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Abstract

Multicore systems have increasingly gained importance in high performance computers.
Compared to the traditional microarchitectures, multicore architectures have a simpler de-
sign, higher performance-to-area ratio, and improved power efficiency. Although the mul-
ticore architecture has various advantages, traditional parallel programming techniques do
not apply to the new architecture efficiently. This dissertation addresses how to determine
optimized thread schedules to improve data reuse on shared-memory multicore systems and
how to seek a scalable solution to designing parallel software on both shared-memory and
distributed-memory multicore systems.

We propose an analytical cache model to predict the number of cache misses on the
time-sharing L2 cache on a multicore processor. The model provides an insight into the
impact of cache sharing and cache contention between threads. Inspired by the model,
we build the framework of affinity based thread scheduling to determine optimized thread
schedules to improve data reuse on all the levels in a complex memory hierarchy. The affin-
ity based thread scheduling framework includes a model to estimate the cost of a thread
schedule, which consists of three submodels: an affinity graph submodel, a memory hi-
erarchy submodel, and a cost submodel. Based on the model, we design a hierarchical
graph partitioning algorithm to determine near-optimal solutions. We have also extended
the algorithm to support threads with data dependences. The algorithms are implemented
and incorporated into a feedback directed optimization prototype system. The prototype
system builds upon a binary instrumentation tool and can improve program performance
greatly on shared-memory multicore architectures.

We also study the dynamic data-availability driven scheduling approach to designing new
parallel software on distributed-memory multicore architectures. We have implemented a
decentralized dynamic runtime system. The design of the runtime system is focused on
the scalability metric. At any time only a small portion of a task graph exists in memory.
We propose an algorithm to solve data dependences without process cooperation in a dis-
tributed manner. Our experimental results demonstrate the scalability and practicality of
the approach for both shared-memory and distributed-memory multicore systems. Finally,
we present a scalable nonblocking topology-aware multicast scheme for distributed DAG
scheduling applications.
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Chapter 1

Introduction

Since IBM released Power4 (dual cores) in 2001 and Sun Microsystems released Ultra-

SPARC T1 (eight cores) in 2005, there are great numbers of multicore chips implemented

by various vendors [Asanovic et al., 2006]. Traditional microarchitectures typically relies

on increasing the complexity of the logic, wire, and design to find more Instruction Level

Parallelism (ILP) such as out-of-order and speculative instruction executions within a se-

quential program. But this trend cannot continue any more due to the diminishing re-

turns for large increases in complexity and the exponentially rising processor clock rates

[Hammond et al., 1997]. Compared to the traditional microarchitectures, multicore chips

have a simple design, higher performance-to-area ratio, and better power efficiency. Thus,

hardware architects have changed their course to rely on multicore architectures. Multi-

core (or “manycore”) processors with hundreds of processing cores on a single die are also

imminent in the near future.

Both shared-memory and distributed-memory platforms could consist of multicore sys-

tems. There are two programming models to develop parallel programs: shared-memory

programming model and distributed-memory programming model. This dissertation first

depicts what a future shared-memory multicore machine will look like and then proposes a

static scheduling method to improve program performance. Next, the dissertation studies

how to use the dynamic directed acyclic graph (DAG) scheduling approach to developing

new parallel software for both shared-memory and distributed-memory multicore systems.
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1.1 Motivation

With the emergence of multicore chips [Le et al., 2007, Golla, 2007, Seiler et al., 2008], fu-

ture distributed shared memory (DSM) systems will have less powerful processor cores

but will have tens of thousands of cores. Performance asymmetry in multicore platforms

is another trend due to budget issues such as power consumption and area limitation as

well as various degrees of parallelism in different applications [Balakrishnan et al., 2005,

Kumar et al., 2004, Kumar et al., 2006]. We call such a system “heterogeneous manycore

DSM system” (Fig. 1.1). Processor cores belonging to the same level (e.g., same chip or

board) frequently share memory resources. For instance, cores on the same chip may share

an L2 or L3 cache.

The shared-memory programming model is capable of attaining the benefits of large-

scale parallel computing without surrendering much programmability [Lu et al., 1995]. Us-

ing the shared-memory model, a program can be written as if it were running on a large

DSM System

Cabinet

M
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ry

Board

Heterogeneous

Multi-core Chip

Figure 1.1: Heterogeneous manycore DSM system.
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processor count SMP machine. From the perspective of application developers, all proces-

sors provide identical performance and the memory access time from each processor is also

uniform. This model has been widely accepted and used for a long time. Now if we compare

the real architecture and the vision of the architecture from the developers’ angle, there is

a big gap between them. A number of long-standing assumptions are broken.

• Instead of a uniform memory access time, there are various memory latencies. The im-

mediate result is that placing threads on arbitrary processors may lead to suboptimal

performance when there are data accessed in common by threads.

• Heterogeneous cores provide different compute powers. Developers still should be able

to write portable programs regardless of different machines.

• When the number of user-level threads is greater than the number of kernel threads,

affinity based thread scheduling must be taken into account to maximize the program

locality.

• If a number of cores share a certain level of cache, problems may arise due to resource

contention.

We hope to find a method to reschedule threads to close the above gap and improve the

multithreaded programs’ performance. The scheduling method should be automatic and

applicable to a variety of general-purpose programs.

Another issue is that multicore chips consist of relatively simple processor cores and will

be underutilized if user programs cannot provide sufficient thread level parallelism. It is

the developers’ responsibility to write high performance parallel software to fully utilize the

processor cores. To achieve high performance, we believe that the new parallel multicore

software should have the following two characteristics:

• Fine grain threads. We need a high degree of parallelism to keep every processor core

busy. Another reason is that a core often has a small-size cache or scratch buffer to

work on, which requires developers decompose a task into smaller tasks.
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• Asynchronous program execution. When there are many processor cores, the pres-

ence of a synchronization point can seriously affect the program performance. And

eliminating unnecessary synchronization points can increase the degree of parallelism

accordingly.

Therefore, we want to adopt the dynamic DAG scheduling approach to designing new

numerical linear algebra libraries for multicore architectures. The dynamic scheduling ap-

proach places fine grain computational tasks in a directed acyclic graph and schedules them

dynamically depending on data dependence, program locality, and critical path.

1.2 Thesis statement

The main objective of the dissertation is to investigate how to effectively schedule threads to

improve program performance on multicore architectures. The dissertation formulates the

affinity-based thread scheduling problem on shared-memory multicore systems and proposes

a static feedback-directed approach to computing optimized thread schedules to improve the

effectiveness on every level of a complex memory hierarchy while keeping load balance. The

dissertation also studies the dynamic data-availability driven scheduling approach for fine

grain parallel programs and demonstrates the scalability and practicality of the approach

on both shared-memory and distributed-memory multicore systems.

1.3 Contributions

The contribution of this dissertation consists of five parts:

• An analytical cache model for shared L2 caches on a multicore processor to predict

the number of L2 cache misses when users run multiple threads simultaneously on

different cores. The experimental results show that the analytical model has a small

average relative error (< 8.01%). In addition, the model provides insight into how

cache sharing and cache contention can affect a thread’s performance.
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• A theoretical foundation for the Affinity Based Thread Scheduling problem on shared-

memory multicore systems. After formulating the problem, the dissertation provides

an approximation algorithm to compute near-optimal solutions, and an extension of

the approximation algorithm to support threads with data dependences.

• A feedback-directed optimization prototype system to automatically instrument bi-

nary code and determine optimized thread schedules. The dissertation presents a

number of techniques to process large-size affinity graphs. The experimental results

show that the feedback directed method is able to reduce the execution time for a

variety of applications.

• A distributed deadlock-free algorithm to solve data dependences without process coop-

eration. A dynamic scheduling runtime system has been implemented and applied to

the Cholesky, LU, and QR factorizations. Both theoretical analysis and experimental

results have shown that the tiled linear algebra algorithms and the dynamic schedul-

ing method are scalable on both shared-memory and distributed-memory multicore

platforms.

• A scalable multicast scheme to support nonblocking data multicasting. The method

is proven to be efficient and deadlock-free and is particularly useful for distributed-

memory DAG scheduling applications. The performance of the nonblocking multicast

is significantly better than the simple flat-tree method and close to vendor-optimized

collective MPI operations.

1.4 Original work

To the best of our knowledge, the dissertation includes the following new and original work

that no one has done before.

1. First analytical model to predict the number of cache misses for single-application

threads on multicore processors with shared caches.
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2. First analytical model to estimate the affinity cost of thread schedules.

3. First to tackle the scheduling problem to improve memory effectiveness for all the

levels in a memory hierarchy, and first to formulate it as an optimization problem and

design approximation algorithms to solve it.

4. First to resolve data dependences without process communication in a distributed

manner.

5. First to apply the dynamic data flow scheduling approach to dense linear algebra prob-

lems on distributed-memory multicore systems and demonstrate that the approach is

scalable by both theoretical analysis and experimental results.

6. A new scalable nonblocking topology-aware multicast scheme for distributed DAG

scheduling applications.

1.5 Dissertation outline

The dissertation is organized as follows:

Chapter 2 introduces the related work and compares it to each work described in this

dissertation, respectively.

Chapter 3 presents the analytical model to predict the number of cache misses on

multicore processors with shared L2 caches.

Chapter 4 formulates the affinity based thread scheduling problem and proposes an

analytical cost model as well as an approximation algorithm to solve the problem.

Chapter 5 describes the feedback directed optimization prototype system to automat-

ically instrument user executables and determine optimized thread schedules using

Chapter 4’s algorithms.

Chapter 6 describes the distributed dynamic scheduling approach to executing nu-

merical linear algebra algorithms.
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Chapter 7 presents the scalable nonblocking multicast scheme that is particularly

useful for distributed DAG scheduling applications.

Chapter 8 concludes the dissertation and gives directions for future work.
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Chapter 2

Related Work

This chapter reviews the related work with respect to modeling time-sharing caches, affinity

based thread scheduling, dynamic thread scheduling, and nonblocking multicast.

2.1 Modeling shared caches

Agarwal [Agarwal et al., 1989] develops a cache model that is driven by a small number

of parameters such as start-up effect, non-stationary behavior, intrinsic interference, and

extrinsic interference. The extrinsic interference considers multiprogramming as an addi-

tional source of cache misses and allows for estimating cache performance for round-robined

multiprogramming processes. The model introduces a notion of carry-over set to denote

the cache blocks left behind due to a context switch. But the hypotheses of uniform dis-

tribution of both program blocks and interference misses between potential colliding blocks

are sometimes not accurate in practice. Thiébaut [Thiébaut and Stone, 1987] introduces an

analytical model to estimate the cache-reload transients. A reload transient occurs when an

out-switched process resumes after it is rescheduled by the kernel. The model uses four pa-

rameters: footprint of process A, footprint of process B, number of cache sets, and cache set

associativity. Both models are able to estimate the effect of process swapping (i.e., space-

sharing), but they are not suitable for modeling simultaneous and concurrent accesses to a
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shared cache (i.e., time-sharing) since process swapping allows only one process to execute

at a time.

Suh [Suh et al., 2002] proposes to use a set of hardware counters which are fully-associative

counters, way-counters, and set-counters to monitor the marginal-gain in cache hits for a

set of processes. The scheme assumes the LRU replacement policy and uses counter(i)

to denote the number of references to the i-th most recently referenced block. The author

then introduces an analytical model to combine different sets of counters to estimate the

overall miss rate if multiple processes execute simultaneously. The model supports both

time-sharing and space-sharing between processes, but it assumes that there is no datum

shared between processes. Chandra [Chandra et al., 2005] introduces an inductive prob-

ability model using circular sequences to predict cache interference between co-scheduled

threads on multicore chips. A circular sequence profile is a collection of cseq(d, n) counters

each of which denotes the number of series of n cache accesses to d distinct cache lines.

The circular sequence profile provides more information than the marginal gain counters

and can be used to derive the corresponding marginal gain counters. The probability model

also assumes that the co-scheduled threads are from different processes and have disjoint

address spaces. However, there are many scientific applications that use the shared-memory

programming model (e.g., OpenMP programs). Our model extends Chandra’s work and

takes into account the factor of memory sharing between threads. Chapter 3 targets this

new problem of shared-cache modeling for shared-memory programs.

2.2 Affinity based thread scheduling

A lot of research work has proposed ways of reorganizing data structures and altering

programs to improve the memory access efficiency.
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Augmented Task Graph considers both computation and communication among tasks

for distributed-memory systems [El-Rewini et al., 1994]. The dissertation extends this ap-

proach to shared-memory systems by introducing the “affinity graph” to describe the data-

reuse relationship between different threads (or tasks). The dissertation defines the metric

of data reuse as the number of addresses accessed in common by two threads.

Philbin designs a user-level thread library to improve cache locality using fine-grained

threads [Philbin et al., 1996]. All the data-independent units of computation implied in the

sequential program are created as fine-grained threads all at once. When a thread is created,

a hint of the starting addresses of the accessed arrays must be provided as an argument.

After thread creation, the thread library reschedules the threads at runtime to reduce the

number of L2 cache misses. This method only works for sequential single-thread programs.

Yan develops a runtime library to maximize data reuse [Yan et al., 2000]. His approach

is more generic and can be applied to parallel programs on SMP machines. He adopts an

adaptive scheduler to achieve load balance between processors. Similar to Philbin’s ap-

proach, Yan also uses the starting addresses of arrays as hints to determine an optimal

schedule. Pingali uses locality groups to restructure computations for a variety of appli-

cations but requires hand-coded optimizations [Pingali et al., 2003]. In contrast, we use

a binary instrumentation tool to analyze memory trace and automatically acquire more

precise affinity information between threads. Such precise information is critical for thread

scheduling on a NUMA distributed shared memory system. And the overhead to execute

an optimized schedule is less than that of a runtime system by using a feedback-directed

optimization method.

Ding attempts to improves program locality through trace-driven computation regroup-

ing [Ding and Orlovich, 2004]. He develops a trace-driven tool to measure the exact control

dependence between instructions and applies techniques of memory renaming and realloca-

tion. Due to the expense of scheduling individual instructions, Ding’s method is limited to

small fragments of a few kernels. And it is only applicable to sequential programs.

Similar to our approach, Träff applies the graph partitioning technique to solve the MPI

process mapping problem [Träff, 2002]. The author designs a framework to compute an

10



optimal MPI process placement to minimize the message passing cost. Pichel formulates

sparse matrix-vector product as a graph problem where each row of the sparse matrix rep-

resents a vertex [Pichel et al., 2004, Pichel et al., 2005]. Pichel’s method works effectively

for both SMP and ccNUMA DSM systems, but is limited to the SpMV application.

Affinity loop scheduling minimizes the cache miss rate by allocating loop iterations to the

processor whose cache already contains the necessary data [Markatos and LeBlanc, 1994].

The affinity loop scheduling method emphasizes loop iteration assignment and assumes that

the loop iterations have an affinity to particular processors. A typical use of this method

is to schedule a parallel loop that is nested within a sequential loop. Unlike affinity loop

scheduling, our work reorders and parallelizes the inner loop iterations before assigning

them to particular processors. Furthermore, we use more generic fine-grained threads as

the scheduling unit rather than loop iterations.

2.3 Dynamic thread scheduling

Most of the work that uses dynamic thread scheduling has focused on shared-memory

systems. Cilk is a multithreaded language that generalizes the semantics of C and uses

the ”work-stealing” scheduling algorithm that is provably efficient in terms of time, space,

and communication [Blumofe and Leiserson, 1999, Frigo et al., 1998]. In the Cilk runtime

system, each processor has a deque to store threads. An idle processor picks up a thread

by removing the thread at the bottom of the deque. It works on the thread until the

thread spawns, stalls, dies, or enables a stalled thread. If its deque is empty, the processor

starts stealing threads from other processors randomly. But the Cilk programming model

is limited to solving recursive problems. And programmers must explicitly define barriers

with sync to specify data dependences for the tasks located in the same recursion level.

Buttari et al. design a collection of tiled linear algebra algorithms for multicore machines

[Buttari et al., 2009, Kurzak et al., 2008]. Their algorithms use the block data layout and

schedule fine-grained tasks dynamically. Recently they extend their work and develop a

new library called PLASMA for a richer set of linear algorithm algorithms. Although using
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dynamic scheduling, their initial implementation defines the data dependence relationship

for each algorithm in hardwired code.

OpenMP provides a standard interface for shared-memory parallel programming. Pro-

grammers can insert OpenMP directives to their sequential programs to add parallelism

incrementally. OpenMP is particularly useful for programs with regular parallel loops.

The new OpenMP 3.0 addresses the irregular parallelism issue and proposes to use the

task-queuing model and dynamic sections to support while loops and recursive functions

[Ayguade et al., 2009]. But when declaring parallel loops or parallel sections, it is the user’s

responsibility to guarantee that there is no dependence between them.

Intel Thread Building Blocks (TBB) is a C++ library that supports shared-memory

parallel programming [Reinders, 2007]. Users specify ”tasks” to construct parallel programs

and let the runtime system schedule the tasks onto processor cores. TBB provides templates

for common patterns such as loops, pipelines, and nested parallelism. TBB uses the work-

stealing scheduler and is best suited for recursive algorithms. Like Cilk, TBB requires

users define barriers to specify dependences explicitly. By contrast, our scheduling runtime

system takes fully responsibility for detecting data dependences and allows users to ignore

data dependences while writing parallel programs.

SMP Superscalar (SMPSs) is a parallel programming environment for multicore archi-

tectures [Perez et al., 2008]. Programmers add pragmas to the same sequential C code to

identify atomic tasks. Then SMPSs compiles the sequential C program and links it with the

runtime system, and executes the program in parallel. Similar to our dynamic scheduling

approach, SMPSs is able to analyze data dependences at runtime. Instead of using compiler

technology, we replace the basic linear algebra routines by a task-based library to execute

programs in parallel automatically. Out work is more focused on designing scalable software

for distributed-memory systems. The same code is able to work on both shared-memory

and distributed-memory multicore systems in an efficient and scalable manner. Chapter 6

describes our dynamic task scheduling work.
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2.4 Nonblocking multicast

MPICH-G2 uses depth information to represent where an MPI process is located in a

computational Grid [Karonis et al., 2003]. There are four levels of depths: wide area, local

area (or site), system area, and node-specific area. For instance, a cluster in a site has a

depth of 3, and a multicore node has a depth of 4. On every level i, all the MPI processes are

partitioned into groups for which the same group of processes can communicate through the

ith network level. Groups are represented by different colors. Two processes on a particular

level are assigned the same color if they can communicate at that level. The topology table

consists of a number depths of rows and a number processes of columns. Table[d, p] defines

a color for process p on network level d. The table is global for the whole grid and must

be accessible by every process. Our topology ID representation has a distributed compact

table and requires much less space.

Plaxton designs a distributed data structure of neighbor table to maintain and ac-

cess nearby shared objects in a distributed environment. The distributed environment is

very dynamic and large numbers of objects are inserted, copied, and deleted constantly

[Plaxton et al., 1997]. In Plaxton’s access scheme, every different object has a ”virtual”

balanced tree embedded into the network. With the embedded tree, accessing an object

can be realized by checking the node’s local memory and the node’s subtree, followed by

forwarding the access request to its parent. Plaxton’s neighbor table is the key element for

the different trees for different objects. Section 7.5 describes the definition of the neighbor

table. Our work is an extension to Plaxton’s neighbor table where we build routing tables

for processes instead of nodes. Plaxton assumes each node has a label that is independently

and uniformly distributed at random. In contrast, we assign each node a topology ID to

enable network topology awareness. Since a user’s processes occupy a subset of all the nodes

on the system, we modify the table-building method to allow empty entries (or ”holes”)

in routing tables. Furthermore, Plaxton’s method is intended to locate a named object by

tracking the tree from a leaf to the root. Differently, we design a scheme to do multicasting

from the root to a set of leaves by extending Plaxton’s table to a new routing table.
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Wu [Wu and Sheng, 2005] designs a prefix-based multicasting scheme for irregular net-

works. Each outgoing channel of a node is assigned a label. A multicast packet is first

forwarded up to the longest common prefix of the multicast destinations and then for-

warded down to leaves along the spanning tree. The whole system is based on a single

spanning tree. In our multicast method, every process has its own spanning tree.

Bayeux uses the Tapestry structure to provide an application-level multicast scheme for

streaming multimedia applications [Zhao et al., 2001, Zhuang et al., 2001]. Bayeux builds

a distribution tree based on four control messages: JOIN, LEAVE, TREE, PRUNE. To

construct a distribution tree, the source server must advertise the session information

first. Then the clients have to join the session explicitly to form the distribtuion tree.

