the muscle attachment point. When a facial muscle
contracts, the facial skin points in the influence area of the
muscle change their position according to the distance from
the muscle attachment point and the elastic properties of the
mass-spring system. Facial skin points not directly influenced
by the muscle contraction are in a sort of unbalanced state
that is stabilized through propagation of other unbalanced
elastic forces.

The elastic model of the skin and the mathematical imple-
mentation of the muscles have been already developed while
the manual mapping of the 3D mesh anchor points to AUs
is still under development.

C. ANIMATION TOOL

Generally facial animation softwares are tools that re-
quire a certain level of knowledge in design, animation and
anatomy. Often users only need to easily animate facial

expressions without having these specific skills. Therefore
the system was designed to be used both by experts in facial
design and animation which can directly create or modify
expressions and users that are interested in quickly designing
HRI experimental protocols selecting a set of pre-configured
expressions.

The ECS Timeline is a tool of the HEFES system that is
intended to meet the needs of different users. The timeline
is a Graphical User Interface (GUI) with two use modalities:
”Auto Mode” and ”Advanced Mode”. In Auto Mode, users
can create sequences of expressions selecting the correspond-
ing points in the ECS and dragging them into the timeline.
Sequences can be saved, played and edited using the timeline
control. When a sequence is reproduced, motion requests
are sent to the animation module that resolves conflicts and
forwards them to the robot or the avatar display. The ECS
Timeline GUI includes a chart that visualizes the motors
positions during an animation for a deeper understanding of
the facial expression animation process (Fig. 5). In Advanced
Mode, a sequence of expressions can be displayed as editable
configurations of all AUs values in a multitrack graph where
each AU is expressed as a motion track and can be manually
edited. In the Advanced Mode is possible to use ECS
expressions as starting point for creating more sophisticated
animations in which single AUs can be adjusted in real-time.

Fig. 5. The ECS Animation in the Auto Mode configuation.

III. RESULTS AND DISCUSSION

HEFES was used as emotions conveying system within the
IDIA (Inquiry into Disruption of Intersubjective equipment
in Autism spectrum disorders in childhood) project in col-
laboration with the IRCCS Stella Maris (Calambrone, Italy)
[16], [18].

In particular, the ECS Animation tool was used by the
psychologist in Auto Mode to easily design the therapeutic
protocol creating facial animation paths without require
FACE android direct motor configuration and calibration.
The tool does not required skills in facial animation and
human anatomy and allowed therapist to intuitively create
therapeutic scenarios adding expressions to the timeline
dragging them from the ECS. Moreover the Manual Mode



Fig. 6. The morphing module used for creating new ’mixed’ expressions (right side) selecting (V,A) points (red dots) from the ECS. The module takes
in input a set of basic expressions (left side) with their (V,A) values (blue dots).

configuration was used to create specific patterns of move-
ments such as the turning of the head. Head movements was
oriented to watch a little robot used by the therapist to test
children’s shared attention capabilities.

Recent study demonstrated that people with Autism Spec-
trum Disorders (ASDs) do not perceive robots as machine
but as ”artificial partners” [19]. On the base of this theory the
IDIA project aimed to the study of alternative ASD treatment
protocol involving robots, avatars and other advanced tech-
nologies. One of the purposes of the protocol was to verify
the capability of the FACE android to convey emotions to
children with ASD. Figure 6 shows examples of expressions
generated by the morphing module. It takes the six basic
expressions as input (expressions on the left side of the figure
corresponding to the blue dots in the ECS) and generates
’half-way’ expressions (right side of the figure corresponding
to the red dots in the ECS) by clicking on the ECS. All these
generated expressions are identified by their corresponding
pleasure and arousal coordinates.

FACE base protocol was tested on a panel of normally
developing children and children with Autism Spectrum
Disorders (ASDs) (aged 6-12 years).

The test was conducted on a panel of 5 children with
ADSs and 15 normally developing interacting with the robot
individually under therapist supervision. The protocol was
divided in phases and one of these concerned evaluating
the accuracy of emotional recognition and imitation skills.
In this phase children were asked to recognize, label and
then imitate a set of facial expressions performed by the
robot and subsequently by the psychologist. The sequence
of expressions included happiness, anger, sadness, disgust,
fear and surprise. Moreover, the protocol included a phase

called ”free play” where the ECS tool was directly used by
the psychologist to control the FACE android in real-time.

The subjects’ answers in labeling an expression were
scored as correct or wrong by a therapist and used for
calculating the percentage of correct expressions recognition.
As shown in Fig. 7 both children with ASDs and normally
developing children were able to label Happiness, Anger and
Sadness performed by FACE and by the psychologist with-
out errors. Otherwise Fear, Disgust and Surprise performed
by FACE and by the psychologist have not been labeled
correctly, especially by subjects with ASDs. Fear, Disgust
and Surprise are emotions which convey empathy not only
through stereotypical facial expressions but also with body
movements and vocalizations. The affective content of this
emotions is consequently dramatically reduced if expressed
only through facial expressions.

