2,551 research outputs found

    Efficient symbolic computation of approximated small-signal characteristics of analog integrated circuits

    Get PDF
    A symbolic analysis tool is presented that generates simplified symbolic expressions for the small-signal characteristics of large analog integrated circuits. The expressions are approximated while they are computed, so that only those terms are generated which remain in the final expression. This principle causes drastic savings in CPU time and memory, compared with previous symbolic analysis tools. In this way, the maximum size of circuits that can be analyzed, is largely increased. By taking into account a range for the value of a circuit parameter rather than one single number, the generated expressions are also more generally valid. Mismatch handling is explicitly taken into account in the algorithm. The capabilities of the new tool are illustrated with several experimental result

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Static and Dynamic Scheduling for Effective Use of Multicore Systems

    Get PDF
    Multicore systems have increasingly gained importance in high performance computers. Compared to the traditional microarchitectures, multicore architectures have a simpler design, higher performance-to-area ratio, and improved power efficiency. Although the multicore architecture has various advantages, traditional parallel programming techniques do not apply to the new architecture efficiently. This dissertation addresses how to determine optimized thread schedules to improve data reuse on shared-memory multicore systems and how to seek a scalable solution to designing parallel software on both shared-memory and distributed-memory multicore systems. We propose an analytical cache model to predict the number of cache misses on the time-sharing L2 cache on a multicore processor. The model provides an insight into the impact of cache sharing and cache contention between threads. Inspired by the model, we build the framework of affinity based thread scheduling to determine optimized thread schedules to improve data reuse on all the levels in a complex memory hierarchy. The affinity based thread scheduling framework includes a model to estimate the cost of a thread schedule, which consists of three submodels: an affinity graph submodel, a memory hierarchy submodel, and a cost submodel. Based on the model, we design a hierarchical graph partitioning algorithm to determine near-optimal solutions. We have also extended the algorithm to support threads with data dependences. The algorithms are implemented and incorporated into a feedback directed optimization prototype system. The prototype system builds upon a binary instrumentation tool and can improve program performance greatly on shared-memory multicore architectures. We also study the dynamic data-availability driven scheduling approach to designing new parallel software on distributed-memory multicore architectures. We have implemented a decentralized dynamic runtime system. The design of the runtime system is focused on the scalability metric. At any time only a small portion of a task graph exists in memory. We propose an algorithm to solve data dependences without process cooperation in a distributed manner. Our experimental results demonstrate the scalability and practicality of the approach for both shared-memory and distributed-memory multicore systems. Finally, we present a scalable nonblocking topology-aware multicast scheme for distributed DAG scheduling applications

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    An O(n) time discrete relaxation architecture for real-time processing of the consistent labeling problem

    Get PDF
    technical reportDiscrete relaxation techniques have proven useful in solving a wide range of problems in digital signal and digital image processing, artificial intelligence, operations research, and machine vision. Much work has been devoted to finding efficient hardware architectures. This paper shows that a conventional hardware design for a Discrete Relaxation Algorithm (DRA) suffers from 0(n2m3 ) time complexity and Oinhn2) space complexity. By reformulating DRA into a parallel computational tree and using a multiple tree-root pipelining scheme, time complexity is reduced to O(nm), while the space complexity is reduced by a factor of 2. For certain relaxation processing, the space complexity can even be decreased to O(nm). Furthermore, a technique for dynamic configuring an architectural wavefront is used which leads to an O(n) time highly configurable DRA3 architecture
    corecore