Panda proposes a hierarchical leader based approach to support one-to-many multicasting

[Panda et al., 1999]. The set of nodes are grouped into subsets explicitly so that each subset

is represented by a leader. Banerjee also proposes a hierarchical clustering method to mul-

ticast data stream to large receiver sets [Banerjee et al., 2002]. Unlike the above methods,

our method does not construct distribution trees or hierarchies explicitly, but simply uses

the implied topology-aware spanning trees to do multicasting.
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Chapter 3

Level-2 Cache Modeling for

Multicore Processors

3.1 Introduction

Cache performance plays an important role in software performance. With the increasing

gap between memory and CPU speeds, it is essential to utilize the cache to its full poten-

tial. Chip Multi-Processing (CMP) (i.e., multicore) architectures have been developed to

enhance performance and power efficiency through the exploitation of both instruction-level

and thread-level parallelism. Some CMP architectures share an on-chip L2 cache among

cores, and others have private L1/L2 caches. As described in the prior work by Fedorova

[Fedorova et al., 2006], an L2 cache miss penalty can be as high as 200-300 cycles while an

L1 cache miss only costs a few cycles. Poor L2 cache behavior can dramatically increase the

amount of off-chip communication and degrade the overall performance. Thus, our work is

focused on modeling the behavior of the on-chip shared L2 cache.

For multi-threaded programs, a shared L2 cache allows higher utilization of the cache

as one thread can reuse the same data loaded previously by another thread. Such reuse

reduces power consumption and avoids duplicating hardware resources. However, parallel

The material from this chapter was published in the 36th International Conference on Parallel Processing
(ICPP 2007) [Song et al., 2007b].
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threads often interfere with each other and contend for accesses to the shared L2 cache,

leading to suboptimal performance. This chapter presents an analytical model to predict

the number of L2 cache misses for shared-memory scientific applications. By analyzing the

L2 cache trace which is recorded when just a single thread is running, the model is able

to predict the number of misses if users run the thread together with other threads on the

remaining cores. The model assumes there is one thread on each core.

Considering the characteristics of thread-parallel programs from scientific computation,

nearly all threads are homogeneous. That is, each thread works on the same task in parallel

and has similar temporal behavior. Modeling the effect of shared memory accesses leads to

a more powerful model that can predict the number of L2 cache misses for threads not only

from distinct processes, but also from a single process.

The scheme presented in this chapter classifies cache misses into three types: compul-

sory misses, capacity misses on shared data, and capacity misses on private data. The terms

shared and private denote whether the data are referenced by more than one thread (shared)

or by a single thread (private). For instance, threads from different processes usually have

disjoint memory accesses. We model the above three types of misses with three different

methods: an average value for modeling compulsory misses, a probability method for mod-

eling capacity misses on private data, and an effective cache space and a probability method

for modeling capacity misses on shared data. The goal is to model the L2 cache behavior

by discovering the causes a cache hit developing into a cache miss as well as a cache miss

turning into a cache hit.

We validate the model using the cycle-accurate simulator SESC [Renau et al., 2005].

Three scientific programs have been implemented to verify the model: matrix multiplication

using three nested loops, blocked matrix multiplication, and sparse matrix-vector product

taking as input sparse matrices from Matrix Market [Boisvert et al., 1996]. The average

relative error of the model is between 2% and 8%.
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3.2 Methodology overview

The model uses the stack processing technique to estimate the number of L2 cache misses

given an L2 cache trace. However, the L2 cache trace might be changed if users run a

thread together with other threads due to the shared cache access. Therefore, the model

must be able to predict how a thread’s trace is affected by the other threads (we call

it “interference”). We employ the technique of circular sequence profiling to realize the

prediction. Note that we still need the stack processing technique to derive the number of

cache misses from the predicted trace.

3.2.1 Stack processing technique

Gecsei introduces a technique called ”stack processing” to evaluate storage hierarchies that

use stack algorithms as a replacement policy [Mattson et al., 1970]. A storage hierarchy

consists of multiple levels of devices that are partitioned into pages. The input to the model

is a page trace x1, x2, . . . , xn, where xi is the page number accessed by the program. It is

possible to apply the technique to any level of the storage hierarchy as long as there is a

corresponding trace. We call a trace the block trace if we are examining caches.

Assume a fully-associative cache has C lines (or ways). It is easy to see that under LRU

the cache contains the C most recently used lines at any time t. Even if we increase the

cache size to C + 1, C + 2, . . . , the set of C lines are still stored in the cache. This property

is called the ”inclusion property” [Mattson et al., 1970]. Because of the inclusion property,

the content of the cache at time t is able to be represented as an LRU stack:

S(t) = {s(t)(1), s(t)(2), · · · , s(t)(C)}, where

s(t)(i) = Blocks(t)(C = i)−Blocks(t)(C = i− 1).

Blocks(m) denotes the set of lines contained in a cache of size m. If a cache line x was

referenced before, the position △ of line x (counted from the top of the stack) is called

”stack distance”. Let counter(△) accumulate the number of times the stack distance △
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appears in the page trace. Such a set of counters forms a so-called stack distance profile. For

instance, counter(1) counts the number of hits in the most recently used line, counter(C)

counts the number of hits in the least recently used line, and counter(C + 1) counts the

number of cache misses.

Our model assumes a fully associative cache that uses the LRU algorithm and thus has

no conflict misses. It has been shown that set-associative cache miss rates are related to

fully associative ones and a model using Bayes rule is able to make accurate predictions

[Hill and Smith, 1989]. In addition, when the size of set-associativity is large, set-associative

caches often have a miss rate comparable to fully associative caches.

A stack distance profile is sufficient to estimate the number of misses for a particular

cache capacity. However, a page trace is prone to change because of other threads running

on the remaining cores. Hence we must acquire more information to model the possible

interferences from the other threads. The concept of circular sequence profile is introduced

by Chandra [Chandra et al., 2005] and has successfully modeled the interference effect from

other processes in distinct address spaces. Note that we can still deduce a stack distance

profile from a circular sequence profile.

3.2.2 Circular sequence profile

A circular sequence is a sequence of cache lines x1, x2, · · · , xn, where x1 = xn and x1 does

not appear anywhere in the middle of the sequence except for the beginning and the end

positions [Chandra et al., 2005]. It is possible that other circular sequences exist in the

sequence if one cache line appears several times in the middle. For instance, the trace in

Fig. 3.1 contains five circular sequences. We use CSEQ(d, n) to denote a set of circular

sequences, in which each sequence is of length n and has d distinct cache lines:

CSEQ(d, n) = {α |α is a circular sequence that accesses n lines and has d distinct lines}.
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 x1 x2 x3 x4 x3 x2 x1 x1 ... x4

Figure 3.1: An example of a cache block trace containing five circular sequences.

Different d and n define a different circular sequence set. In practice we use a counter to

record the number of elements in a nonempty CSEQ(d, n) set. It is denoted as |CSEQ(d, n)|.

Each CSEQ(d, n) has a counter and the list of counters forms a circular sequence profile.

We extend the SESC simulator to collect an L2 cache trace that consists of L2 cache

lines sent from all processor cores. In the trace file, each cache line is written in the form

of PhysicalAddress:CoreId:VirtualAddress. The second field CoreId helps keep track

of a specific thread’s trace, and the third field VirtualAddress is used by our model to

distinguish shared data accesses from private data accesses.

To obtain circular sequence profiles, we use a scan process to analyze the L2 cache trace.

Figure 3.2 shows the process’s corresponding C++ program. Associative map addr map

records a physical address and the position of its most recent appearance in the trace, array

compulsory counts the total number of compulsory misses for each core, and cseq shared,

cseq private are circular sequence set counters for shared and private data, respectively.

The analysis process outputs not only compulsory misses for each core, but also circular

sequence profiles for shared data cseqshared(d, n) and private data cseqprivate(d, n). Based

on these three components, the model is able to estimate the number of cache misses when

running multiple threads simultaneously.

3.3 Modeling strategy

We use the most well-known ”three Cs” model (compulsory, capacity, and conflict misses)

to classify cache misses. For simplicity, we only consider fully associative caches and thus

there is no conflict miss in the model. The model takes as input a single thread’s circular

sequence profile and estimates the number of misses if the thread had run together with
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map<paddr, pos> addr_map;

pos = 1;

while(not end of the trace file) {

read into paddr, coreid, vaddr;

if(addr_map[paddr] == 0) {

addr_map[paddr] = pos;

compulsory[coreid]++;

} else {

n = pos - addr_map[paddr] + 1;

d = get_num_distinct(addr_map[paddr], pos-1);

addr_map[paddr] = pos;

if(is_shared(vaddr))

cseq_shared[coreid][n][d]++;

else

cseq_private[coreid][n][d]++;

}

pos++;

}

Figure 3.2: The C++ program to scan the L2 cache trace to obtain circular sequence profiles
and the number of compulsory misses for each processor core.

other threads. Note that the model always measures and predicts the performance of this

single thread. Since the model does not consider simultaneous multi-threading (SMT) on

processor cores and always runs one thread on each core, this chapter interchangeably uses

”thread” and ”core”.

Suppose we know of a thread’s circular sequence profile, then we can derive the number

of cache misses by the following expression:

misses = compulsory +
∑

d>C

∑

n>d

|CSEQ(d, n)|.

When users run a thread concurrently with other threads on different cores, the trace of

that thread will be affected by references from the other threads. We divide L2 cache

references into two types based on their addresses: references to shared data, and references

to private data. Instead of using a single circular sequence profile cseq(d, n) for each thread,

we introduce cseqprivate(d, n) and cseqshared(d, n). For instance, consider two sequences:
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ABCDA where A is shared and ZBCDZ where Z is private. The first sequence increases

the counter cseqshared(4, 5), while the second increases cseqprivate(4, 5).

For a given thread, different types of references are affected differently by the other

threads. For instance, when a shared datum is accessed by two threads, the cache line

previously loaded by one thread can save the other from reloading it. Therefore, (i) an

original compulsory cache miss might become a hit. The second type is that (ii) the number

of capacity misses on private data should increase because a previous hit may become a

miss due to interferences from other threads. Finally, predicting the number of capacity

misses on shared data is much more complicated: (iii) a cache miss on shared data may

become a hit because the other thread already loaded the data, meanwhile (iv) a cache hit

on shared data may become a miss owing to the other threads’ interference.

The following subsections describe the methods to predict the above four types of misses

respectively. Misses
(co)
new denotes the predicted number of compulsory misses, Misses

(pr)
new

denotes the predicted number of capacity misses on private data, and Misses
(sh)
new denotes

the number of capacity misses on shared data (including types of iii and iv). Furthermore,

the total number of L2 cache misses is the sum of Misses
(co)
new, Misses

(pr)
new, and Misses

(sh)
new.

3.3.1 Modeling the compulsory misses

To determine how many compulsory cache misses become cache hits accurately is dependent

upon the relative speed of the concurrent threads and how much their working sets overlap.

Given thread t0, thread t1, and shared data accesses b1, b2, b3, b4, thread t0 will have four

compulsory misses if it is running alone. With thread t1 running, thread t0 misses might

become fewer if thread t1 loads some of the data, or remain to be four if thread t1 always

lags behind thread t0. It is hard to provide a precise prediction unless we know more

detailed information.

Since the model is focused on homogeneous threads, it is reasonable to assume that

the shared data are loaded evenly by the participating threads. This assumption has been

validated by the experiments and most of the time the relative error for the compulsory

miss estimate is less than 15%. Figure 3.3 shows an example that launches two threads to
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compute C = A× B using a block data distribution. Matrix B is shared by thread 0 and

thread 1. From the perspective of thread 0, around half of its compulsory misses on matrix

B may be loaded by thread 1.

We introduce F
(co)
m2h to denote the fraction of a thread’s compulsory cache misses that

will become cache hits. Here co stands for ”compulsory”.

F
(co)
m2h =

Overlapped Blocks

TotalBlocks×NumCores
.

The fraction of compulsory misses that remain to be compulsory misses F
(co)
miss is as follows:

F
(co)
miss = 1− F

(co)
m2h.

Thus the predicted number of compulsory misses for running the thread concurrently with

other threads is expressed as:

Misses(co)
new = Misses

(co)
old × F

(co)
miss,

where Misses
(co)
old is the original number of compulsory misses when the thread is running

alone.

= x

C A B

thread 0
thread 1

Figure 3.3: Two threads compute matrix multiplication of C = A×B using the block data
distribution. For thread 0, half of its compulsory misses on matrix B could be saved by

data loading of thread 1 (i.e., F
(co)
m2h = 1

(.5+.5+1)×2 = 1
4).
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3.3.2 Modeling the capacity misses on private data

It is easy to see that a capacity cache miss on private data is still a cache miss regardless of

whether a thread is running alone or with another thread. But a cache hit may become a

cache miss because references from other threads will likely stretch out the circular sequence

too much. Figure 3.4 illustrates how a cache hit could become a miss for a cache of size

C = 4. The sequence at the bottom is likely to happen if we run thread 0 and thread 1

together. At this time, the second reference to a1 is now becoming a cache miss. Therefore,

the predicted number of capacity misses on private data is equal to the sum of the original

capacity misses and some original hits which turn into misses.

Let thread 0 and thread 1 run in parallel on two different cores. CSEQ(d, n) corresponds

to the cache hits of thread 0 if d ∈ [1, C]. Note that CSEQ0(d, n) is a set of circular sequences

with length n and d distinct addresses. During the time thread 0 is accessing its n addresses

in L2, thread 1 is also accessing the shared L2 cache. The references from thread 1 may

insert an extra ∆d distinct addresses into the circular sequence. When d + ∆d > C, thread

a1

a2

a2

a3

a3

a4

a4

a1

a10

a10

a11

a11

a12

a12

Figure 3.4: A cache hit of thread 0 becomes a miss because of references from thread 1.
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0’s cache hit develops into a miss. For simplicity, we assume all the references inserted are

different from those in the original sequence.

We use Prob
(pr)
h2m to denote the interference probability for which a cache hit on private

data becomes a cache miss. The modeling method for private data is an extension to the

technique developed by Chandra et al. [Chandra et al., 2005]. We apply the technique

to the private-data circular sequence profile of a thread using Prob
(pr)
h2m(cseq(pr)(d, n̄)) =

∑

d̂>C−d
Prob(seq(d̂, n̄)), where d ≤ C and n̄ is the average length of sequences with d dis-

tinct addresses. The following step 2 shows how to compute n̄. Since we are concerned with

homogeneous threads, the model scans the same trace to compute the interference prob-

ability Prob(seq(d̂, n)). The inductive probability function used by [Chandra et al., 2005]

is more complex and essentially exponential. In our algorithm,
∑

d̂>C−d
Prob(seq(d̂, n̄)) is

computed by scanning the trace file to find the frequency of sequences with length n̄ and

greater than C − d distinct addresses. It has a linear time complexity of O(TraceSize).

Our model takes as input the private-data circular sequence profile CSEQ(pr)(d, n) and

works as follows:

1. Compute the total number of capacity misses when a single thread is running:

Misses
(pr)
old =

∑

d>C

∑

n>d

|CSEQ(pr)(d, n)|

2. Compute the number of cache hits which become misses:

for d = 1 to C do

total num =
∑

n>d

|CSEQ(pr)(d, n)|

n̄ =

∑

n>d

(

|CSEQ(pr)(d, n)| × n
)

total num

Prob
(pr)
h2m(d, n̄) =

∑

d̂>C−d

Prob(seq(d̂, n̄))

∆Misses(pr)+ = total num× Prob
(pr)
h2m

end for
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3. Finally, compute the predicted number of capacity misses on private data:

Misses(pr)
new = Misses

(pr)
old + ∆Misses(pr)

3.3.3 Modeling the capacity misses on shared data

The number of capacity misses happening on the shared data is much more difficult to model

than the compulsory misses and the capacity misses on private data. We need to further

partition the shared-data circular sequence profile CSEQ(sh)(d, n) into two subcategories:

cache hits (circular sequences with d ≤ C) and cache misses (circular sequences with d > C).

Likewise, cache hits may become cache misses because references from other threads stretch

out the sequence length, and cache misses may become cache hits because other threads

already loaded the shared data into the L2 cache. To model the two different subcategories,

we adopt two different approaches, respectively.

Cache hits on shared data become cache misses

A thread is not able to occupy all the L2 cache lines when it is running concurrently with

other threads. A portion of the cache will contain data from the other threads. Since all

threads have similar temporal behavior, we assume that the effective cache size Ceff (t0) of

thread t0 is proportional to the percentage of its footprint size to the overall footprint size:

Ceff (t0) =
|footprint(t0)|
|⋃i footprint(ti)|

× C.

The number of additional cache misses Misses
(sh)
h2m is computed by applying Ceff to the

circular sequence profile of the concerned thread:

Misses
(sh)
h2m =

C
∑

d=Ceff +1

∑

n>d

|CSEQ(d, n)|.
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Cache misses on shared data become cache hits

To consider another situation where capacity misses on shared data turn into cache hits,

we use the same idea as in predicting the compulsory misses. If m cache lines are accessed

by n threads in common, the model assumes each thread will load m
n

lines. Therefore the

fraction F
(sh)
m2h of capacity misses that become hits on shared data is expressed as:

F
(sh)
m2h = 1− 1

Number of Threads
,

and the reduced number of capacity misses is equal to:

Misses
(sh)
m2h = Misses

(sh)
old × F

(sh)
m2h.

By the above Misses
(sh)
h2m and Misses

(sh)
m2h, we can now estimate the number of capacity

misses on shared data:

Misses(sh)
new = Misses

(sh)
old −Misses

(sh)
m2h + Misses

(sh)
h2m

= Misses
(sh)
old ×

1

Number of Threads
+ Misses

(sh)
h2m

Finally, summing up Misses
(co)
new, Misses

(pr)
new, and Misses

(sh)
new gives the predicted total

number of L2 cache misses.

3.4 Experimental results

The implementation of the model consists of a tool analyzing the L2 cache trace to create

circular sequence profiles for each core and a library implementing the analytical model.

We validate the model using three examples typical of scientific computing. All three

experiments perform double-floating point operations on matrices/vectors that are stored

contiguously in memory. We use the simple 1-D block data distribution to allocate tasks to

two threads. The three experiments are:
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• Dense matrix multiplication using three nested loops. We denote it as dgemm.

• Dense matrix multiplication using the tiling technique. The tile size is equal to eight.

It is denoted as blocked dgemm.

• Sparse matrix-vector multiplication. The experiment is referred to as spmv.

The experiments were conducted on an extended version of the SESC simulator. SESC is

a cycle-accurate execution-driven simulator built from MINT that emulates a MIPS proces-

sor [Renau et al., 2005]. Table 3.1 shows the parameters of the two-core CMP architecture.

A large-size L2 cache results in very few capacity misses and nearly all cache misses are

compulsory misses. Thus it is relatively easy to model large L2 caches. In order to study

the more complicated non-compulsory misses, we choose to use a small L2 cache size.

3.4.1 Result for dgemm

Table 3.2 does a comparison between the actual number of misses and the predicted number

of misses for running two threads. The relative error lies in the range between 1.97% and

Table 3.1: Parameters of the two-core simulated CMP architecture.

Processor Two cores, 5.0GHz

out of order issue

L1(private) ICache: LRU, 4-way, 32KB

64B line, write-through

DCache: LRU, 4-way, 8KB

64B line, write-through

MESI protocol

L1L2 Bus Split transaction system bus

L2 MSHR 64

L2(shared) Unified, LRU, 64B line

64KB, fully associative

write-back

27



20.19%. For each matrix size N, there are three rows that display the actual number of L2

cache misses when users run a single thread, the actual number when users run two threads,

and the prediction for running two threads, respectively.

As shown in the third row for each N, the analytical model decomposes cache misses into

three components: compulsory misses, capacity misses on private data, and capacity misses

on shared data. Each component adopts a different approach to model. The compulsory

and shared data misses are based upon empirical parameters, and the private data misses

build upon a probability model. For different applications, the total number of cache misses

is dominated by one of the three components. For instance, the dgemm experiment has a

large number of capacity misses on shared data.

3.4.2 Result for blocked dgemm

This experiment is a tiled version of dgemm. It uses a block size of 8 to compute the matrix

multiplication. Table 3.3 lists the actual number of misses for running one thread alone,

the actual number for running two threads together, and the predicted number for running

two threads. The relative error is between 0.1% and 4.2%.

3.4.3 Result for spmv

Finally, we conducted experiments on sparse matrix-vector multiplications. The matrices

used are dw2048 and qc324 which were downloaded from the Matrix Market web site.

dw2048 is a 2048×2048 sparse matrix with 10114 non-zero elements, while qc is a 324×324

matrix having 26730 non-zero elements. Figures 3.5 and 3.6 show their images correspond-

ingly. Table 3.4 lists the performance result. To estimate the number of compulsory misses

for matrix qc324, we find that the two threads are working on nearly-disjoint subsets of the

shared memory area, therefore we simply keep the number of compulsory misses unchanged.
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Table 3.2: Result for dgemm: prediction of the total number of L2 misses for thread 0 if
running with another thread. For each N, there are three rows. The 1st row shows the
measured result for running a single thread, then the second row shows measured result for
running two threads, and the third row shows our prediction.