Fig. 7. Results of the labeling phase for ASD and control subjects observing
FACE and psychologist expressions.

In conclusion HEFES allows operators and psychologists
to easily model and generate expressions following the



current standards of facial animations. The morphing module
provides a continuous emotional space where it is possible
to select a wide range of expressions, most of them difficult
to be manually generated. The possibility to continuously
add new expressions to the ECS interpolator allows users to
refine the expressions generation system for reaching a high
expressiveness level without requiring animation or artistic
skills.

Through HEFES is possible to control robot or avatar
creating affective based human-robot interaction scenarios on
which different emotions can be conveyed. Facial expressions
performed by FACE and by the psychologist have been
labeled by children with ASDs and normally developed
children with the same score. This analysis demonstrates that
the system is able to correctly generate human-like facial
expressions.

IV. FUTURE WORKS

HEFES was designed to be used both with a physical
robot and with a 3D avatar. The actual state of the 3D editor
includes the algorithm to animate the facial mesh according
to the model described in Sec. II and the definition of some
anchor points. In future all the AUs will be mapped on
the 3D avatar mesh for a complete control of the avatar.
HEFES will be used to study how human beings perceive
facial expressions and emotion expressed by a physical
robot in comparison with its 3D avatar for understanding
if the physical appearance has an emphatic component in
conveying emotions.

Moreover the synthesis module will include the control of
facial micro movements and head dynamics that are asso-
ciated with human moods. For example, blinking frequency
and head speed are considered to be indicators of discomfort.
These micro movements will be designed and controlled
using an approach similar to the one designed for facial
expressions. A set of basic head and facial micro move-
ments will be generated and associated with corresponding
behaviors according to their pleasure and arousal coordinates.
The set of basic behaviors will be used as input of the
morphing module which will generate a Behavioral Cartesian
Space (BCS). Future experiment on emotion labeling and
recognition will be conducted including the facial micro
movement generator and a face tracking algorithm in order
to investigate the contribute of this affective related activities
on emotions conveying FACE capabilities.
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Dikablis
World´s fastest and most reliable way of getting

 eye-tracking results

The only Eye-Tracking System worldwide that o� ers unlimited mobility 

via the so called „Inside-out Head-Position-Measurement“ and which 

combines these features with the automated Processing of the recor-

ded Gaze-Data in any environment. 

• operating system: Microsoft® Windows XP 

• processor: Intel Core 2 Duo CPU 2,4 GHz 

• working memory: 2 Gb RAM 

• recording time: 65h 

• weight: 2kg 

• power supply: 12V/cigarette lighter (adapter), 230V or battery pack 

  (battery life: 3h)

Technical data

• lightweight, comfortable, easy to adjust 

• design: also suits people who wear glasses 

• " eld Cam: color or black/white; resolution 380 TVL 

• eye Cam: resolution: 380 TVL 

• visual range: (can be adjusted by changing the 

objective): 

- horizontal: from 50° up to 115°

- vertical: from 40° up to 90° 

• gaze position accuracy: 0.5 degrees visual angle 

• tracking resolution of pupil: 

0,10 degree visual angle 

• frequency: PAL (50Hz interlaced)

• head movement: unlimited 

• weight: 69g 

• power consumption: 320mA 

• power supply: 

- 230V 

- 12V/cigarette lighter

battery pack (battery life: 2h) 

• mobility: 

- complete freedom of movement

- wireless data transfer up to 5.000 meters 

Dikablis Cable

Head-Unit

Ergoneers GmbH
Mozartstraße 8 ½, D-85077 Manching

08171/965306Tel. 08459/331364 Fax.

www.ergoneers.com

Dikablis@ergoneers.com

Dikablis Wireless

Dikablis Wireless Plus

• transmission distance: 500m 

• weight transmitter: 0,25kg 

• weight receiver: 1,5kg 

• power supply transmitter: 12V/cigarette lighter; 230V or 

  battery pack (battery life: 2h) 

• power supply receiver: 12V/cigarette lighter (adapter); 230V 

• tranmission distance: 5.000m 

• weight transmitter: 2,5kg 

• weight receiver: 5,5kg 

• power supply transmitter: 12V/cigarette lighter; 230V or battery

   pack (battery life: 2h) 

• power supply receiver: 12V/cigarette lighter; 230V

• cable length up to: 50m 

• power supply: 12V/cigarette lighter; 230V or battery pack 

  (battery life: 2h)

Recording Laptop



Dikablis
World´s fastest and most reliable way of getting

 eye-tracking results

The only Eye-Tracking System worldwide that o� ers unlimited mobility 

via the so called „Inside-out Head-Position-Measurement“ and which 

combines these features with the automated Processing of the recor-

ded Gaze-Data in any environment. 