N Total Compulsory Capacity Capacity Error

(private) (shared)

64 single 1041 1025 16

64 dual 862 838 24

64 predict 813 769 43 1 -5.68%

72 single 1313 1297 16

72 dual 901 870 31

72 predict 991 973 17 1 +9.99%

80 single 1631 1601 30

80 dual 1096 1037 59

80 predict 1233 1201 31 1 +12.50%

88 single 2076 1937 139

88 dual 6479 1158 5321

88 predict 7787 1453 145 6189 +20.19%

96 single 56839 2305 54534

96 dual 30179 1681 28498

96 predict 29584 1729 391 27464 -1.97%

104 single 72231 2705 69526

104 dual 35531 2037 33494

104 predict 37710 2029 1204 34477 +6.13%

112 single 89983 3137 86846

112 dual 44428 2317 42111

112 predict 46081 2353 607 43121 +3.72%

144 single 190445 5185 185260

144 dual 93495 3817 89678

144 predict 97135 3889 1229 92017 +3.89%

Average Error 8.01%
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Table 3.3: Result for blocked dgemm: prediction of the total number of L2 misses for thread
0 if running with another thread. For each N, there are three rows. The 1st row shows the
measured result for running a single thread, then the second row shows measured result for
running two threads, and the third row shows our prediction.

N Total Compulsory Capacity Capacity Error

(private) (shared)

64 single 1047 1031 16

64 dual 805 775 30

64 predict 827 773 53 1 +2.73%

72 single 1251 1231 20

72 dual 1952 985 977

72 predict 1916 923 21 972 -1.84%

80 single 4537 1607 2930

80 dual 2963 1215 1748

80 predict 3089 1205 51 1833 +4.25%

88 single 5795 1855 3940

88 dual 3374 1332 2042

88 predict 3399 1391 71 1937 +0.74%

96 single 8161 2311 5850

96 dual 4911 1764 3147

96 predict 4792 1733 178 2881 -2.42%

104 single 9474 2607 6867

104 dual 5319 1891 3428

104 predict 5444 1955 108 3381 +2.35%

112 single 12690 3143 9547

112 dual 7230 2423 4807

112 predict 7202 2357 140 4705 -0.39%

144 single 26222 5191 21031

144 dual 14543 3904 10639

144 predict 14561 3893 299 10369 +0.12%

Average Error 1.85%
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Table 3.4: Result for spmv: prediction of the total number of L2 misses for thread 0 if
running with another thread. For each sparse matrix, the 1st row shows the measured
result for running a single thread, then the 2nd row shows measured result for running two
threads, and the 3rd row shows our prediction.

Matrix Total Compulsory Capacity Capacity Error

(private) (shared)

dw2048 single 1483 1403 80

dw2048 dual 1483 1391 92

dw2048 predict 1412 1324 88 0 -4.787%

qc324 single 2807 2693 114

qc324 dual 2841 2668 173

qc324 predict 2840 2693 147 0 -0.035%

Average Error 2.41%
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Figure 3.5: Sparse matrix of dw2048
(nnz = 10, 114).
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Figure 3.6: Sparse matrix of qc324
(nnz = 26, 730).
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3.5 Summary

This chapter presents an analytical model to predict the number of L2 cache misses on a

chip multi-processor quantitatively. The model uses the circular sequence profiling and the

stack processing technique to analyze an L2 cache trace. First, the trace file is scanned to

generate a circular sequence profile. Next the analytical model takes as input the profile and

outputs the number of cache misses for running multiple threads. Since we are concentrating

on a fully associative L2 cache, cache misses are decomposed into three types: compulsory

misses, capacity misses on shared data, and capacity misses on private data. Each miss

type is modeled by a different method since each one’s behavior is affected variously by

other threads.

For all the three scientific programs, the model has an average relative error less than

8.01%. In addition, the analytical model provides an insight into how inter-thread cache

sharing and cache contention affect program performance. Inspired by this insight, we start

to investigate affinity based thread scheduling to optimize memory access efficiency for a

more complex memory hierarchy. The following Chapters 4 and 5 describe the work of

affinity based thread scheduling.
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Chapter 4

Theoretical Framework for Affinity

Thread Scheduling

4.1 Introduction

This chapter studies how to improve the memory effectiveness and maximize data reuse

through affinity-based thread scheduling on multicore shared memory platforms. By using

a large-scale DSM machine for a couple of years, we find that it is critical to improve

user programs’ memory access efficiency to speed up program performance. We run SGI’s

performance monitoring tool pmshub on the SGI Altix 3700 BX2 machine from NCSA.

As an example, Fig. 4.1 shows that a number of user programs are experiencing a large

amount of remote memory accesses on the DSM machine. The light yellow area indicates

the number of remote memory accesses.

Therefore, we aim at searching for an optimal thread schedule to improve the memory

effectiveness on all levels in the multi-level memory hierarchy (e.g., maximize cache reuse,

reduce the number of remote memory accesses). Threads in our context refer to fine-grained

user level threads that can be as small as a block of instructions for which a user program

can create hundreds of thousands of such threads.

The material from this chapter was published in the 11th IEEE International Conference on Cluster
Computing (IEEE Cluster 2009) [Song et al., 2009b].
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Figure 4.1: A screen shot of the performance monitoring tool pmshub on SGI Altix. The
light yellow area reflects how many remote memory accesses have occurred.

To investigate the affinity-based thread scheduling problem, we introduce an analytical

model to evaluate the cost of a thread schedule and then tackle it as an optimization

problem. The analytical model consists of three submodels:

• affinity graph submodel for describing the affinity relationship between fine grain

threads (or tasks) in a user program,

• memory hierarchy submodel for abstracting the memory hierarchy of a multicore sys-

tem, and

• cost submodel for predicting the cost of a schedule to run the threads on the multicore

system.

Our strategy is to let the affinity graph submodel characterize the user program and the

memory hierarchy submodel characterize the system architecture. Then, in combination

with the third cost submodel, we are able to answer the question ”Given a multi-threaded

program T and a shared-memory machine M , what is the cost to use a thread schedule A to

execute program T on machine M?” Since finding an optimal thread schedule is NP-hard,

we design a hierarchical graph partitioning algorithm to compute a near-optimal solution.

Furthermore, an extension to support DAG scheduling is also proposed. The analytical
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model is supported experimentally. We have applied the analytical model to two synthetic

applications and a real-world application and showed that it can accurately measure the

quality of a thread schedule.

4.2 The analytical model

4.2.1 The affinity scheduling problem

Given a set of single-application user-level threads {t1, . . . , tm} without data dependences,

and a number of heterogeneous processors p1, . . . , pn located in a shared-memory hierarchy,

find a good schedule A to achieve:

(a) maximal data reuse within a processor,

(b) minimal remote memory accesses, and

(c) load balancing.

Note that here we use threads to refer to user-level threads that can be as small as a block

of instructions (e.g., task) or as large as a kernel-level thread (e.g., pthread).

Let schedule A be an onto function:

A : {1, . . . ,m} −→ {1, . . . , n},m ≥ n.

A(i) = j means put thread ti on processor pj. A−1(j) denotes the subset of threads

running on processor pj. We allow threads to have different workloads and processors to be

heterogeneous with varying computational capabilities.

4.2.2 Affinity graph submodel

In order to decide on which processors to place two threads, it is critical to know whether

there exist data items accessed in common by the two threads. We use the concept of

“affinity” to quantify how many data items are accessed in common by a pair of threads.
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Definition 4.1 (Affinity). When two threads ti, tj access a number n of data items {x1, x2, . . . , xn}

in common, we say there is an affinity relationship between ti and tj, and affinity(ti, tj) = n

is the affinity strength.

Because a user program has a set of threads, we introduce the concept of affinity graph

to model the affinity relationship among the set of threads.

Definition 4.2 (Affinity Graph). The affinity graph is an undirected weighted graph G =

〈T,E,wt, we〉, where

• T = {ti is a user-level thread | ti is data independent of tj,∀i 6= j},

• E={(ti, tj) | ∃ datum x such that both ti and tj access x},

• wt : T −→ Z+ denotes the amount of computation of each thread,

• we : E −→ Z+ denotes the affinity strength between two threads. If (ti, tj) /∈ E,

we(ti, tj) = 0.

Given an affinity graph G = 〈T,E,wt, we〉, if Ti ⊂ T , we extend the definition of wt

and we to represent the weight of the subgraph for Ti. That is, wt(Ti) =
∑

t∈Ti
wt(t) and

we(Ti) =
∑

ti,tj∈Ti
we(ti, tj).

Figure 4.2 shows an example of multiplying two 200× 200 matrices. A and C are dense

matrices. Matrix B has a special structure where the top right and bottom left blocks

are zeros. We run four threads T0-T3 to compute the matrix multiplication. Threads

T0-T3 compute the result for submatrices of C11, C12, C21, and C22 concurrently. The

corresponding affinity graph is shown on the right hand side in Fig. 4.2.

We compare the performance of putting threads T0 and T2 on the same SMP node to

that of putting T0 and T1 together (an intuitive way) for a system with two dual-CPU

SMP nodes. Figure 4.3 shows the wallclock execution time of the two thread schedules.

The optimized schedule is better than the original one by 20%. This example demonstrates

that different thread schedules can result in significant performance difference.
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Figure 4.2: An example of affinity graph for matrix multiplication using four threads.
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Figure 4.3: Comparison of two different thread schedules. The revealed affinity relationship
(stronger affinity between T0 and T2) in Figure 4.2 helps improve the performance of the
parallel matrix multiplication.
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4.2.3 Memory hierarchy submodel

We assume that a shared-memory system has a hierarchical memory architecture. For

instance, a number of processor cores may share an L2 or L3 cache. The data stored in the

L2 and L3 caches are duplicated in the local main memory. Also the global address space

includes the data stored in all the local memories. The hierarchical shared memory system

is defined as follows:

Definition 4.3 (Memory Hierarchy Submodel). A shared-memory system R is a tree of

the form R = (r, T ), where r is a memory node, T is the children of r and

T = {(ri, Tri
) | Tri

is the children of ri}.

The model assumes all the leaves are of the same height h (i.e., on the hth level), and all

the edges on the same level l have identical weight wl. Specifically, the leaf tree nodes (ri, ∅)

denote processor cores and the interior tree nodes at levels 0 . . . h−1 denote memories. The

model also assumes each memory contains a copy of the data in its children.

Figure 4.4 shows an example of a multicore DSM system. For convenience, we define

the ancestor memories of a node n by ancestor(n) = {m : memory m resides on the path

from the root to node n}.

memory

processor core

...

...

...

... ...

...

...

global memory

local memory

shared cache

Figure 4.4: A 3-level memory hierarchy on a multicore DSM system.
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Definition 4.4 (Memory Latency). If a processor p accesses datum x that is stored in

memory m together with m’s ancestor memories, we define memory latency lat(p, x) =

w(p,m), where

w(p,m) =
∑

edge e∈ path p→m

wlevel(e).

Lemma 4.1. Let datum x reside in memory m together with m’s ancestor memories, if

processor p is a descendant of m but processor p′ is not, then lat(p, x) < lat(p′, x).

Proof. Let the lowest common ancestor of p and p′ be m2 = lca(p, p′). Since p′ is not under

the subtree of m, level(m2) < level(m). By Definition 4.4,

lat(p, x) = w(p,m) = wh−1 + wh−2 + . . . + wlevel(m),

lat(p′, x) = w(p,m2) = wh−1 + wh−2 + . . . + wlevel(m2).

Since level(m2) < level(m), we know lat(p′, x) > lat(p, x).

Corollary. If two threads ti and tj access the same datum x stored in memory m, placing

them on two processors located in the subtree of m minimizes lat(ti, x) + lat(tj, x).

Proof. By Lemma 4.1, placing thread ti on a descendant processor pi of m will minimize

lat(ti, x). Similarly, lat(pj, x) = min∀p lat(p, x) if pj is another descendant processor of

m. Therefore, placing the two threads on two processors in the subtree of m minimizes

lat(ti, x) + lat(tj, x) since both latencies are minimal.

The corollary implies that the thread placement may affect the program performance if

two threads have an affinity relationship.

4.2.4 Cost submodel

After identifying the affinity relationship between threads and the characteristics of the

underlying architecture, we are now ready to estimate the cost of running a thread schedule.
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Definition 4.5 (Cost Submodel). Given an affinity graph G, a shared-memory system M ,

and a thread schedule A, we define the cost to execute schedule A on system M as

cost(G,M,A) =
∑

∀pi,pj

cost(A−1(pi), A
−1(pj),M,G), where

cost(Ti, Tj ,M,G) =
∑

ti∈Ti,tj∈Tj

we(ti, tj)lat(pi,mc), and

mc is the lowest common ancestor of processors pi and pj (i.e., mc = lca(pi, pj)).

Lemma 4.2. Assume a shared-memory system M has a set P of processors, and each

memory m has k children such that m has k subsets D(m)i of processors (each child has a

subtree and leads to a subset of processors), i = 1 . . . k. Suppose

pair(m) = {(px, py) | px ∈ D(m)i, py ∈ D(m)j , i, j ∈ [1, k]},

then {pair(m) | m ∈M} is a partition for set P = P × P \ {(pi, pi) | pi ∈ P}.

Proof. We need to show (1)
⋃

m∈M pair(m) = P, and (2) pair(mi) ∩ pair(mj) = ∅.

(1.1) To prove
⋃

m∈M pair(m) ⊆ P.

Let {px, py} ∈ pair(mi) for a certain mi ∈ M . By definition of pair(mi), we know

px ∈ D(mi)k1
and py ∈ D(mi)k2

. Sine M is a tree, px 6= py. Therefore, (px, py) ∈ P, such

that
⋃

m∈M pair(m) ⊆ P.

(1.2) To prove P ⊆ ⋃

m∈M pair(m).

Let {px, py} ∈ P and mc be the lowest common ancestor of px and py. Assume mc has

k subsets D(mc)i of processors that are derived from its k children (or branches), then px

and py must belong to different branches of mc (since otherwise mc won’t be the lowest

common ancestor). WLOG, let px ∈ D(mc)k1
and py ∈ D(mc)k2

, k1 6= k2. Therefore,

(px, py) ∈ pair(mc), such that P ⊆ ⋃

m∈M pair(m).

(2) To prove pair(mi) ∩ pair(mj) = ∅ if mi 6= mj .

Suppose ∃(px, py) ∈ pair(mi) ∩ pair(mj) and mi 6= mj. By definition of pair, mi is the

lowest common ancestor of px and py. Similarly, mj is also the lowest common ancestor of
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px and py. Since px and py determine a unique lowest common ancestor, thus mi = mj ,

contradicting the assumption of mi 6= mj .

Theorem 4.1. Suppose a schedule A runs a set of threads in affinity graph G on a sys-

tem M . Let timel denote lat(p, p’s ancestor memory at level l) and Ml denote the set of

memories at level l, then cost(G,M,A) can also be expressed as:

h−1
∑

l=0

∑

m∈Ml

∑

(pi,pj)
∈pair(m)

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)× timel.

In other words,

cost(G,M,A) =
h−1
∑

l=0

timel × SharingOnLevell,

where SharingOnLevell denotes the amount of affinity between threads that access those

memories located on level l. That is,

SharingOnLevell =
∑

m∈Ml

∑

(pi,pj)
∈pair(m)

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty).

Proof. Suppose processors pi and pj have the lowest common ancestor memory lca(pi, pj).

By Definition 4.5,

cost(G,M,A) =
∑

pi 6=pj

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)lat(pi, lca(pi, pj))

=
∑

(pi,pj)∈P

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)timelevel(lca(pi,pj)).

By Lemma 4.2,
∑

(pi,pj)∈P

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)timelevel(lca(pi,pj))
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= (
∑

m∈M

∑

(pi,pj)∈pair(m)

)
∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)timelevel(m).

Since every memory m ∈Ml for a certain l,

cost(G,M,A) = ((

h−1
∑

l=0

∑

m∈Ml

)
∑

(pi,pj)
∈pair(m)

)
∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)timelevel(m).

By timelevel(m) ∈ {time0, . . . , timeh−1}, and all memories ∈Ml have the same timel,

cost(G,M,A) = time0

∑

m∈M0

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty)

+time1

∑

m∈M1

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty) + · · ·

+timeh−1

∑

m∈Mh−1

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)
ty∈A−1(pj)

we(tx, ty).

That is,

cost(G,M,A) =
h−1
∑

i=0

timei × SharingOnLeveli.

4.3 The optimization problem

Given an affinity graph G = 〈T,E,wt, we〉 and a shared-memory system M , the problem

of finding an optimal schedule A∗ such that cost(G,M,A∗) = min∀A cost(G,M,A) can be

considered as an integer linear programming problem.
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4.3.1 An integer linear programming problem

Suppose timei > timei+1 > 0 and M is of height h. Let

xi = SharingOnLeveli =
∑

m∈Mi

∑

(px,py)∈pair(m)

∑

tx∈A−1(px)
ty∈A−1(py)

we(tx, ty)

denote the sum of affinity strength on level i (0 ≤ i ≤ h−1), and xh =
∑

pi

∑

tx,ty∈A−1(pi)
we(tx, ty)

denote the sum of affinity strength within each processor. The ILP problem is formulated

as follows:

1. Minimize
∑h−1

i=0 xi × timei

2. Subject to

x0 + x1 + . . . + xh−1 + xh = w(E),

xi ∈ Z+ for i ∈ [0, h − 1], and

{x0, x1, . . . , xh−1} is derived from a load balanced thread schedule that distributes the

set of threads T across n processors evenly.

Note that the values of xi’s are also constrained by load-balanced thread schedules.

By the following Lemma 4.3, the classic graph partitioning problem is reducible to

the problem of minimizing cost(G,M,A) if M’s edges have the same weight that is in turn

reducible to the problem of minimizing cost(G,M,A) for arbitrary M. Since the classic graph

partitioning problem is NP-hard, finding an optimal schedule to minimize cost(G,M,A) is

also NP-hard.

Lemma 4.3. Given a graph G and a shared-memory machine M with n processors. If

time0 = time1 = . . . = timeh−1 on M, P ∗ is an optimal n-way classic graph partitioning

for G iff A∗ is an optimal thread schedule for M, where P ∗ and A∗ are of the same family

of subsets.

Proof. First we need to show: if P ∗ is an optimal n-way classic graph partitioning, then A∗

is an optimal thread schedule. Suppose P ∗ = {T1, . . . , Tn} is an optimal n-way partition of
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graph G and time0 = . . . = timeh−1 = c, then

∑

Ti,Tj∈P ∗

∑

u∈Ti
v∈Tj

we(u, v)c = min
∀P

∑

Ti,Tj∈P

∑

u∈Ti
v∈Tj

we(u, v)c.

Since schedule A∗ has the same partition as P ∗ such that A∗(Ti) = pj for some pj,

∑

Ti,Tj∈P ∗

∑

u∈Ti
v∈Tj

we(u, v)c =
∑

pi,pj

∑

u∈A∗
−1

(pi)

v∈A∗
−1

(pj)

we(u, v)c.

Thus,
∑

pi,pj

∑

u∈A∗
−1

(pi)

v∈A∗
−1

(pj)

we(u, v)c = min
∀P

∑

Ti,Tj∈P

∑

u∈Ti
v∈Tj

we(u, v)c.

Since ∀ partition P ,

∑

Ti,Tj∈P

∑

u∈Ti
v∈Tj

we(u, v)c =
∑

pi,pj

∑

u∈A−1(pi)
v∈A−1(pj)

we(u, v)c,

∑

pi,pj

∑

u∈A∗
−1

(pi)

v∈A∗
−1

(pj)

we(u, v)c = min
∀A

∑

pi,pj

∑

u∈A−1(pi)
v∈A−1(pj)

we(u, v)c.

That is, A∗ is an optimal thread schedule for M if A∗ and P ∗ define the same family of

subsets. The converse can be proved in a similar manner.

4.3.2 An approximation algorithm

Similar to cut in the classic graph partitioning problem, we use share to express the affinity

strength between two partitions:

share(Tx, Ty) =
∑

∀u∈Tx,∀v∈Ty

we(u, v),

where Tx and Ty are two disjoint thread sets.
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If processor cores on a system have different computational powers, we use a parti-

tion distribution vector to define Unbalanced Graph Partitioning. Given affinity graph

G = 〈T,E,wt, we〉 and W = wt(T ), the partition distribution vector 〈d1, d2, . . . , dn〉 defines

a partition {Pi} whose weight wt(Pi) = di × W and
∑

i di = 1. A more powerful pro-

cessor core will be assigned a larger portion of the computational tasks accordingly. The

graph partitioning algorithm uses the partition distribution vector to guarantee that the

workload on each core is load balanced. Our implementation calls the METIS function

METIS WPartGraphKway to perform the unbalanced partitioning.

There are two optimization goals in our partitioning process: conforming to the partition

distribution vector and minimizing the sharing between partitions. We propose a greedy

hierarchical partitioning algorithm to divide the affinity graph according to the partition

distribution vector. The goal is to minimize the sharing between partitions in the order of

level 0 to level h−1 in a top-down fashion. Assume a parallel system has n compute nodes,

each of which has p processors. (a) We divide the threads into n sets N1, N2, . . . , Nn by

minimizing
∑

1≤i,j≤n

share(Ni, Nj), i 6= j.

Now each Ni has been assigned a set of threads. Since each compute node also has p

processors, (b) then partition each Ni into p sets P1, P2, . . . , Pp by minimizing the sharing

between two processors:
∑

1≤i,j≤p

share(Pi, Pj), i 6= j.

Theorem 4.2. Let n be the number of processors, G be a graph, M be a system of height

h. Assume P ∗ is an optimal n-way balanced graph partitioning, then a hierarchical graph

partitioning algorithm can find a (2, n)-way graph partition P such that

cost(P )

cost(P ∗)
≤ h, where cost(P ) =

∑

Ti,Tj∈P

share(Ti, Tj).

Proof. The proof adopts similar scheme used by [Simon and Teng, 1997]. Basically we want

to show that the total cost happening at each level is at most C∗.
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Suppose P ∗ = {G1, G2, . . ., Gn} with C∗ = cost(P ∗) and B = |Gi|. At the root level

of the partitioning tree, it is possible to just group Gi’s into k subsets of equal size by only

removing the inter-block (i.e., inter-Gi) edges. An alternative is to use the optimal k-way

partitioning to find a partitioning whose total cost is smaller than that of grouping Gi’s,

where Gi ∈ P ∗. Thus, the total cost at the root level is at most C∗.

Those Gi’s may be partitioned into pieces after the top i-1 levels of partitioning. Suppose

a node at level i-1 consists of a subset of the pieces from Gi’s. Similar to the proof for

bounding the cost at the root level, the cost to partition each node of level i-1 is smaller

than that of removing only the inter-block edges. Thus, at each level of partitioning, the

total cost between the subgraphs is no more than C∗.

Therefore, cost(P ) ≤ hC∗ =⇒ cost(P )

cost(P ∗)
≤ h .

Each node performs an optimal k-way partitioning operation for different k’s. Suppose

a node at level i contains a number s of Gi’s pieces. The k-way partitioning of the node

N results in a subgraph size at most sB
k

+ B (by bin-packing theorem). Then the k-way

partitioning is of

ρ = (
sB

k
+ B)/

sB

k
= (1 + k/s) <= 2.

Theorem 4.3. Suppose an optimal thread schedule A∗ has cost(G,M,A∗). Then the hier-

archical graph partitioning algorithm can find a schedule A such that

cost(G,M,A)

cost(G,M,A∗)
≤ h

time0

timeh−1
.

Proof. By the definition of cost(G,M,A),

cost(G,M,A)

cos(G,M,A∗)
=

∑h−1
i=0 SharingOnLeveli × timei

∑h−1
i=0 SharingOnLevel∗i × timei

≤ time0
∑h−1

i=0 SharingOnLeveli

timeh−1

∑h−1
i=0 SharingOnLevel∗i

.
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Since cost(P ) =

h−1
∑

i=0

SharingOnLeveli if A−1 has the same partition as P ,

by Theorem 4.2,
cost(G,M,A)

cos(G,M,A∗)
≤ h

time0

timeh−1
.

4.4 Extension to support DAG scheduling

The previous hierarchical partitioning algorithm assumes that threads have no data depen-

dence. When threads are dependent on each other and hence form a DAG, we need to

extend the algorithm to deal with DAG scheduling. In this extension, given a DAG G, we

divide G into a number of levels (horizontally), each of which consists of a subset of inde-

pendent threads. This step can be achieved by analyzing G and determining the longest

path from the root to each node. The total number of levels is equal to the length of the

critical path. Within each level, we use the the hierarchical graph partitioning algorithm to

determine a good schedule to run the threads. Due to data dependences, no thread in level

i + 1 can start until all threads in level i complete. We call this simple approach ”greedy

multi-level thread scheduling”. Figure 4.5 depicts how to divide a DAG into four levels.

...

Depth D
...

Figure 4.5: An example of greedy multi-level thread scheduling. The DAG is divided into
four levels. The level index of each node is equal to the length of the longest path from the
root to that node.
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Lemma 4.4. Suppose a DAG has D levels and the total amount of computation is W .

If each thread ti computes an amount w(ti) of work, where w(ti) ∈ [0, 1], then the greedy

multi-level thread scheduler for p processors takes at most W−D
p

+ D time.

Proof. Let si denote the amount of work on level i, where i ∈ [1,D].

T ime =

D
∑

i=1

⌈si

p
⌉ ≤

D
∑

i=1

(
si

p
+ (1− 1

p
)) =

W

p
+ D − D

p
=

W −D

p
+ D.

Theorem 4.4. The greedy multi-level thread scheduling method has an approximation ratio

of 1 + D

(W
p

)
.

Proof. Let C and C∗ represent the actual execution time and the optimal execution time,

respectively. It is easy to show that any execution time is at least max(W/p, T∞).

By C ≤ W −D

p
+ D and C∗ ≥ W

p
,

C

C∗
≤ (W −D)/p + D

C∗
≤ (W −D)/p + D

(W
p

)
= 1 +

(1− 1/p)D

(W
p

)
< 1 +

D

(W
p

)
.

Based on Theorem 4.4, if W/D > p, then the greedy multi-level scheduling method

takes time at most twice the optimal time. In addition, programs with fine-grain threads

often satisfy the condition of W/D > p, and are commonly found in scientific applications

(e.g., Cholesky, LU, QR factorizations).

4.5 Evaluation of the analytical model

This section describes how to evaluate the analytical model and presents the analysis of

two scientific experiments to which we have applied the optimized thread schedules. The

optimized thread schedules are computed by the hierarchical partitioning algorithm.
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t0

t1

t2

t3

Figure 4.6: Four threads access a contiguous memory of size 128MB. Each thread occupies
32MB and their positions are arbitrary.

We conducted three experiments on a distributed shared-memory SGI Altix machine

that has two compute nodes, each of which has two processors. In the experiments, four

threads are executing on four processors. In terms of complexity, the experiments range

from simple, synthetic to real-world applications.

The first two synthetic experiments allocate a contiguous memory block of size 128M

bytes. Each thread accesses 1/4 of the 128MB memory. Each thread first initializes its

memory segment with some values and then computes the sum of the square of each element.

The position of a memory segment could be anywhere as long as it is within the range of

the 128MB memory. The affinity strength between two threads is equal to the size of the

overlapping area between their footprints. Figure 4.6 illustrates how four threads access a

contiguous block of 128MB memory.

The first experiment is the simplest one where the memory segments of the four threads

are disjoint (i.e., evenly distributed and affinity=0). Then we gradually move thread t1

towards thread t0 so that the overlapping area of t0 and t1 becomes bigger and bigger.

Since there is no affinity change between the four threads except for the pair of t0 and t1,

we only compare two thread placements: placing t0 and t1 together on the same node (i.e.,

(t0,t1)(t2,t3)), and placing them separately on two nodes (i.e., (t0,t2)(t1,t3)).

Figure 4.7 shows that the actual performance (i.e., execution time in seconds) of the

placement (t0,t2)(t1,t3) becomes worse and worse with the increment of the overlapping

footprint. The cost estimated by the analytical model has the same trend as the actual

performance. Note that the cost model is not intended to predict the execution time, but
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Figure 4.7: Compare the predicted cost to the actual execution time for two schedules:
(t0,t1)(t2,t3) and (t0,t2)(t1,t3).

used to measure the quality of a thread schedule, and a ranking is sufficient to find the best

thread schedule.

The second experiment performs ten program runs each of which has a different memory

footprint pattern. All the footprint patterns are generated randomly. The pattern gener-

ation uses a random number generator to create a starting position addri for each thread

ti such that ti accesses addresses in the range of [addri, addri + 32MB). Given 4 threads

on two SMP nodes each with 2 processors, there are totally
(4
2

)

/2! = 3 thread schedules.

We denote them as (t0, t1), (t0, t2), and (t0,t3), respectively. For each of the ten

footprint patterns, the same program runs three times each with one of the three thread

schedule. The experiment also computes the predicted cost for each run and compares it

to the actual measurement.

Figure 4.8 demonstrates that the cost of the three schedules consistently reflects the

ranking of their actual program performance. In other words, given any footprint pattern,

if schedule A has a cost bigger than schedule B, the actual performance of the program

using schedule A is slower than that using schedule B.

Furthermore, we apply the analytical model to an important kernel in many scientific

applications: sparse matrix vector product (SpMV). The sparse matrices were downloaded

from the UF Sparse Matrix Collection [Davis, 1997]. For many matrices, an optimized
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Figure 4.8: Compare the predicted cost to the actual execution time for three thread sched-
ules on 10 randomly generated memory footprint patterns.

thread schedule can improve the program performance by 15% to 25%. But for a few other

matrices, the program using the optimized thread schedule instead runs 1% slower than the

original program.

We use the analytical model to analyze this phenomenon and investigate the differences

between the old and the new thread schedules. We pick two cases from our experiments

conducted on a distributed shared memory machine. One experiment multiplies the sparse

matrix msc01440 and improves the performance by 23%. The other one multiplies the sparse

matrix circuit 1 but is slower than the original program by 1%. Tables 4.1 and 4.2 list the

values of SharingOnLeveli (defined in Theorem 4.1) for the original and new schedules,

respectively. Assuming the remote memory access time is time0 and the local memory

access time is time1, we can compute cost(G,M,A) by adding time0 × SharingOnLevel0

and time1 × ShareingOnLevel1 easily.

As shown in Table 4.1, the new schedule reduces the remote memory access cost by

68.5% and thus improves program performance. However, based on Table 4.2, there is only

a small reduction by using the new schedule (4.4% in remote memory accesses). Due to

the overhead of executing the new schedule, the actual performance shows a 1% slowdown

instead of a small speedup.
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Table 4.1: Apply the analytical model to study why SpMV is improved with input msc01440.

Affinity on different levels Original New Reduction

schedule schedule

Remote memory 54,175 17,043 68.5%

Local memory 107,765 13,964 87.0%

Table 4.2: Apply the analytical model to study why SpMV is not improved with input
circuit 1.

Affinity on different levels Original New Reduction

schedule schedule

Remote memory 127,620 121,973 4.4%

Local memory 230,759 206,076 10.7%
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4.6 Summary

While there exist tools and runtime systems to schedule threads efficiently, little is known

about what would be an optimal affinity thread schedule to maximize the memory effec-

tiveness and why it is optimal. This chapter introduces an analytical model to evaluate

the performance of a thread schedule. The model has three submodels: an affinity graph

submodel to describe the affinity relationship between threads, a memory hierarchy sub-

model to characterize the underlying shared-memory architecture, and a cost submodel to

estimate the cost for a certain thread schedule. The experimental results show that the

analytical model can accurately estimate the cost of a thread schedule for two synthetic

programs and a real-world application.

The chapter also proposes a hierarchical graph partitioning algorithm to determine near-

optimal solutions based on which we have designed and implemented a Feedback Directed

Optimization (FDO) framework. Next chapter describes the FDO framework.
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Chapter 5

Feedback Directed Affinity Thread

Scheduling

5.1 Introduction

This chapter introduces a feedback directed framework to improve the memory access ef-

fectiveness by identifying user-level threads and reorganizing them to enhance the temporal

and spatial locality, as well as placing tightly-coupled threads as close as possible. The

user-level thread may be considered as a ”logical task” whose granularity varies from as

tiny as a single instruction to as big as an actual kernel-level thread. With the help of data

dependence analysis, it is even possible to reorder individual instructions to maximize data

reuse across the entire data set. However for scalability and quick analysis, we identify

fine-grained user-level threads as conceptual units of computation from the viewpoint of a

programmer. Most of the time it is straightforward to identify a thread. For instance, an

iteration of a loop nest or an update of an object may be created as a thread.

To improve the data locality, we need to decide which user-level threads should be in

the same group and in what order to execute them, as well as how to map the groups to

different processors. Figure 5.1 illustrates the overall structure of our approach to realizing

The material from this chapter was published in the 16th International Symposium on High-Performance
Distributed Computing (HPDC 2007) [Song et al., 2007a].

54



Memory Trace Analysis

Application 

Executable

Affinity Graph

Optimized 
 Schedule

   Thread 
Scheduling

Rerun

feedback

System
Architecture

Figure 5.1: Overall structure of the thread scheduling method with memory considerations.

it. The approach relies upon a binary instrumentation tool to (i) obtain and analyze the

memory trace of each thread and find out the nature of memory sharing between threads in

an “affinity graph”. As defined in Sect. 4.2.2, an affinity graph is an undirected weighted

graph where each vertex represents a thread and the weight for edge eij denotes the total

number of distinct addresses accessed in common by threads i and j. To make the memory

tracing method more practical, the instrumentation tool generates affinity graphs dynam-

ically without storing the huge memory trace to disk. After the instrumented executable

finishes, an affinity graph is built and written to a file. Next, (ii) we partition the graph

into a number of subgraphs (in our experiments, the number is equal to the number of

processors). Based on the partitions, (iii) we compute a “good” schedule to put threads on

different processors correspondingly. The schedule is written in a file which will be later

used as feedback to future executions. Finally, (iv) a user reruns the program taking as

input the feedback file.
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We have experimented with the feedback-directed thread scheduling method using nu-

merous application programs, including sparse matrix-vector multiplication (stored in com-

pressed row storage or compressed column storage format), sparse matrix-matrix multipli-

cation, a kernel from computational fluid dynamics codes, and Cholesky factorization. The

experimental results show that the feedback-directed method can significantly reduce the

execution time. In particular, the method is able to improve performance for programs with

dynamic memory access patterns and little compile-time information.

5.2 Feedback directed method

A feedback-directed method strives to improve performance by using profiling information to

exploit opportunities for optimizations. Our work is concerned with how to maximize data

locality on each processor and minimize the data sharing between processors (each processor

runs one kernel thread). Since we determine a thread schedule based on the referenced ad-

dresses, collecting a memory trace is typically necessary. There are four types of approaches

to obtaining the memory trace: compiler-based, run-time system, online feedback-directed

optimization (FDO), and offline feedback-directed optimization. We choose to use the offline

FDO method due to the following reasons:

• The feedback-directed method can attain dynamic information about memory refer-

ences, particularly for programs with irregular access patterns. The dynamic infor-

mation cannot be obtained at compile time.

• The offline method has much less overhead than online methods since the optimized

thread schedule is determined during the very beginning profiling program run.

• Our method collects a more accurate and detailed memory trace for each thread to

determine an optimized thread schedule. Current run-time systems usually use a

couple of heuristics to schedule threads.
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5.3 Memory trace analysis

We design a memory trace analysis tool to collect the memory trace of user programs. The

analysis tool supports binary code instrumentation and is built upon Pin [Luk et al., 2005].

Pin follows the model of ATOM and allows tool writers to analyze applications at the

instruction level. It uses a dynamic just-in-time (JIT) compiler to instrument binary codes

while they are running. The set of Pin APIs provide support for observing a process’s

architectural states (e.g., register contents and memory references).

We write a memory trace analysis tool in C++ and use the Pin API to implement

two types of routines: instrumentation routine and analysis routine. The instrumentation

routine tells Pin to insert instrumentation to every instruction that reads or writes data.

The virtual address of the referenced datum is passed as an argument to the analysis routine.

In order to differentiate addresses from distinct threads, the thread ID is passed as another

argument to the analysis routine. Instrumenting the binary executable also enables us to

keep the original memory access pattern while reflecting various compiler optimizations.

RecordMemRead and RecordMemWrite are the two corresponding analysis routines for

read and write operations. The analysis routine works as an event handler. For each

memory reference, the routine identifies the thread ID for that reference and stores it into

a buffer. Each thread owns a buffer for keeping distinct addresses (i.e., two references to

the same address will be stored once). We tried writing the memory trace to a file, but the

size of the trace file and the I/O cost increased so fast that it soon became impractical to

use.

The space requirement of our memory trace analysis tool is equal to the sum of the

distinct addresses referenced by each thread. It is possible for us to impose a limit on

the number of distinct addresses for each thread so that all the tracing operations can

be performed in memory (i.e., without disk). This diskless tracing method is much less

expensive and more practical than writing the memory trace to disk.
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5.4 Techniques to process large affinity graphs

While a modern computer system has no problem keeping the distinct addresses in memory

for most applications, the size of the generated affinity graph can explode very quickly. For

instance, 105 fine-grained threads (105 vertices) may require 40GB memory if the graph

is totally connected (1010 edges). The size of the graph is limited by the capacity of the

memory. Given a fixed amount of memory, it is not trivial to build an appropriately sized

affinity graph without exceeding the available memory.

We adopt several techniques to reduce the time complexity and space complexity of the

process of graph creation. It rarely happens in practice that every thread has a memory

affinity relationship to all the other threads if we do not consider the small number of global

variables. Thus affinity graphs are often sparse and symmetric. We represent affinity graphs

by an adjacency list and only store edges eij where i < j to reduce the memory requirement.

This is analogous to storing an upper-triangular adjacency matrix.

A simple algorithm to build an affinity graph from the recorded memory trace is shown

in Fig. 5.2. The memory trace analysis tool instruments and executes the executable. After

executing the program, the tool stores addresses in thrd addrs for each thread. Next, the

algorithm compares the memory trace of every two threads i and j where i < j. The function

create edge() creates an edge between thread i and thread j and assigns a proper weight

to the edge.

Suppose there are T threads and each thread accesses N addresses. Even though the

function create edge() has a linear time complexity O(N) (by merging two ordered lists),

1 map<tid, addr> thrd_addrs;

2 for i = 1, num_thrds-1

3 for j = i+1, num_thrds

/*Compare traces of threads i, j.*/

4 create_edge(thrd_addrs, i, j);

5 end for

6 end for

Figure 5.2: A simple algorithm to build affinity graphs.
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the overall time complexity is equal to O(T 2N). In practice N is often bounded but T

could be very large (e.g., 106 to 108). Furthermore, no matter how sparse a graph is, this

algorithm always takes time O(T 2N) to build the graph, which could lead to many hours

of computation.

To be more efficient in processing large graphs, we change to a different data structure

and develop a new algorithm. The new algorithm employs an adjustable parameter of

DenseRatio ∈ [0 . . . 1] to control the density of the graph. If an address is accessed by all

the threads, the graph will become fully connected. However this address will not help the

next step of graph partitioning. Therefore we adjust DenseRatio to eliminate those edges

that form a clique of size greater than NumberThreads × DenseRatio. DenseRatio = 0

yields a graph with no edges, while DenseRatio = 1 yields a graph with all possible edges.

Figure 5.3 lists the pseudo-code for the more efficient algorithm. The new data structure

addr thrds stores address as keys instead of prior thread id as keys. The new algorithm

takes as input the memory trace stored in addr thrds and builds an affinity graph. Given

an address, the algorithm determines the number of threads that have accessed it. If the

number is greater than the total number of threads × DenseRatio, we skip both the trace

analysis for the address and the creation of relevant edges. Otherwise, we create edges

among the set of threads.

Again, let N be the total number of addresses referenced by the application and T be

the total number of threads. The time complexity of the algorithm varies between O(N)

and O(NT 2) depending on how sparse the graph is. The worst-case time complexity occurs

when the graph is fully connected and DenseRatio = 1.0.

Certainly we can use DenseRatio to reduce the graph density. Note that the previous

algorithm in Fig. 5.2 always has a time complexity of O(NT 2). The new algorithm not only

has a better average-case time complexity but also uses a tunable parameter of DenseRatio

to eliminate particular edges. In practice, we use DenseRatio = 0.9 to reduce the number

of edges and are able to create sparse graphs. In addition, most of the eliminated edges are

due to a couple of global variables. Note that a single global variable can lead to a fully

connected graph.
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Since we adopt a diskless approach to analyzing the memory trace, the ability to record

traces is limited by the amount of memory. To reduce the memory requirement, We collect

a partial memory trace for each thread. An alternative would be to to represent contiguous

memory addresses by blocks instead of great numbers of individual addresses.