Data Output Data Analysis

• Video of Scene Camera

• Video of Eye Camera

• Absolute and relative timeline

• Calibration settings

• x- and y- coordinates of the center of the pupil in relation to the zero      

  point of the eye camera

• x- and y- coordinates of the center of the pupil in relation to the zero 

  point of the scene camera (calculated with the calibration settings)

• height, width and size of the pupil

• ! xation coordinates in a world coordinate system (when eye 

  control module is purchased)

• start and end of task intervals and moments of events (when marked 

  via triggers)

Realtime Output

• ! xation coordinates in a world coordinate system

• Glance durations to all de! ned areas of interest (start time, duration,

   end time)

• Task interval durations

• Workload Glance Metrics:

      - Horizontal search activity

• Area of Interest based Glance metrics: 

      - Total glance time to all de! ned areas of interest

      - Number of glances to all de! ned areas of interest

      - Mean glance duration to all de! ned areas of interest

      - Percentaged glance proportion to all de! ned areas of interest

      - Fixation frequency for all de! ned areas of interest

      - Maximum glance duration to all de! ned areas of interest

      - Minimum glance duration to all de! ned areas of interest

• Graphical data output:

      - Single HeatMaps

      - Multi HeatMaps

      - Gaze " ow diagrams

Data output after data analysis

USPs:

• Live Eye-Tracking (with Dikablis Cable, Dikablis 

   Wireless and Dikablis Wireless Plus)

    - Subject´s gaze behavior can be observed in 

      absolute realtime

    - Relevant events can be marked directly online

    - Subject´s gaze behavior can be replayed 

      immediately after the experiment and be included 

      in retrospective think-aloud 

• Fully Automated gaze data analysis

    - Because of inside-out Head-position 

      measurement due to Marker detection

          - Works in any environment

          - Works for small objects like mobile phones 

            up to big areas like supermarkets

    - Enables:

          - Autmated Area of Interest based analysis

          - 3D visualizations (e.g. Single HeatMap, 

             Multi HeatMap)

• Eye controlled interaction with eye control module

    - Get world coordinates in realtime

    - Setup glance based interaction with any kind 

      of device (e.g.: computer, displays, touchscreens, 

      TV, and so on)

• Synchronous recording and analysis of up to 

  4 video streams and any kind of TCP/IP network 

  data stream (with video & external data module)

• Quick set-up and calibration: the whole system 

   can be set up and used in less than 10  minutes 

   in every environment

• 100% data availability due to saving of all raw data. 

   Enables: Re-Calibration and o#  ine eye-detection 

   improvement after the experiment


	Abstract
	Riassunto
	Introduction
	Social Humanlike Robots
	Thesis Motivation
	Main Objectives and Thesis Scopes
	Organization

	Human Attention and Gaze Modeling
	State-of-the-art on Attention Modeling
	Salience-based Attention Class
	Visual-Auditory Attention Class

	State-of-the-art on Gaze Behavior Modeling
	Proposed Solution for Attention and Gaze Behavior Systems
	Summary

	High-Level Features and Phenomena in Attention Elicitation
	Non-verbal/Verbal Cues
	Proxemics
	Effective Visual Field of View
	Habituation Effect
	Human Social Signals
	Summary

	Design and Implementation of Perception, Attention, and Gaze Control Layers
	System Overview
	FACE Robot
	Perception Layer
	Face Detection and Facial features Analysis - facial expressions, age, gender
	Multiple Face Recognition Using PCA
	Body Gesture and Head Pose Estimation
	Speaker Localization
	Visual Salient Point as a Virtual Subject
	Subjects Database
	Communication Channel Through YARP

	Attention Layer
	Target Selection Strategy
	Habituation Function
	Time-based Filter

	Gaze Control Layer
	Head and Eye Movements
	Head and Eye Velocities
	Head and Eye Latencies

	Summary

	Proof of Concept Evaluation
	Overview
	Participants
	Experiment Procedure
	Eye-tracker Calibration

	Data Collection and Analysis
	Data Collection
	Data Analysis

	Gaze Behavior Results
	Participants Gaze Behavior
	Non-saccadic Gaze Shift
	Saccadic Gaze Shift
	Detail Analysis of the Participants Gaze Behavior

	GCS Parameter Estimation and Priorities Features
	Gaze Control System Behavior
	Human and GCS Generated Gaze Behavior Comparison
	GCS Performance in Replicating Non - saccadic Gaze Behavior
	GCS Performance in Replicating Saccadic Gaze Behavior

	Discussion
	Summary

	Conclusion and Future Work
	Conclusion
	Human-level Perceptual System
	Human-level Attention System
	Gaze Control System
	Data Communication Unit
	System Evaluation 

	Main Contributions to the State-of-the-art
	Future Work

	Bibliography
	Appendix A - Publication: Designing and Evaluating a Social Gaze Control System for a Humanoid Robot
	Appendix B - Publication: an Hybrid Engine for Facial Expressions Synthesis to control humanlike androids and avatars
	Appendix C - Dikabilis Eye-tracking Device Data-sheet