Furthermore, executing the complete instrumented executable could be very time con-

suming (e.g., 10 to 100 times) than the original executable due to the cost of calling the

analysis subroutine, storing the memory trace in associated arrays, and creating graphs in

the end. So we run a partial execution of the truncated program to overcome the problem.

For instance, a single outer-loop iteration of an iterative method is sufficient to build an

affinity graph.

The generated affinity graphs can be written either in Graphviz DOT format for the

purpose of displaying, or in Chaco or METIS format for the next stage of graph partitioning.

We implement the hierarchical algorithm described in Sect. 4.3.2 to partition the generated

affinity graphs to determine optimized thread schedules.

5.5 Applications

We performed experiments with a variety of applications to evaluate our feedback-directed

method of thread scheduling. These applications cover a number of domains and have been

widely used by users.

1 T = total number of threads;

2 map<addr, tid> addr_thrds;

3 for each addr in addr_thrds do

4 thrd_set = threads accessing addr;

5 m = size of thrd_set;

6 if (m > DenseRatio*T) continue;

7 create edges between any pair of threads within thrd_set;

8 end for

Figure 5.3: A more efficient algorithm to build affinity graphs.
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1 for iter = 1, NUM_ITER

2 #pragma omp parallel for

3 for i = 1, num_rows

4 y = 0;

5 for j = row[i], row[i+1]-1

6 y += val[j]*x[col[j]];

7 end for

8 y[i] = y;

9 end for

10end for

Figure 5.4: Parallel iterative method calling SpMV y = Ax. Sparse matrix A is stored in
CRS format by arrays val, col, row.

5.5.1 Sparse matrix-vector multiplication

Sparse matrix-vector multiplication (SpMV) is an important subroutine in many iterative

methods. We use two formats of Compressed Column Storage (CCS) and Compressed Row

Storage (CRS) to implement iterative methods and try to improve their performance. The

program using the CRS format is presented in Fig. 5.4. The inner for loop is distributed

to a number of processors and executed in parallel. Arrays val, col, row store the sparse

matrix A while x, y store the column vectors for computing y = Ax. The code using the

CCS format is similar to that in Figure 5.4 and not shown here.

We use the technique of affinity graph partitioning to improve program performance

for both CRS and CCS formats. Suppose matrix A is stored in CCS format, the vector

y = Ax is computed by y =
∑n

j=1 ajxj, where aj is the jth column of A. For the parallel

version with p threads, each thread computes a partial sum and updates the vector y. But

an update of element yi may invalidate a set of neighboring y′i elements in other processors

due to false sharing. By grouping the columns that access the same elements in vector y, we

are able to improve the temporal locality and reduce the chances of false sharing on vector

y.

As for sparse matrix A stored in CRS format, each thread computes a subset of vector

y, where yi =
∑n

j=1 aijxj. Note that the only chance of data reuse lies in vector x. If two
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rows read the same set of elements xs1, xs2, . . . , xsd
in vector x, running them continuously

will reuse the d elements and improve the temporal locality.

5.5.2 Sparse matrix-matrix multiplication

In sparse matrix-matrix multiplication (SpMM), we store matrix A row by row in CRS

format and store matrix B column by column in CCS format. The parallel SpMM program

is described in Fig. 5.5. Sparse matrices are distributed along rows across a number p of

processors. Each processor computes for a number of N
p

consecutive rows in matrix C.

The outer two loops i and j in Fig. 5.5 are data independent and can be executed in

parallel. A user-level thread may either compute a dot product of the ith row of matrix

A and the jth column of matrix B (i.e., the outer two loops are parallelized), or multiply

the ith row of A and the whole matrix of B (i.e., only the outermost loop i is parallelized).

The former definition is more fine-grained and can identify a greater number of threads to

reorder to maximize the program locality. But it is too costly to compute since the number

of threads N2 may result in a very large graph. Instead, we use the latter coarse-grained

definition to do our experiments. The experimental results demonstrate that we can still

speedup the program by up to 20% even using the coarse-grained threads.

5.5.3 Computational fluid dynamics kernel

The computational fluid dynamics (CFD) kernel implements an iterative irregular-mesh

partial differential equation (PDE) solver abstracted from computational fluid dynamics

applications [Pingali et al., 2003]. The irregular meshes are used to model physical struc-

tures and consist of nodes and edges. The computational kernel iterates over the edges of

the mesh, computing the forces between both end points of each edge. It then modifies the

values of all nodes. Figure 5.6 shows the parallel version of the CFD kernel.

Each edge corresponds to a user-level thread in our experiment. We partition the threads

into p sets (for p processors) to maximize data reuse by grouping together the threads

accessing the same nodes. In addition, for each processor, we reorder the threads in the

processor’s subgraph to maximize cache reuse by means of the breadth-first traversal.
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1 struct CRS A;

2 struct CCS B;

3 double *C;

4 #pragma omp parallel for

5 for i = 1, N

6 for j = 1, N

7 c = C[i*N+j];

8 for idx_a = A.row[i], A.row[i+1]-1

9 for idx_b = B.col[j], B.col[j+1]-1

10 if(A.col[idx_a] == B.row[idx_b])

11 c += A.val[idx_a] * B.val[idx_b];

12 end for

13 end for

14 C[i*N+j] = c;

15 end for

16end for

Figure 5.5: Parallel version of SpMM.

1 for iter = 1, NUM_ITER

2 #pragma omp parallel for

3 for i = 1, edges

4 n1 = left[i];

5 n2 = right[i];

6 force = f(x[n1],x[n2]);

7 y[n1] += force;

8 y[n2] -= force;

9 end for

10end for

Figure 5.6: Parallel version of the CFD kernel.
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5.5.4 Cholesky factorization

Given an n × n symmetric positive definite matrix A, Cholesky factorization computes

A = LLT where L is an n × n lower triangular matrix. For efficiency, we use the right-

looking blocked algorithm so that we can apply Level-3 BLAS directly to a block of matrix

A. The blocked Cholesky factorization algorithm works as follows:

Given A =







A1:b,1:b A1:b,b+1,n

Ab+1:n,1:b Ab+1:n,b+1:n






,

compute L =







L1:b,1:b 0

Lb+1:n,1:b Lb+1:n,b+1:n







by calling:

(i) Level-3 BLAS POTRF to solve L1:b,1:b,

A1:b,1:b = L1:b,1:bL
T
1:b,1:b

(ii) Level-3 BLAS TRSM to solve a linear equation system for Lb+1:n,1:b in parallel,

Lb+1:n,1:bL
T
1:b,1:b = Ab+1:n,1:b

(iii) Level-3 BLAS GEMM to compute a rank-r update on the trailing Ab+1:n,b+1:n in parallel,

A′
b+1:n,b+1:n ← Ab+1:n,b+1:n − Lb+1:n,1:bL

T
b+1:n,1:b.

We apply the above 3 steps repeatedly to A′
b+1:n,b+1:n until A′ consists of a single block.

The program is shown in Fig. 5.7. Variable A ij refers to a block which is located in

the ith row and jth column in terms of blocks. Given an n× n matrix and a block of size

b, nblocks = n/b. To use the greedy multi-level algorithm described in Section 4.4, we

must know the program’s task graph. Figure 5.8 shows the corresponding task graph for a

4 block by 4 block matrix and its level division. The figure displays only one iteration of
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1 for k = 1, nblocks

2 dpotf2(A_kk);

3 #pragma omp parallel for

4 for j = k+1, nblocks

5 dtrsm(A_kk, A_jk);

6 end for

7 for i = k+1, nblocks

8 #pragma omp parallel for

9 for j = k+1, i

10 dgemm(A_ik, A_jk, A_ij);

11 end for

12 end for

13end for

Figure 5.7: Parallel tiled Cholesky factorization.
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Figure 5.8: Cholesky factorization DAG (one iteration).
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the outer loop. The other iterations have a similar structure and are not shown here. Each

task in the DAG corresponds to a Level-3 BLAS operation.

5.6 Application measurement results

We conducted experiments on two platforms. One platform is a multicore SMP machine

consisting of two sockets, each of which has a quad-core 2.66 GHZ Intel Clovertown chip.

Since the set of two cores on each chip share an L2 cache, the corresponding memory

hierarchy has two levels: the main memory on the machine and the L2 caches on each chip.

The other platform is an SGI Altix 3700 BX2 system with 256 compute nodes. Each

node has two 1.6 GHZ Intel Itanium processors. The system has a ccNUMA Distributed

Shared Memory (DSM) that is physically distributed across different nodes. Every processor

can access any memory location through the SGI NUMAlink 4 interconnect. The memory

access time depends on the distance between the processor and the node where the physical

memory is located. Its corresponding memory hierarchy also has two levels: the virtual

global memory and memories on each compute node.

For each program, we always compare the performance of the program using the opti-

mized thread schedule to that of the program built by compiler optimizations.

5.6.1 Commands to run experiments

There are 3 steps to run experiments with optimized thread schedules.

1. Use the trace analysis tool to execute a user executable. The output is an affinity

graph. Note that the affinity graph is reusable on a different system.

pin -mt -t mem tracer -- <prog> <args>

2. Use the hierarchical partitioning tool to compute an optimized thread schedule based

on the target machine. The output is the new thread schedule.

partition graph <prog>.graph <machine>.sys

3. Run the user executable again using the new thread schedule.
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prog <args> <schedule>

5.6.2 Implementation issues

We implement all the parallel applications in C using Pthreads. We obtain an optimized

thread schedule automatically through our memory trace analysis tool described in Section

5.2. In order to execute the program with the new schedule, we need to make a minor

change to the original program manually. This step could be done easily by extending a

compiler. For instance, instead of running for i = 0 to n, the compiler can wrap the

fundamental computation unit by for i = mytasks[0] to mytasks[n], where mytasks

is specified in the new thread schedule.

After finding the affinity relationship between threads, we use the cpuset library pro-

vided by SGI Linux [SGI, 2006] to bind Pthreads to different processors. Note that the

binding of Pthreads to processors happens only once when they are created. The cpuset

API (e.g., cpuset pin() and cpuset membind()) allows our C programs to place both

processor and physical memory within a cpuset.

5.6.3 SpMV

Sparse matrix-vector multiplication is called by a synchronous iterative method. For each

sparse matrix, we run a fixed number of iterations. There are two versions written for

SpMV. One version uses the CCS storage format and the other one uses the CRS format.

Users often choose one of the two formats to implement their programs. Table 5.1 lists all

the sparse matrices used in our SpMV experiments. They were downloaded from the UF

Sparse Matrix Collection [Davis, 1997]. A matrix is chosen if the amount of computation

for each row is approximately equal.

Figure 5.9 shows the effect of the optimization on the SGI Altix machine. Values less

than 1 indicate performance speedup. Our scheduling method reduces execution times by

10% to 25% for four out of seven matrices in both CCS and CRS formats. The improvement

for the CRS program comes from maximized data reuse, and the improvement for the
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Table 5.1: Sparse matrices used in the SpMV experiment.

Name Dimension NNZ

1 msc01440 1,440 44,998

2 circuit 1 2,624 35,823

3 bp 1000 822 4,661

4 coater1 1,348 19,457

5 msc23052 23,052 1,142,686

6 lhr01 1,477 18,592

7 utm3060 3,060 42,211

CCS program comes from reduced false sharing. Only three matrices (circuit 1, lhr01, and

coater1 in CCS format) show a little slowdown (< 5%).

On the Intel Clovertown machine (Fig. 5.10), only two matrices (circuit 1 in the CCS

format and utm3060 in the CRS format) are not improved. But the average performance

improvement on the Intel Clovertown machine is not as good as that on the SGI Altix

machine. The reason is because a cache miss on the SGI machine may result in a remote

memory access, while a miss on the Intel machine results in a much cheaper local memory

access. Therefore, the new thread schedule could save more time on the SGI machine than

on the Intel machine through reducing the number of cache misses.

5.6.4 SpMM

We compute sparse matrix-matrix multiplication C = AB with four test inputs which are

shown in Table 5.2. Instead of attempting various combinations of pairing sparse matrices,

we simply let B equal the transpose of A. In the experiment, matrix A is stored row by

row in the CRS format and matrix B is stored by columns in the CCS format. We let

a user-level thread compute the product of the ith row of A and the whole matrix of B.

Figure 5.11 shows that the performance improvement on the SGI machine is about 20% on

average, and Fig. 5.12 shows that the improvement on the Intel machine is between 1%

and 12%.
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Figure 5.9: SpMV on SGI Altix with 4 processors. Both formats of CCS and CRS are used
for each sparse matrix.
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Figure 5.10: SpMV on Intel Clovertown with 8 cores. Both formats of CCS and CRS are
used for each sparse matrix.
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Table 5.2: Sparse matrices used in the SpMM experiment.

Name Dimension NNZ

1 msc01440 1,440 44,998

2 msc01050 1,050 26,198

3 utm3060 3,060 42,211

4 bcsstk13 2,003 83,883

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

bcsstk13utm3060msc01050msc01440

no
rm

al
iz

ed
 to

 o
rig

in
al

SpMM

Figure 5.11: SpMM on SGI Altix with 4 processors.
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Figure 5.12: SpMM on Intel Clovertown with 8 cores.
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5.6.5 CFD kernel

On the Intel Clovertown SMP machine, we compare the program using the optimized thread

schedule to the original program over a number of irregular meshes. In the experiments,

a mesh always has 10 times more edges than vertices. Figure 5.13 shows that using the

optimized thread schedule reduces the execution time by 25% to 35% on the Intel SMP

machine.

On the SGI Altix machine, we vary the number of processors to compare the program

performance. The CFD kernel always takes as input a mesh of 40, 000 vertices and 400, 000

edges. For different numbers of processors (e.g., 4, 8, 16, and 32), using the new thread

schedule reduces the execution time by 32% to 42%, as depicted in Fig. 5.14. The perfor-

mance improvement on the SGI machine is larger than that on the Intel machine since the

SGI machine has a distributed shared memory architecture.

0

2

4

6

8

10

12

14

16

1k 2k 4k 8k 16k 32k

original
new

Figure 5.13: CFD kernel on Intel Clovertown with 8 cores.

0

10

20

30

40

50

60

70

80

4 8 16 32

original
new

Figure 5.14: CFD kernel on SGI Altix.
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5.6.6 Cholesky factorization

Unlike the previous experiments with independent threads, Cholesky factorization has

threads with data dependences. We use the greedy multi-level thread scheduling method

to determine an optimized thread schedule for the corresponding DAG level by level. Com-

pared to the original schedule that allocates threads to processors in a block distribution

way, the new schedule improves not only data locality but also load balance. The related

numerical results have been verified.

For comparison, Fig. 5.15 also displays the performance of Intel MKL 9.1. On the Intel

Clovertown machine, we can see that the new program is 60% to 200% faster than the

original one, while the MKL library always provides better performance than the original

one.

On the SGI machine, we conducted experiments using different numbers of processors

(4, 8, 16) and compared the performance with that of MKL 7.2. Each experiment takes

as input matrices with different sizes. Figures 5.16, 5.17, and 5.18 demonstrate that the

new program is faster than the original program by 30% to 400% for different number of

processors. The speedup on SGI Altix is greater than that on Intel Clovertown is because

the optimized schedule on Altix not only reduces the number of cache misses, but also

reduces the number of remote memory accesses due to the NUMA architecture.
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Figure 5.15: Cholesky factorization on Intel Clovertown.
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Figure 5.16: Cholesky factorization on SGI Altix with 4 processors.
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Figure 5.17: Cholesky factorization on SGI Altix with 8 processors.
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Figure 5.18: Cholesky factorization on SGI Altix with 16 processors.
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5.7 Summary

We have designed and implemented a feedback-directed optimization framework to maxi-

mize program locality on shared-memory systems. We first run a binary instrumentation

tool to automatically identify the nature of memory sharing between threads which is repre-

sented by an affinity graph. Next we perform graph partitioning to determine an optimized

thread schedule to assign threads to different processors. The optimized thread schedule

improves the data locality of the original program and reduces TLB misses as well as the

number of remote memory references on a DSM system.

Experiments on four different types of applications have shown that our method is

effective and can reduce the program execution time greatly. Although we are using a trace-

based method, the online trace analysis completely eliminates expensive disk I/O operations.

We demonstrate that the feedback-directed method is particularly good for applications

with irregular computation and dynamic memory access patterns. The overhead to execute

an application using the optimized thread schedule is also small. It would be possible

to implement the feedback-directed framework in compilers so that the programmer can

achieve high-performance on shared memory systems automatically.
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Chapter 6

Dynamic DAG Scheduling

6.1 Introduction

Given a processor with hundreds or even thousands of cores, it is critical to increase the

degree of thread-level parallelism to utilize all the available cores to improve program per-

formance [Asanovic et al., 2006] [Buttari et al., 2009]. Our goal is to create as many con-

current tasks as possible to prevent processor cores from becoming idle. The number of

synchronization points such as supersteps must be minimized as well since a potentially

large number of tasks could be ready to execute but are stalled within the following super-

steps.

We strive to design linear algebra software that is going to scale well on both shared-

memory and distributed-memory multicore systems. Our approach to developing the scal-

able software is to put fine-grained computational tasks in a directed acyclic graph (DAG)

and schedule them dynamically. To achieve high scalability, we propose a decentralized

scheduling scheme for distributed-memory systems. That is, each node runs a private run-

time system and communicates with other nodes regarding data dependences only when

necessary. The runtime system has no globally shared data structures, no requirement of

large storage space for DAGs, and no blocking operations. Furthermore, it respects critical

The material from this chapter was published in the 22nd ACM/IEEE Supercomputing Conference
(SC’09) [Song et al., 2009c].
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paths and keeps load balance. The runtime system is composed of three types of threads:

task-generation thread, computing thread, and communication thread. At any time, only a

small portion of the graph is stored in memory. The task-generation thread generates tasks

sequentially and stores tasks in a fixed-size task window (i.e., building vertices of the graph).

The computing thread analyzes the relationship between the tasks in the task window and

solves data dependences automatically (i.e., building edges of the graph). Although the data

dependences are solved in a distributed manner, we prove that the scheduling mechanism

is dead-lock free even with a small-size task window and out-of-order message delivery.

The linear algebra programs are data-availability driven. The execution of a DAG starts

from the entry task of the graph and finishes with the exit task. Whenever all the inputs of

a task are available, the task becomes ready and will be executed by an idle processor. For

easy use, our linear algebra software uses the same interface as ScaLAPACK. While offering

scalability guarantee, the dynamic DAG scheduling mechanism is transparent to users.

Instead of implementing every linear algebra algorithm from scratch, we wrote a task-based

library to generate tasks for the basic subroutines (e.g., PBLAS) so that a new algorithm

is simply a combination of a few task-based subroutines.

We apply the runtime system to a class of dense linear algebra algorithms: Cholesky

factorization, LU factorization, and QR factorization. The factorization algorithms we used

are tiled algorithms [Buttari et al., 2009]. In the tiled algorithms, each task computes an

LAPACK or a Level-3 BLAS subroutine. The tiled algorithms can fully utilize the Level-3

BLAS operations such that the cache hit rate is maximized and data movement is minimized.

We conducted experiments on both shared-memory and distributed-memory machines. The

experimental results demonstrate that the distributed task scheduling approach is efficient

and scalable.

6.2 Task-based linear algebra library and programs

Most LAPACK and ScaLAPACK algorithms are composed of a small number of of funda-

mental operations [Blackford et al., 1996] [Choi et al., 1996]. The fundamental operations

76



L11

U11

L21

U12

A22

A11

A21

A12

A22

N

NB

Figure 6.1: Block LU factorization.

are implemented as Level-2 or Level-3 BLAS routines. For instance, the Cholesky, LU, and

QR factorizations all repetitively perform two operations: panel factorization and trailing

submatrix update. The panel factorization transforms the leftmost collection of columns

(i.e., column panel) followed by the trailing submatrix update using the panel factoriza-

tion result. For instance, Fig. 6.1 shows an example of block LU factorization. First, the

N × NB panel is factorized by the LU factorization. Next, after some pivoting, we solve

the block row U12 using L11. Finally, we update the submatrix A22 by multiplying the

previously computed L21 and U12.

Each fundamental operation can be regarded as a black box. We wish to keep the

same interface but execute the program asynchronously in order to eliminate unnecessary

barriers between operations (i.e., data-flow driven). To minimize the programming effort,

we propose to use a task-based library to replace the fundamental subroutines. We let the

new task-based subroutine generate a set of tasks and let a runtime system execute them

dynamically. To understand how it works, Fig. 6.2 shows the pseudocode that implements

the LU factorization with our task-based library. The subroutines of PDGETF2 T, PDTRSM T,

PDGEMM T simply generate tasks and put them into the task window which is a member of the

runtime system data structure RTS context. One can build new linear algebra algorithms

directly upon the task-based library.

Programs written with the task-based library will be executed by a single thread called

task-generation thread. The task-generation thread executes the serial task-based program

and creates tasks one by one to keep the original sequential semantics. The number of tasks

to be generated are constrained by the size of the task window. Whenever an empty window
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for (k=0; k < nblks; k++) {

/* panel factorization */

PDGETF2_T(nblks-k, 1, A, k, k, &RTS_context);

/* compute block row of U */

PDTRSM_T(1, nblks-k, A, k, k, &RTS_context);

/* trailing submatrix update */

PDGEMM_T(nblks-k, 1, A, k, k, 1, nblks-k, A, k, k,

nblks-k, nblks-k, A, k, k, &RTS_context);

/* deallocate panel blocks */

for (i = k; i < nblks; i++)

Release_Block(A, i, k, &RTS_context);

}

Figure 6.2: Block LU factorization program written with the task-based subroutines.

slot is available, the task-generation thread will start and create a new task. A finished task

will be removed from the task window immediately. Any task in the task window will

eventually become ready and be executed by a computing thread after all of its parents are

completed. Since the task-generation thread does not do any computation, it takes a very

small percentage of the CPU time. The execution of a task-based program is started by the

task-generation thread placing the entry task of the DAG into the task window. An idle

computing thread picks up the entry task and fires new tasks after finishing it.

6.3 Distributed data dependence solving

It is not trivial to generate tasks and solve data dependences in a distributed environment

without much communication. Processes running on different nodes execute the same pro-

gram and generate the same set of tasks so that a single task corresponds to a number

of instances (each process has one). A correct algorithm requires all the processes make

a uniform decision with respect to which consumer task to fire and how to make sure the

consumer task is fired only once. Other complex issues include which process should execute

a specific task and how to handle tasks with multiple outputs but belonging to different

processes. This section first introduces a centralized algorithm, then describes how to use

block data layout and various tasks modes to extend it to a distributed algorithm.
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6.3.1 A centralized version

On a shared-memory machine, a single task-generation thread executes the user program

sequentially and maintains the serial semantic order between tasks. We use a single linked

task list to maintain the task order. If there exists a data dependence, the task list can

determine which task precedes another. Figure 6.3 illustrates how to detect a RAW (read

after write), WAR (write after read), or WAW (write after write) dependence based on

the task list. A task always takes a number of inputs and writes to one or more outputs.

Therefore, tasks stored in the task list keep information such as the input and output

memory locations. Whenever two tasks access the same memory location and one of them

is write, the runtime system detects a data dependence and stalls the successor till the

predecessor is finished. Since WAR and WAW dependences can be removed by renaming,

we only consider the true dependence (RAW) in our algorithm.

There are two operations to access the task list: APPEND and FIRE. The task-

generation thread generates a new task tj and invokes the APPEND operation to put

task tj to the end of the task list. Before the appending, APPEND scans the task list from

the list head to check if there exists a task ti such that ti writes to datum x and tj reads

datum x (i.e., a data dependence). If none of the previous tasks writes to task tj’s kth

RAW

WAR

WAW

R1:

R2:

W: A[i,j]

R1: A[i,j]

R2:

W:

R1: A[i,j]

R2:

W:

R1:

R2:

W: A[i,j]

R1:

R2:

W: A[i,j]

R1:

R2:

W: A[i,j]

Figure 6.3: Detecting data dependences based on a task list.
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input, we set the status of tj’s kth input as “ready”. When all of tj ’s inputs are ready, task

tj becomes a ready task.

After a task completes and modifies its output datum y, the FIRE operation starts to

search for the tasks that read the datum y. Instead of from the head of the list, the runtime

system scans the task list from the position of the completed task to the end of the list to

find which tasks are waiting for y. The scanning process exits after confronting the first

task that writes to y. We denote the set of scanned tasks that are linked between the

completed task and the exit point as S. If a task is in S and one of its inputs is of datum

y, that input will be set as “ready”. Since we track data dependences for data blocks and

use a fixed-size task window, the time and space overhead is not expensive. Section 6.4.3

discusses the space overhead of the method.

6.3.2 Block data layout and task assignment

The technique of block data layout is used to improve memory hierarchy performance

[Park et al., 2003]. In the block data layout, a matrix is divided into submatrices of size NB

× NB. Data elements within a block are stored contiguously in memory. On a distributed

memory system, we use the 2D cyclic distribution method to map matrix blocks to compute

nodes. Assuming a process grid of Pr×Pc, a matrix block A[I, J ] will be mapped to process

[I mod Pr, J mod Pc]. Note that we always map a block as an indivisible unit. We bind

each task to its output data such that the computation is centered around data to minimize

data movement and maximize data locality. Suppose the output of a task t is A[I, J ], then

we assign t to process [I mod Pr, J mod Pc]. Since data blocks are allocated by the 2D

cyclic method statically, the tasks assignment to each process is also static. That is, if the

output block of a task is mapped to process pi, then pi owns that task correspondingly. But

the task scheduling within a process is dynamic.

In addition to reducing the communication cost, the 2D cyclic distribution of blocks

and tasks has a few more advantages. It has been proven to have the following important

properties [Dongarra et al., 1992, Hendrickson and Womble, 1994]:
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• Communication volume is within a constant factor of the optimal.

• Higher communication parallelism degree.

• The maximal load imbalance is N2(Pr + Pc − 2)/(2P ), which is small compared to

the runtime Θ(N3/P ).

• The proportional load imbalance stays constant while increasing the number of pro-

cessors.

• Less processor idle time.

• Matrix size N is capable of growing with
√

P to maintain scalability while increasing

the number of processors given the fact that the matrix memory requirement grows

with N2.

On the other hand, it allows us to design a compact efficient runtime system to avoid

complex cases such as distributed work stealing and dynamic tracking of the ownership

of blocks. We believe the property of the bounded load imbalance is able to provide us

with a nearly balanced workload on every process. Both ScaLAPACK and our experiments

have shown that using the 2D cyclic distribution can achieve good load balance and high

performance.

6.3.3 Task and task mode

It is sufficient to create a single instance for each task on shared-memory machines. The

single instance contains all the necessary information for the runtime system to analyze

data dependences and execute the task. Figure 6.4 shows the data structure to store tasks

in our runtime system. A task contains the following information:

• Task-related information such as task id, function type, and priority.

• Input: which blocks are the inputs and a ready status for each input. A block is

denoted by a 3-tuple (matrix, row index, column index).
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struct Task {

    int       task_id;

    char    type, priority;

    /* input info */

    char    num_inputs;

    int       inputs[ ];

    bool    inputs_ready[ ];

    /* output info */

    int       output[3];

    int       num_minor_ouputs;

    int       minor_outputs[ ];

    /* distri-system extension */

    char    mode;

    bool    is_generated;

    char    which_input;

};

Figure 6.4: The task data structure.

• Output: which block is the output. If a task has more than one output, we distinguish

them as minor outputs.

By contrast, a task on a distributed-memory machine will correspond to a number of task

instances since each task will be created and checked by all the processes. We assume each

task has O(1) number of inputs and outputs and propose a novel approach to generating

tasks. The objective is to make all the processes reach the same conclusion without any

cooperative communication.

Suppose a task has c1 inputs and c2 outputs, then we create c1 + c2 task instances and

allocate them to different processes. Each task instance plays a role of “representative” for

the task’s corresponding input or output. The location of the task instance (representing

either an input or output) is decided by the location of the input or output. The major

output of a task corresponds to an owner task instance and it is the process who stores the

owner instance that execute the task. Each input of the task corresponds to an input shadow

task instance (either local or remote). The runtime system utilizes the input shadows to

notify the corresponding owner task that a certain input becomes available. If a task has
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more than one output, then for each minor output, we either create a local minor-output-

shadow task instance or a pair of source/sink minor-output-shadow task instances. Table

6.1 summarizes the definitions of the six task modes. Note that the location of a task’s

input or output is well defined by the 2D cyclic distribution function.

6.3.4 The distributed algorithm

In the distributed algorithm, we partition the task list of the centralized algorithm into

multiple task lists across different processes. Each process maintains a private task list. To

reduce the time to traverse the task list, we further divide a process’s private task list into

a number of block access lists so that each block A[I, J ] is associated with a separate task

list (Fig. 6.5). This way, we can perform the APPEND and FIRE operations quickly on

shorter lists by using the block index [I, J ]. Section 6.4.3 discusses the memory requirement

to store block access lists.

The distributed algorithm predefines an arbitrator for each block to decide the data

dependence only involving the block. At any time, only the block’s arbitrator makes the

unique decision. We let the process that owns the block be the arbitrator and determine

data dependences for its owned set of blocks. We extend the previous centralized algorithm

to the distributed algorithm using the following rules:

• Both blocks and tasks are allocated to specific processes by 2D cyclic distribution.

• Every process has a task-generation thread and generates tasks independently.

list of tasks

Figure 6.5: Block access list to store tasks in the runtime system.
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Table 6.1: A variety of task modes.

Task mode Definition

Owner An owner task instance is stored by the process which owns
the task’s major output. The owner task instance keeps the
complete information of the task.

Local input
shadow

A local input shadow task instance is stored by the process which
owns the specific input. The input block and the task’s major
output block must belong to the same process. The local input
shadow task instance keeps partial information regarding which
specific input to read and a pointer to the owner task instance.

Remote input
shadow

A remote input shadow task instance is stored by the process
which owns the specific input. The input and the task’s major
output must belong to different processes. The remote input
shadow instance keeps partial information about which input to
read and what is the output.

Local
minor output
shadow

A local minor-output shadow task instance is stored by the pro-
cess which owns the minor output. The minor-output and the
task’s major output must belong to the same process. The task’s
owner task instance keeps a pointer pointing to the local minor-
output shadow.

Source
minor output
shadow

If the minor-output of a task belongs to a process different from
the task’s major output, a source minor-output shadow task in-
stance is generated and stored by the owner task’s process. The
source minor-output shadow instance keeps partial information
regarding what is the minor-output block. The task’s owner
instance keeps a pointer to the source minor-output shadow.

Sink
minor output
shadow

A sink minor-output shadow task instance is stored by the pro-
cess to which the minor output is assigned. The availability of
the sink minor-output shadow is notified by the availability of
the source minor-output shadow.
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• Every process only stores and keeps track of matrix blocks assigned to itself.

• Every process stores “relevant” tasks only. That is, suppose a task t takes block

A[I, J ] as an input or output, A[I, J ] ∈ process P implies that an instance of task

t will be created and stored by P. A specific task mode will be assigned to the task

instance based on Table 6.1.

We use a simple example to show how the distributed algorithm works (Fig. 6.6).

Suppose a matrix of size 3 blocks by 3 blocks is distributed to a 2 × 2 process grid by 2D

cyclic distribution, then each process is allocated with a set of blocks (i.e., shaded blocks).

Let the processes P1, P2, P3, P4 execute a sequential program and generate a set of tasks:

t1, t2, and t3. We assume task t1 reads and writes block 1, t2 reads block 1 and writes block

4, and task t3 reads block 1 and writes block 7. Figure 6.6 illustrates which task instances

of t1, t2, t3 are generated and where and how they are stored. Since all the blocks accessed

are irrelevant to P2 and P4, P2 and P4 have empty task lists. Based on the status of the

task lists on P1 and P3, it is easy to find that t2 and t3 can be started simultaneously after

task t1 is finished.

Theorem 6.1. The distributed algorithm guarantees that a task will eventually get all of

its inputs and become ready.

Proof. Suppose a task T ∈ P0 has k inputs which are allocated on k different processes

{P1, . . . , Pk} (Fig. 6.7). Let task T’s ith input be generated by Pi at time ti and be

received by P0 at time t′i. Also suppose task T is generated by P0 at time t0. There could

be an arbitrary order in the set {t0, t′1, t′2, . . . , t′k}. To prove task T can eventually get all of

its inputs and become ready, we only need to show the distributed algorithm handles the

following three cases correctly:

Case 1: t0 < {t′1, t′2, . . . , t′k}. At time t0, P0 creates task T that is stored in P0’s task window

with all of T’s inputs not ready. Later on, Pi sends T’s i-th input to P0 at time t′i for which

P0 receives it and marks the i-th input of T as ”ready”. After all the k inputs arrive, task

T becomes a ready task.
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Figure 6.6: Snapshot of the distributed algorithm after four processes have generated tasks
t1, t2, and t3 in sequence. Assume t1 reads/writes block 1, t2 reads block 1 and writes block
4, and t3 reads block 1 and writes block 7.
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...

Figure 6.7: A task T with k inputs and 1 output.

Case 2: {t′1, t′2, . . . , t′k} < t0. At time tm = min1≤i≤kt
′
i, P0 receives an input of task T.

Since the owner task instance of T has not been generated by P0, P0 creates a partial task

instance for T and marks the received input as ”ready”. The arrival of the other inputs

makes P0 update the status of the other inputs in the partial task. Finally at time t0, P0

generates the owner instance of T. It searches for the partial instance, fills in T’s complete

information, and moves task T to the ready queue.

Case 3: {t′1, . . . , t′s} < t0 < {t′s+1, . . . , t
′
k}. It is actually equivalent to the mixed case of 1

and 2. That is, {t′1, . . . , t′s} < t0 is handled similarly to Case 2, and t0 < {t′s+1, . . . , t
′
k} is

handled similarly to Case 1.

Theorem 6.2. The distributed algorithm is deadlock free for any task window of size W ≥ 1.

Proof. Each process Pi has a task window Qi. Suppose a deadlock occurs between m

processes {Pi1 , Pi2 , . . ., Pim} that form a waiting cycle such that Pik waits for Pik+1
.

If the first task in a task window is a non-owner task, it will be executed and removed

immediately. So when the deadlock happens, the first task ∈ Qi must be an owner task.

Let tid be the first task in Qid , where d ∈ [1,m]. Suppose ti1 ∈ Qi1 is unable to execute

because ti1 is waiting for one of its parent task ℘(ti1) ∈ Qi2 to finish. Task ℘(ti1) must

be either ti2 itself or behind ti2 in Qi2. Thus, ti2 ≤ ℘(ti1) < ti1 is the sequential order

of the tasks. By following the deadlock cycle of {Pi1 , Pi2 , . . . , Pim , Pi1}, we can show that

ti1 < tim < tim−1
< . . . < ti2 < ti1 . It contradicts the fact that each task window Qi stores

the tasks in the program’s sequential order.
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6.4 Runtime system design

On a distributed-memory system, every compute node runs an instance of the runtime

system. In particular, a single shared-memory machine needs only one runtime system

instance. The runtime system has two task pools: a task window and a ready task pool.

The task window stores all the generated but not finished tasks. The implementation of

the task window actually uses the block access lists indexed by block locations [I, J ]. The

maximal number of tasks to be generated is constrained by the task window size. As

introduced in Sect. 6.3.4, a process’s runtime system only keeps the blocks and tasks that

are assigned to the process based on the 2D cyclic distribution. The ready task pool is

much simpler than the task window. It only stores a pointer pointing to the corresponding

ready task in the task window. After finishing a task, the runtime system uses the pointer

to remove the ready task from the task window. Each task has a priority. Hints regarding

critical paths (e.g., panel tasks in factorizations) are provided by the task-based library

writers and tasks on the critical path are assigned a high priority.

6.4.1 Thread types

The runtime system has three types of threads: task-generation thread, computing thread,

and communication thread. If a node has n processor cores, we launch one task-generation

thread, one communication thread, and n−1 computing threads. We let the n−1 computing

threads occupy n− 1 cores, and the communication thread and the task-generation thread

occupy the remaining one core.

As shown in Fig. 6.8, the task-generation thread simply executes a sequential program

and generates tasks to fill in the task window by invoking the APPEND operation. The

task-generation thread uses a counting semaphore to start or stop depending on whether

the task window is full or not. When a computing thread becomes idle, it picks up a ready

task from the ready task pool and computes it. After finishing the task, the computing

thread performs the FIRE operation to solve data dependences and find the children of the

finished task.
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Figure 6.8: Architecture of the runtime system.

The communication thread is responsible for sending and receiving messages by posting

MPI ISend and MPI IRecv operations. The interaction between the computing threads and

the communication thread is through the message inbox and outbox. If a computing

thread wants to send a block to some computing threads running on different nodes, it

puts a message in the outbox and the communication thread will send it out. Whenever

receiving a message, the communication thread places the message in the inbox which will

be read by one of the computing threads.

The communication thread and the task-generation thread take the last core. The

reason why we do not launch multiple communication threads is because the thread support

level of MPI THREAD MULTIPLE at the moment is not portable on all systems and

mixing computing thread and communication thread on the same core interferes with the

maximized cache hit rate of the computing thread. When n is big enough (e.g., 16 or more

cores), it is reasonable to dedicate one of the many cores to process communications.
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6.4.2 Memory allocation and deallocation

We use an indirect data structure to store matrices. Given a matrix of size N and block size

of NB, the indirect data structure consists of ( N
NB

)2 pointers pointing to a number ( N
NB

)2

of NB × NB blocks for the matrix. Figure 6.9 shows how to use an indirect data structure

to store a matrix with 2 × 2 blocks. There are two matrix types in our runtime system:

user-defined input/output matrix and intermediate-result matrix. The intermediate-result

matrices are allocated and deallocated on demand by the runtime system. The first task

that writes to the intermediate block will allocate memory for the block. Here we assume

there is sufficient memory to allocate.

It is more difficult to deallocate blocks because the runtime system itself cannot decide

whether a block will be needed or not in the future. Similar to ANSI C programs calling

free() to release memory, we provide programmers with a special routine Release Block()

to free a block. Release Block() actually doesn’t release any memory, but sets up a marker

in the task window. While generating tasks, the task-generation thread keeps track of the

expected number of visits for each block. Meanwhile the computing thread records the

actual number of visits for each block. The runtime system will free a block if and only

if the following three conditions are satisfied: i) The block is currently stored by the pro-

cess. ii) The actual number of visits is equal to the expected number of visits to the block.

iii) Release Block has been called to free the block. In our runtime system, each data

block maintains three data members for the memory deallocation: num expected visits,

num actual visits, and is released. This memory deallocation method bridges the gap

Figure 6.9: Indirect data structure for matrices.
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between the on-the-surface deterministic programs and the internal nondeterministic exe-

cution by the dynamic runtime system based on data availability.

6.4.3 Space overhead

This section analyzes the memory requirement for the runtime system to keep track of data

dependences. For every input and output of a task, there is a task instance generated and

added to the task list. The owner task instance stores the complete information of the task.

Suppose the owner task has k arguments, then it uses 3k × 4 bytes since each argument is

represented by 3 integers. A non-owner task instance stores information of task id, block

location, and a flag of input or output (i.e., 17 bytes). Therefore, every task corresponds to

12k+17(k−1) bytes. Suppose the task window size is equal to W , then it takes W (29k−17)

bytes to store the dependence related information.

Although a smaller task window can save more memory space, a larger window size

could explore more tasks in a longer distance and identify more parallelism. In our imple-

mentation, we choose the window size to be equal to the number of blocks assigned locally

to each process. Note a matrix is distributed across processes in the 2D cyclic distribution.

Suppose a compute node has a memory of capacity M bytes (e.g., 4 GBytes). Let NB be

the block size, then the local matrix has a maximum dimension of
√

M/8/NB blocks and

the task window size W is of M/8/NB2. The ratio of the space for storing the W tasks

over M -byte is thus (29k − 17)/8/NB2. To avoid too fine-grained tasks, we expect NB to

be at least 32. Suppose a sufficiently complex task has a number k = 16 of arguments, the

overhead is just about 5.5% for NB=32. The overhead becomes much smaller when NB is

bigger and k is smaller. For instance, if k is still 16 but NB=100, the space overhead is

equal to 0.56%.

6.5 Analytical analysis

We use the tiled algorithms presented in [Buttari et al., 2009] to implement the Cholesky,

LU, and QR factorizations. The Cholesky factorization algorithm has a very high degree of
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Figure 6.10: DAG for the tiled Cholesky factorization.

parallelism where each finished task in the panel fires a number nb of tasks in the trailing

submatrix (nb denotes the matrix dimension in blocks). A finished task TRSM[i,j] fires

the GEMM tasks located on the i-th row or the j-th column in the trailing submatrix. Figure

6.10 shows an example of the DAG for the tiled Cholesky factorization algorithm given a

symmetric matrix of size 4 blocks × 4 blocks.

The tiled LU and QR factorizations use updating-based algorithms whose data depen-

dence graphs are much denser than that of the Cholesky factorization as shown in Figs. 6.11

and 6.12. For details of these algorithms, please refer to [Buttari et al., 2009]. This section

skips the simpler Cholesky factorization and analyzes the performance of the updating LU

and QR factorization algorithms.

In both LU and QR factorizations, the trailing matrix update occupies the most of the

computation. Figure 6.13 shows how to update a trailing submatrix of size 4 blocks × 4

blocks on a 2 × 2 process grid. Each task in the i-th row is dependent on the task in the

(i-1)-th row and all the tasks on the same row are totally independent.
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Figure 6.11: DAG for the tiled LU factorization.

2,1

GEQRT

TSQRT

2,2
SSRFB

1,2
LARFB

1,3
LARFB

1,4

LARFB

3,1
TSQRT

4,1
TSQRT

2,3
SSRFB

2,4

SSRFB

1,1

3,2
SSRFB

3,3
SSRFB

3,4

SSRFB

4,2SSRFB 4,3SSRFB 4,4SSRFB

GEQRT

2,2

2,3
LARFB

2,4
LARFB

3,2
TSQRT

3,3
SSRFB

3,4
SSRFB

4,2
TSQRT

4,3
SSRFB

4,4
SSRFB

GEQRT

3,3

4,3
TSQRT

3,4
LARFB

4,4SSRFB

GEQRT
4,4

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

critical path (T
∞
)

loop carried dependency

loop indep. dependency

Figure 6.12: DAG for the tiled QR factorization.
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Figure 6.13: Trailing submatrix update in the tiled LU and QR algorithms.

6.5.1 Expected execution time

Theorem 6.3. Suppose each task takes the same amount time to compute and tasks on the

ith row are dependent on tasks on the i− 1th row. The tasks located on the same row have

no data dependences. If nb≫ P , the expected execution time is

T =
nb2(tcomp + tcomm

k
)

PrPc

+ 2k(Pr − 1)tcomp , where

nb is the matrix dimension in blocks, tcomp is the computation time of a task, tcomm is the

communication time to transfer a tile, k denotes a virtual tile of k×1 tiles, and P = Pr×Pc

is the process grid.

Proof. The tasks in the trailing matrix update are essentially executed along a pipeline.

Each process occupies a set of stages in the pipeline (Fig. 6.14), where a process takes

charge of a subset of tasks determined by the 2D cyclic distribution.

Consider an arbitrary process Pi. At time t = 0, Pi has nb/Pc × k tasks. The next

time Pi appears in the pipeline is at t + Pr × (tcomp × k + tcomm) when Pi will get another

nb/Pc × k tasks. Since nb ≫ P , Pi will get new tasks continuously and never become

idle. The expected execution time T = Tcomputation +Tcommunication +Tpipestart +Tpipefinish.

Tpipestart and Tpipefinish denote the elapsed time for all the processes to get the first task to

work on. Since process Pi has nb2

PrPc
tasks,

Tcomputation = (
nb2

PrPc
)× tcomp, Tcommunication = (

nb2

PrPc × k
)× tcomm,

94



and Tpipestart = Tpipefinish = k(Pr − 1)tcomp.

Thus,

T =
nb2(tcomp + tcomm

k
)

PrPc
+ 2k(Pr − 1)tcomp.

Figure 6.14 shows an example of the pipeline execution on a 4 × 4 process grid. In

the figure, the top-left corner of a large matrix is distributed to the 4 × 4 process grid by

2D cyclic distribution. For the 4 rows by 4 columns process grid, we only display the first

process of each row. That is, {P0, . . .}, {P4, . . .}, {P8, . . .}, and {P12, . . .}. Each rectangle

in the figure represents a virtual tile that consists of 4 × 1 tiles. In the example, P0 owns

a set of tasks from the first block row at the beginning (t = 1). At time t = 2, P4 gets its

first task. At time t = 3, P8 gets its first task, and so on. Similarly at time t = 5, 6, 7, . . .,

P0 gets new tasks continuously after P4, P8, P12 finish their tasks in sequence. The same

pipeline execution pattern also happens to the other processes.

Corollary. Let T1 be the total computation time (i.e., nb2 × tcomp). If nb ≫ P , then the

expected execution time

T =
T1

P
(1 +

tcomm

ktcomp

+
2k(Pr − 1)P

nb2
) ∼= T1

P
(1 +

tcomm

ktcomp

).

Note that T1

P
is a lower bound of the optimal execution time.

6.5.2 Communication and computation ratio

This section analyzes what would be the possible value of tcomm

ktcomp
. In the tiled linear algebra

algorithms, a task often computes a Level-3 BLAS operation. The Level-3 BLAS operations

have a time complexity of O(NB3) but access data of space O(NB2).

Our analysis assumes the most commonly used BLAS operation of DGEMM that has a

time complexity of 2NB3. Other Level-3 operations may have different complexities such
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Figure 6.14: Asynchronous pipeline execution by a 4× 4 process grid.
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as 1
3NB3, 2

3NB3, and so on. The formula of tcomm

ktcomp
for DGEMM is expressed as follows:

tcomm

ktcomp
=

8×NB2/bw

2NB3 × k/flops
, where

bw denotes the injection network bandwidth in GB/s, and flops denotes the maximum

DGEMM performance in GFLOPS on a single core.

Here we analyze tcomm

ktcomp
for two real machines. The first machine is a cluster machine

connected by a Myrinet network. Each core on the cluster has a maximum DGEMM per-

formance of 10 GFLOPS and an injection network bandwidth of 1.2 GB/s. The second

machine is a Cray XT4 machine, where flops=8 GFLOPS and bw=4 GB/s. As shown in

Fig. 6.15, to keep the ratio tcomm

ktcomp
< 10% on the cluster machine, we should set NB ≥ 320

for k=1, NB ≥ 160 for k=2, and NB ≥ 80 for k=4, accordingly. On the Cray XT4 machine

(Fig. 6.16), setting NB=80 and k=1 is sufficient to attain a small ratio of 10%. Thus, users

need to adjust NB and k to achieve good program performance on different systems.

6.5.3 Parallelism degree sufficiency

As described in Theorem 6.3, each process in the pipeline receives new tasks continuously

if nb ≫ P . When P is small (e.g., 100’s), the condition of nb ≫ P can be easily satisfied.

In practice, when users double the number of P , the amount of physical memory doubles
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ratio on a Myrinet cluster.
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ratio on Cray XT4.

too. But the matrix dimension N can only be increased by
√

2 and so is nb. The issue we

are confronting now is that nb/P will become smaller and smaller when users increase the

number of nodes.

This section discusses the condition for which the tiled updating algorithms can achieve

good scalability if we double the number of processor cores constantly. Suppose a matrix

of dimension nb blocks is distributed across a P = Pr × Pc process grid, and each process

has C threads running on C processor cores. The updating algorithm executes a number

nb of iterations. In the ith iteration, process p appears in a number (nb − i)/Pr of rows.

Also process p appears (nb− i)/Pc times on each row. The tasks within each row are totally

independent and can be executed in parallel, but the tasks between rows must be executed

in sequence. We let TaskGain represent the total number of tasks within process p. Between

every two appearances of process p on two rows, there are a maximal number (nb−i)d
Pc

of

tasks entering process p assuming a lookahead depth of d. But the C threads in process p

also computed (or consumed) Pr ×C tasks since the distance between p’s two appearances

is Pr tasks and p has C threads. Therefore, in the ith iteration,

TaskGaini =
(nb− i)d

Pc
− Pr × C.
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Because the algorithm has nb iterations and i = 0 . . . nb− 1, the overall task gain of process

p can be expressed as:

TotalTaskGain ∼= nb2

6P
(2(1 + d)nb− 3× P × C).

Note that as long as (1+d)nb ≥ 1.5×TotalNumberCores, every core will keep receiving new

tasks constantly and not become idle. We can also conclude that the lookahead technique is

able to improve the degree of parallelism and is necessary for the asynchronous algorithms.

6.5.4 Network bottleneck

If there are many cores in a node sharing the same network interface card (NIC), we must

make sure the NIC will not become a bottleneck for our algorithms. Suppose a node has

n processor cores, and each task takes Θ(NB3) time to compute a block of size NB × NB.

During the time of Θ(NB3) × k/flops, n cores generate n blocks to communicate. And it

takes 8NB2 × n/bw time for the NIC to send or receive the n blocks.

In order for the NIC not to become a bottleneck, we require Θ(NB3)×k/flops ≥ 8NB2×

n/bw. That is, Θ(NB)×bw×k

8×flops×n
≥ 1. For a manycore system connected by a slow network, we

need to choose a larger NB to avoid message delays.

6.6 Experimental results

To evaluate the effectiveness of our dynamic scheduling approach and runtime system de-

sign, we conducted experiments on both shared-memory and distributed-memory multicore

machines.

6.6.1 On shared-memory multicore system

We applied our runtime system to the Cholesky factorization and the QR factorization on

two different multicore SMP machines: a 16-core Intel Tigerton machine and a 32-core IBM

Power6 machine.
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Figures 6.17 and 6.18 show the measurements for Cholesky and QR factorizations on

an Intel Tigerton machine with 16 2.4-GHz cores (4 sockets, 4 cores each socket) and

32GB memory. We compiled our dynamic scheduling programs (called TBLAS) with Intel

Fortran and C/C++ 11.0 compilers at optimization level -O3. We compared TBLAS to

four libraries: LAPACK, ScaLAPACK, Intel MKL 10.1, and PLASMA. To get a feeling

of the performance upper bound, we list the DGEMM performance using 16 cores and 16

times the performance of the serial DGEMM (labeled as 16 × dgemm-seq). For Cholesky

factorization (Fig. 6.17), TBLAS is slightly better than Intel MKL but not as good as

PLASMA. LAPACK and ScaLAPACK don’t provide a good performance on the shared-

memory multicore machine. For QR factorization (Fig. 6.18), TBLAS is comparable to

PLASMA and both TBLAS and PLASMA are much better than Intel MKL. PLASMA and

TBLAS use the same tiled updating algorithms. Since PLASMA uses hand-tuned static

scheduling and avoids the runtime system overhead, it is faster than TBLAS.

 0

 20

 40

 60

 80

 100

 120

 140

 0  2000  4000  6000  8000  10000  12000

Matrix size

16xdgemm-seqDGEMM
PLASMA

TBLAS
MKL

SCALAPACK
LAPACK

G
F

L
O

P
S

Figure 6.17: Cholesky factorization on a 16-core Intel Tigerton machine.
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Figure 6.18: QR factorization on a 16-core Intel Tigerton machine.

The second shared-memory multicore system is an IBM Power6 machine with 32 4.7-

GHz cores (4 Multi-Chip Modules (MCM), 4 dual-core chips on each MCM). We compiled

TBLAS programs with IBM xlf 11.1 and xlc 9.0 compilers. Figures 6.19 and 6.20 com-

pare the performance of TBLAS to five libraries: LAPACK, ScaLAPACK, IBM ESSL 4.3,

IBM PESSL 3.3, and PLASMA. The performance of DGEMM is also presented to show the

performance upper bound. For both Cholesky and QR factorizations (see Figs. 6.19 and

6.20), TBLAS provides a significantly better performance than IBM’s ESSL and PESSL

libraries.

6.6.2 On distributed-memory multicore system

We measured the performance of our runtime system on the Cray XT4 Jaguar machine

from ORNL. The machine consists of nearly 8000 compute nodes each of which has a quad-

core 2.3-GHz AMD Opteron processor and 8GB memory. Cray XT4 adopts a 3D torus

topology and is connected by a SeaStar2 network. On this machine, the peak performance
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Figure 6.19: Cholesky factorization on a 32-core IBM Power6 machine.
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Figure 6.20: QR factorization on a 32-core IBM Power6 machine.
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per core is 9.2 GFLOPS and the maximum DGEMM performance per core is 7.6 GFLOPS.

We will look at the weak scalability performance of our runtime system. That is, when

we double the number of nodes, we also increase the matrix size N accordingly. Since the

matrix memory requirement grows with N2 but the physical memory size grows linearly

with the number of nodes, we increase the matrix size by
√

2 when we double the number of

nodes. The first matrix size for our single node experiment is 20000. To minimize message

delays in our runtime system, we dedicate one core of each node to do nothing but MPI

communications. Therefore, we just used 3 out of 4 cores (25% less) on each node to

do real computations. However, for the per-core performance, we divide TBLAS’s overall

performance by 4× NumberNodes, instead of 3× NumberNodes. We believe a node with

more than 16 cores can achieve a much better performance (e.g., 1/16=6.25% less).

We compare TBLAS to the ScaLAPACK library provided by Cray XT-LIBSCI 10.3.2.

We implemented three types of matrix factorizations: Cholesky, LU (with and without

pivoting), and QR. For each factorization, TBLAS uses two configurations. One is for the

single shared-memory node which uses 4 cores for computation. The other is for the multi-

node distributed-memory configuration where each node uses 3 cores for computation and

1 core for communication. Therefore, in the following scalability performance figures such

as Fig. 6.22, TBLAS has two different lines for the two configurations, respectively.

Figures 6.21 and 6.22 demonstrate the overall performance and the per-core perfor-

mance of the Cholesky factorization. The per-core performance is obtained by dividing the

overall performance by the number of cores listed on the x-axis. Although TBLAS uses

25% less cores than ScaLAPACK for computation, it is very close to ScaLAPACK (see

Fig. 6.21). In Fig. 6.22, the TBLAS 4-comp-core performance drops from 6.8 GFLOPS

to the 3-comp-core 5.2 GFLOPS performance, which is 23% less than the 4-comp-core

performance. Running on more than one compute node, TBLAS is scalable from 8 cores to

1024 cores.

Figures 6.23 and 6.24 present the experimental results of the LU factorization. We also

list the LU factorization without pivoting to compare with the pivoting algorithm. Since LU

without pivoting uses an algorithm similar to the Cholesky factorization, its performance
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Figure 6.21: Overall performance of Cholesky factorization on Cray XT4.
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Figure 6.22: Scalability of Cholesky factorization on Cray XT4.
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Figure 6.23: Overall performance of LU factorization on Cray XT4.
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Figure 6.24: Scalability of LU factorization on Cray XT4.
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is as good as that of Cholesky factorization. As shown in Fig. 6.24, the LU with pivoting

again scales well from 8 to 1024 cores. Moving from 4-comp-core (i.e., 5.1 GFLOPS)

to 3-comp-core (i.e., 4 GFLOPS), the TBLAS performance is decreased by 21%. The

performance of LU with pivoting on a single node drops greatly from two cores to four

cores. We are currently looking at how to tune certain parameters in the LU kernels to

improve its performance.

Figures 6.25 and 6.26 show the performance of the QR factorization. As seen in Fig.

6.26, the difference between TBLAS 4-comp-core and 3-comp-core is equal to 25% (5.7

GFLOPS vs 4.25 GFLOPS), which is just equal to the 25% less compute cores that TBLAS

uses than ScaLAPACK.

In summary, our experiment scales from 1 core to 1024 cores on a quad-core distributed-

memory machine. At first glance it might appear that TBLAS is inferior to ScaLAPACK.

But if a compute node has more than 16 cores, we expect that the TBLAS Cholesky fac-

torization will provide a much better performance than ScaLAPACK since the present 25%

unutilized compute cores (1 out of 4 cores) will become less than 6.25% (Fig. 6.22). Simi-

larly, we expect the performance of the TBLAS LU and QR factorizations to be comparable
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Figure 6.25: Overall performance of QR factorization on Cray XT4.
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Figure 6.26: Scalability of QR factorization on Cray XT4.

to ScaLAPACK’s performance since using more than 16 cores per node will make TBLAS

LU and QR factorizations reach the single node performance (Figs. 6.24 and 6.26). Further-

more, the same TBLAS program is able to provide a better performance than ScaLAPACK

on shared-memory machines, as shown in Figs. 6.17-6.20.

6.7 Summary

We design a runtime system to schedule tasks dynamically on both shared-memory and

distributed-memory multicore systems. Linear algebra programs are written with a task-

based library and can be executed by the runtime system automatically. To achieve scala-

bility, the runtime system only stores a portion of the task graph in memory. The runtime

system uses distributed block access lists to keep track of data dependences efficiently. To

solve data dependences without process cooperation, we design a distributed algorithm for

all the processes to make uniform decisions by using six different task modes. We have

proved that the tiled algorithms have sufficient degree of parallelism and can offer scalabil-

ity guarantees. Our experimental results on both shared-memory and distributed-memory

machines also demonstrate that the runtime system is scalable.
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Chapter 7

Scalable Multicast for Distributed

DAG Scheduling

7.1 Introduction

The most common communication used to execute DAGs on a distribute-memory system is

multicasting where a completed task must notify its descendants that are blocked awaiting

its output. This chapter studies how to perform communication in a scalable way for the

distributed dynamic DAG scheduling. MPI libraries provide users with optimized broad-

cast operations on nearly all high performance machines. Due to the dynamic and irregular

parent/children relationship in general DAGs, there could be 2N possible subsets of pro-

cesses for broadcasting, where N is the number of processes. For every finished task and its

corresponding children, one has to call MPI Comm create() followed by MPI Bcast to realize

the multicast. Even if we ignore the time to create the communication groups, multiple

MPI broadcasts involving the same process have to be executed in a sequence because MPI

broadcast is a collective operation. Figure 7.1 shows an example where P3 is involved in

three communication groups with broadcast roots P0, P1, P2, respectively.

The material from this chapter was published in the 9th International Conference on Computational
Science (ICCS 2009) [Song et al., 2009a].
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Figure 7.1: Data multicast from parent to children in a DAG.

This chapter presents a scalable multicast scheme to enable dynamic DAG scheduling on

large-scale distributed systems with tens of thousands of processors. The multicast scheme

assigns a topology ID to each process and builds a compact neighbor table. The scheme

is non-blocking, topology-aware, scalable, and deadlock-free, and it supports multiple con-

current multicasts. We compare its performance to the flat-tree multicast and the vendor

MPI Bcast. Based on the experimental results, our multicasting scheme is significantly bet-

ter than the simple flat-tree multicast method and comparable to the vendor optimized

collective MPI broadcast.

Different from the automated data dependence solver introduced in Chapter 6, this

chapter uses a different method to represent DAGs in a symbolic way. Although the symbolic

method has less overhead and is more efficient, it requires a lot of effort for developers

to define the correct data dependence relationship for all the algorithms. However, the

corresponding multicast method presented in the chapter is generic and can be applied to

other distributed DAG scheduling problems easily.

7.2 Computation model

7.2.1 Symbolic task graph

A large number of scientific applications have a loop nest control structure, where both loop

bounds and array subscript expressions are affine functions. In such a program, every task
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(or statement) is enclosed by a number of iterations. Although the program has a small

number of task types, executing the program will unroll the loops and generate a large

number of task instances from each type of task. One could expand all the loops and store

the task instances into a DAG from the first iteration to the last one. But it is too expensive

to store such a DAG and is not scalable. Instead, we represent the semantics of programs

with loop nest control structures by polyhedrons such that each task instance corresponds

to a unique coordinate or iteration vector. A task instance is denoted by a tuple (type,

iteration vector). By identifying data dependences between tasks, we are able to con-

struct the whole DAG. Similar to the method introduced by [Cosnard and Jeannot, 1999],

we define a task graph symbolically as follows: G = 〈T,E〉, where

T = {task t : t = (type, ~u)}.

The set of edges E are defined by a collection F of symbolic functions:

F = {fi for certain task type i} and fi : {~u} → T.

Given a task instance (t, ~u), ft(~u) defines a set of tasks that are dependent on task (t, ~u).

Figure 7.2 depicts a DAG example for Cholesky factorization. There are three types of

tasks and the data dependence relationship is represented by three symbolic functions. For

instance, if a task p = (POTRF, <k, i, j>) completes, p’s children can be determined by

the following function:

f1(p) = {(type, 〈k′, i′, j′〉) : type = TRSM, k′ = k, i′ ∈ [k + 1, n], j′ = k}.

Similarly, TRSM and GEMM each has its own symbolic function to define the children.

7.2.2 Programming model

We design a simple application programming interface (API) to defines DAGs in a symbolic

way. After the user implements the API routines, the underlying runtime system can
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Figure 7.2: Cholesky factorization DAG for a matrix with 4× 4 blocks.
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automatically parallelize and execute the DAG on shared- or distributed-memory systems.

The ANSI C programming interface routines are listed below:

int get_children(const Task t, Task children);

int get_num_parents(const Task t);

void set_entry_task(const Task t);

void set_exit_task(const Task t);

Note that we can obtain the child tasks easily by calling get children() given a finished

parent task. As long as each member of the multicast group is notified of the parent task,

it is able to deduce the whole group immediately. If the get children() function is not

feasible, the group members have to be included explicitly in messages.

We defined the user interface for Cholesky factorization and conducted experiments on a

cluster machine. The implementation of the interface has about 40 lines of code. The cluster

has 64 dual-CPU (Intel Xeon 3.2GHz) compute nodes and is connected by Myrinet. Figure

7.3 shows the weak scalability performance of our program compared with ScaLAPACK.

The program’s runtime system is the same as the runtime system described in Sect. 6.4

except for the symbolic DAG representation.

7.3 Multicast scheme overview

When a set of processes are executing a DAG, multiple sources may want to notify differ-

ent groups of children simultaneously. Our new multicast scheme is able to provide this

functionality automatically. The scheme is essentially an application-level routing method.

Every process owns a compact routing table. Although each process only has knowledge of

a few local neighbors, the whole group of processes is represented by a collection of hier-

archical trees. Most importantly, every process is the root of its own multicast tree. The

routing algorithm simply follows the tree to multicast data to a set of children.

In Fig. 7.4, the process on compute node 001 wants to multicast data to {010, 100, 101}.

For the system with eight compute nodes, it takes three steps to complete the multicast.

There could be at most eight processes running (at the leaf level) on the system, but some
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processes will be mapped to serve as ”virtual masters” responsible for their corresponding

subtrees. Our method to build the routing table guarantees that there exists a path from

the source to every destination by filling in ”virtual masters” (Lemma 7.1 in Sect. 7.8).

The path length is bounded above by logN . The multicast scheme always starts from a

root to a set of leaves and every process has its own multicast tree with itself as the root.

7.4 Topology ID

To improve communication performance, it is critical to know the communication cost

between any pair of nodes on a system. One could build a N×N table to describe the latency

and bandwidth information between every pair of nodes. But for a system with millions of

nodes, it is too costly to build and maintain such a big table. Another natural approach

is to use hierarchy as an abstraction to achieve scalability. The hierarchy abstraction has

been widely used on the Internet, for example for DNS and IP addresses, as well as for

message passing operations on computational Grids. It is also very common in our daily

life, for example, the composition of a country and the postal ZIP code.
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Figure 7.3: Cholesky factorization on a cluster machine.
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Figure 7.4: Multicast on a system with 8 compute nodes.

Instead of exposing all the other nodes to the source, the hierarchy technique utilizes a

hierarchical tree to send data level by level. This way each node only communicates with

a small number of nodes so that the system keeps scaling. A high performance computer

could build upon racks that consists of nodes. A node has a set of boards. Every board

has a number of multicore chips on which there are tens or hundreds of processor cores.

Typically communication cost on the lower level (e.g., cores on the chip) is less than that

on the upper level (e.g., cores on different nodes). It is also easy to find out how to place

every core in a hierarchical tree.

We assign a topology ID to each compute node on the system. Similar to ZIP codes, we

assume that the longer the common prefix of the two nodes’ topology IDs, the closer they

are and the smaller the latency. When a process is running on a node with topology ID x,

we say the process has topology ID x. As shown in Fig. 7.5, the SGI Altix 3700 system

(128 processors) is comprised of 8 groups, each group has four C-bricks. Every C-brick

has four processors. A toplogy ID of format < 3bits, 2bits, 2bits > is sufficient to identify

which group and which C-brick a processor belongs to. Given any two topology IDs, it is

easy to decide whether they are close or not. This assignment of topology IDs reflects the

latency between processors on the SGI machine correctly. For other topologies such as ring

and mesh, we need to enforce the hierarchy relationship to the physical network. Since it

114



Figure 7.5: An example to assign topology IDs to an SGI Altix 3700 System with 128
processors. C denotes a 4-processor C-brick.

is unusual for a system to change its interconnection network frequently, we assume the

topology IDs are static information, and are precomputed and stored in advance under a

system directory.

7.5 Extension to Plaxton’s neighbor table

In this section, we briefly describe Plaxton’s neighbor table and our extension to support

multicasting. Plaxton uses an incremental routing approach similar to hypercube routing

which resolves the destination node address dimension by dimension [Plaxton et al., 1997].

Supposes a system has n = 2m nodes, where m is a multiple of b. Plaxton assumes that each

node has a label that is independently and uniformly distributed at random between 0 and

n− 1. Instead of using a random label for each node, we assign a topology ID ∈ [0...n− 1]

to each node. The topology ID reflects the latency relationship (near or far) between two

nodes, and is expressed as a sequence of m
b

digits with the base 2b. For instance, if one

system has 4096 = 212 nodes, base = 23 leads to a 4-digit octal topology ID.
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Every node has its own neighbor table T . Table T consists of r rows and c columns, where

r is equal to the number of digits (=m
b
) and c is equal to the digit’s base (=2b). Table entry

T [i, j] stores the forwarding node address. In our application-level multicasting, we store an

MPI rank as the forwarding address. Let node x have a topology ID of id(x) = d0d1 . . . dr−1.

If table entry T [i, j] in node x contains node y which has topology ID id(y), then id(x) and

id(y) must satisfy the following two conditions:

(1) id
(x)
0 id

(x)
1 . . . id

(x)
i−1 = id

(y)
0 id

(y)
1 . . . id

(y)
i−1 = d0d1 . . . di−1,

(2) id
(x)
i 6= j and id

(y)
i = j.

Please note that there could exist a set Y of nodes meeting the above conditions for node x.

For instance, table entry T [3, 5] in a node with octal topology ID 012345 can contain any

node with a topology ID ∈ 0125[0 − 7]+. Therefore we need a decision function to choose

the best candidate. For instance, Plaxton chooses y∗ = Miny∈Y CommCost(x, y) as the

best neighbor.

In the case of Y = ∅, Plaxton assumes an ordering in the set of n nodes and picks a

node y that matches node x in the suffix i, i + 1, . . . , r − 1 digits with the highest order.

In contrast to the full Plaxton neighbor table, we leave those entries empty and prove this

modification avoids cycles in the application-level multicasting (Theorem 7.2 in Sect. 7.8).

In the application-level multicasting, very often a user program uses only a small portion

of n processors. In an extreme case where a user program uses two out of n processors, our

modification leads to routing tables with a unique non-empty entry while Plaxton neighbor

table is full of the same process ID.

7.5.1 Compact routing table

While routing tables are typically used to connect nodes, we use them to connect processors

(or processes) in the context of application-level multicasting. Assume a system has n

processors and the base of topology IDs is equal to c, then the routing table will have

log2(n)
log2(c)

rows and c columns. For instance, a system has 2048 processors. If we adopt a base

of 8, the routing table has 4 rows and 8 columns, that is, 32 entries (shown in Fig. 7.6).
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Figure 7.6: Routing table for a system with 2048 processors.

The routing table occupies a small amount of space even for large-scale systems. If a system

has one million (220) cores, a base of 16 results in a routing table of 5 rows by 16 columns

that equals 80 entries. If one has a billion (230) cores, the routing table is of 6 rows and 32

columns given the base 32. Every table entry just stores a single integer.

7.6 Algorithms

This section describes how each process builds its own routing table when the application

first starts and how the process constantly receives messages and forwards them to proper

destinations.

7.6.1 Building routing tables

Before doing any real work, each MPI process first builds a local routing table. Each

process’s topology ID is assigned by the user based on the network topology. In the program

shown in Fig. 7.7, a process scans every other process ID and compares that process’s

topology ID to its own topology ID to fill in the routing table. When there are multiple

processes that are legitimate to be stored in T[i,j], we either pick a process randomly or

find the closest process. In our experiments on a Myrinet network, the random method is

slightly better than the nearest neighbor method.
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typedef struct {

int table[NUM_LEVELS * NUM_COLS];

int topo_ids[MAX_NUM_PROCESSES];

}* NeighborTable;

int* candidates[NUM_LEVELS * NUM_COLS];

NeighborTable my_tbl;

for(p = 0; p < nprocs; p++) {

if(p == my_pid) continue;

topid = my_tbl->topo_ids[p];

level = longest_comm_prefix(my_top_id, topid);

column = get_kth_digit(topid, level);

idx = level * NUM_COLS + column;

candidates[idx][counters[idx]++] = p;

}

/* Choose a proper neighbor from candidates */

choose_best_neighbor(my_tbl, candidates);

Figure 7.7: C program to build routing tables.

7.6.2 The forwarding algorithm

While participating in the multicast, a process works as either an internal node or a leaf in

the multicast tree. Whenever a root is given, the locations of receivers become fixed in the

particular multicast tree. Data will always flow from root to leaves. Figure 7.8 shows how

to find the next level of tree nodes in the multicast tree to which to forward. The index of

the next level should be at least one level further from the root. In the program shown in

Fig. 7.8, stage indicates the index of the next level. The program looks up the table and

gets a forwarding process for each child and stores it in array destinations.

7.7 Understanding how it works

The nonblocking multicast scheme is similar to the prefix-based routing method. Every node

has a topology ID. When forwarding a message to a destination, the current node determines

an intermediate node to forward the message to merely based on the destination’s topology

ID (i.e., a string or label). Every entry in the routing table works like a ”channel” which
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while(1) {

...

Received a message from the process prev_topid;

stage = longest_comm_prefix(my_top_id, prev_topid) + 1;

for(i = 0; i < num_children; i++) {

p = get_children(i);

if(p == my_pid) continue;

top_id = my_tbl->topo_ids[p];

lcl = longest_comm_prefix(my_top_id, top_id);

if(lcl >= stage) {

column = get_kth_digit(top_id, lcl);

forward = TBL_ENTRY(my_tbl, lcl, column);

if(!is_element(forward, destinations)) {

destinations[idx++] = forward;

}

}

}

Send the message to processes stored in destinations[];

}

Figure 7.8: C program to perform forwarding.

stands for a specific set of nodes. We could imagine that each ”channel” is denoted by a

regular expression. Figure 7.9 depicts a system with 8 nodes. By definition, the routing

table for the system has 3 rows and 2 columns. Except for itself, every process stores only

three neighbors. Process 001’s routing table is shown on the right hand side of Fig. 7.9.

The corresponding regular expressions of the three entries are: 1**, 01*, and 000. Given

any destination, process 001 compares the destination’s topology ID to the three regular

expressions to find the longest match and do the forwarding. It is easy to find that the

three regular expressions partition the other 7 nodes on the system.

Another important characteristic of the nonblocking multicast scheme is that there are

actually multiple spanning trees on the system. As shown in Fig. 7.10, there are two types

of roots in the spanning tree for a 16-node system (base=2): 0*** and 1***. Every node

has a different spanning tree with itself as the root. For instance, the node 0000 belongs

to the set 0*** and serves as the root of its own tree. Its neighbor on level 0 could be an

arbitrary node that satisfies the regular expression of 1***.
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Figure 7.9: Similar to the prefix-based routing method.
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Figure 7.10: Implicit multiple spanning trees.
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7.8 Theorems

Lemma 7.1. Suppose process Px has a topology ID x and needs to send data to process Pz

with topology ID z. Then there always exists a process Py stored in Px’s neighbor table such

that Px can forward data to Py and LCD(y, z) ≥ LCD(x, z) + 1.

Proof. Let LCD(i, j) compute the longest common prefix length of i and j. Suppose i =

LCD(x, z), Px will forward data to a process with a topology ID of the form x0x1 . . . xi−1zi∗

. . . ∗. It is easy to see that at least z has the form. So one of the processes of Pz ∪

{processes with ID x0x1 . . . xi−1zi ∗ . . . ∗} will get the forwarded data. Therefore such a

process must exist. By definition of LCD, we know x0x1 . . . xi−1 = z0z1 . . . zi−1 and xi 6= zi.

Given i and z, the forwaring algorithm chooses the process stored in the ith row and the

zith column. Any process located in T [i, zi] will be the target to which Px forwards data

and it must exist. WLOG, let it be Py with topology ID y. Since Py is in T [i, zi] of

Px’s neighbor table, y0y1 . . . yi−1 = x0x1 . . . xi−1 = z0z1 . . . zi−1 and yi = zi. Therefore,

y0y1 . . . yi = z0z1 . . . zi. In other words, LCD(y, z) ≥ i + 1 = LCD(x, z) + 1.

Lemma 7.1 proves that the forwarding method is always successful even if there exist

empty entries in the process’s routing table. For every step of forwarding, the longest

common prefix length to the destination increases by at least one.

Theorem 7.1 (Reachability). It is always possible to route a message from process Px to

process Pz and it takes at most m steps to reach Pz. m is the number of digits in topology

IDs.

Proof. By Lemma 7.1, there ∃Py such that Px can forward data to Py and LCD(y, z) ≥

LCD(x, z) + 1. Since topology ID z has m digits, it takes at most m steps to send data to

Pz.

Theorem 7.2 (Deadlock-freedom). The forwarding mechanism guarantees that there is no

cycle during the forwarding process.
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Proof. Suppose process x1 wants to send a message to xp, but there is a cycle x1 → x2 . . .→

xk → x1 formed before the message reaches xp. If LCD(x1, xp) = d0d1 . . . dl1 , then by

Lemma 7.1,

LCD(x2, xp) = d0d1 . . . dl1 . . . dl2

LCD(x3, xp) = d0d1 . . . dl1 . . . dl2 . . . dl3

. . .

LCD(xk, xp) = d0d1 . . . dl1 . . . dl2 . . . dl3 . . . dlk

LCD(x1, xp) = d0d1 . . . dl1 . . . dl2 . . . dl3 . . . dlk . . . dlk+1

There is a contradiction if we compare the first LCD(x1, xp) and the last LCD(x1, xp).

Therefore, the forwarding mechanism guarantees there is no cycle.

7.9 Experiments

We conducted experiments on a cluster machine with 64 nodes each with two processors.

The cluster is connected by a Myrinet network. We also did experiments on a SGI Altix 3700

BX2 machine which has a fat tree network topology. The SGI Altix machine is connected

by a NUMAlink 4 network.

7.9.1 Effect of segment size

The performance of the non-blocking multicast method could be affected by the segment

size. Given a message size, we can choose to send it out once or in a number of segments.

We consider two message sizes: 512KB and 1MB. For each message size, we use different

segments with sizes from 64Bytes to the whole message size and run it on a range of

processors from 4 CPUs to 128 CPUs. Figures 7.11 and 7.12 show the effect of segment size

on the Myrinet network and SGI’s NUMAlink 4 network, respectively.
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Figure 7.11: The multicast performance varies with different segment sizes on Myrinet.
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Figure 7.12: The multicast performance varies with different segment sizes on SGI’s NU-
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Based on the data, a segment size between 1KB and 32KB always produces the best

performance on Myrinet. And on SGI’s NUMAlink, any segment of size ≥ 8KB can produce

a good performance. Therefore in all the experiments described in Sect. 7.9.2, we choose

the segment size of 8KB to do multicasting whenever possible.

7.9.2 Experimental results

We compare our non-blocking multicast method (labeled as ”dag mcast”) to MPI Bcast

(labeled as ”mpi bcast”) and a straightforward implementation that uses a flat-tree to

perform multicasting (labeled as ”flat mcast”). The flat-tree method simply sends the

message to every destination one by one. Both flat mcast and dag mcast are implemented

using the point-to-point MPI Send and MPI Recv operations. On the Myrinet cluster, we

use the MPI library of mpich-mx 1.0. And on the SGI Altix machine, we use the SGI MPI

library.

We conducted experiments on a range of processors from 4 up to 128. From Figs. 7.13

and 7.14 for Myrinet, and Figs. 7.15 and 7.16 for SGI NUMALink, we can see that both

dag mcast and mpi bcast are significantly better than flat mcast. And the non-blocking

multicast method is comparable to the highly-optimized collective MPI Bcast. Note that the

time to invoke MPI Init and MPI Comm create is not counted for the mpi bcast experiments

(in favor of mpi bcast). The reason why the non-blocking multicast method is slower than

MPI Bcast is because our implementation is built over MPI point-to-point operations and

we cannot do similar optimizations as MPI collective operations do (e.g., broadcast may be

implemented as scatter followed by allgather, optimal binomial tree is built in advance).

Although MPI Bcast is faster, it is still very difficult to create communication groups and

do collective broadcasts for every distinct group in dynamic DAG scheduling programs.

125



0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

T
im

e
 (

s
)

dag_mcast

flat_mcast

mpi_bcast

(a) 4 Processes

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

T
im

e
 (

s
)

dag_mcast

flat_mcast

mpi_bcast

(b) 8 Processes

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

T
im

e
 (

s
)

dag_mcast

flat_mcast

mpi_bcast

(c) 16 Processes

Figure 7.13: Multicast performance on a cluster connected with Myrinet (4-16 processes).
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Figure 7.14: Multicast performance on a cluster connected with Myrinet (32-128 processes).
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Figure 7.15: Multicast performance on SGI NUMAlink (4-16 processes).
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Figure 7.16: Multicast performance on SGI NUMAlink (32-128 processes).
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7.10 Summary

Our non-blocking multicast scheme is designed to support dynamic DAG scheduling on

distributed-memory machines. While it is possible to use MPI Bcast directly to implement

it, creating communication groups and performing collective operations for arbitrary sets

of parent/children is cumbersome to program. We have designed a multicast scheme, using

topology IDs, compact routing tables, and multiple spanning trees. The multicast scheme

is proven to be deadlock free, scalable in terms of time and space, topology-aware, and non-

blocking. Our experimental results on a Myrinet network and SGI’s NUMAlink show that

our multicast scheme is significantly better than the simple flat-tree method and comparable

to vendor-optimized collective MPI operations.
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Chapter 8

Conclusions and Future Work

The multicore architecture raises a lot of challenging research problems regarding how to use

the new architecture effectively. This dissertation starts with looking at the novel feature of

the shared L2 cache on a single multicore processor to study the effect of cache sharing and

contention. Inspired by the analytical cache model and the increasingly deeper memory

hierarchy on multicore systems, we propose to use the affinity based thread scheduling

to maximize the memory effectiveness on all the levels in a complex memory hierarchy.

Multicore systems include not only shared-memory but also distributed-memory machines.

Thus the dissertation also studies the dynamic data-availability driven scheduling approach

to designing new parallel software on distributed-memory multicore systems.

8.1 Conclusions

In this dissertation, we first develop an analytical model to predict the number of cache

misses on the shared L2 cache. The shared L2 cache may reduce the number of cache misses

if the data are accessed in common by several threads, but it may also result in performance

degradation due to resource contention. We use the circular sequence profiling and stack

processing techniques to analyze the L2 cache trace to predict the number of compulsory

cache misses, capacity cache misses on shared data, and capacity cache misses on private

data, respectively. The model is able to predict the L2 cache performance for threads that
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have a global shared address space. We use the cycle accurate simulator SESC to validate

the model with three scientific programs: dense matrix multiplication, blocked dense matrix

multiplication, and sparse matrix-vector product. The average relative errors for the three

experiments are 8.01%, 1.85%, and 2.41%, respectively.

To investigate the affinity based thread scheduling, we have proposed an analytical

model to estimate the cost of running an affinity based thread schedule on shared-memory

multicore systems. The model consists of three submodels to evaluate the cost of execut-

ing a thread schedule: an affinity graph submodel, a memory hierarchy submodel, and a

cost submodel that characterize programs, machines, and costs respectively. We apply the

analytical model to both synthetic and real-world applications. The estimated cost accu-

rately predicts which thread schedule will provide better performance. With the aid of the

model, we are able to formulate the problem of determining the best thread schedule as an

optimization problem. Due to the NP-hardness of the scheduling problem, we design an

approximation algorithm to compute near-optimal solutions. We also extend the algorithm

to support threads with data dependences. All the algorithms have been implemented in

a feedback-directed optimization framework and applied to a number of scientific applica-

tions. Our experimental results show that using the optimized thread schedule can improve

the program performance greatly (by up to 400%).

The dissertation finally uses a dynamic task scheduling approach to designing new lin-

ear algebra software on distributed-memory multicore systems. We use a task-based library

to replace the existing linear algebra subroutines such as PBLAS to transparently provide

the same interface and compute function as the ScaLAPACK library. We focus our run-

time system design on the performance scalability metric. At any time the runtime system

keeps a small portion of a task graph in memory. The runtime system distributes both

data and task graphs across different compute nodes to achieve scalability. We propose

an algorithm to solve data dependences without process cooperation in a distributed way.

The runtime system distinguishes thread roles of task generation, task computing, and data

communication. We have implemented the runtime system and applied it to three linear

algebra algorithms: Cholesky factorization, LU factorization, and QR factorization. Our
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experiments on shared-memory machines (16-core Intel Tigerton, 32-core IBM Power6) and

distributed-memory machines (Cray XT4 using 1024 cores) demonstrate that our runtime

system is able to achieve good scalability. We have provided analytical analysis to show

why the tiled algorithms are scalable and the expected execution time. Furthermore, a

non-blocking multicast scheme is introduced for dynamic DAG scheduling applications on

distributed-memory systems. The multicast scheme takes into account both network topol-

ogy and the space requirement of routing tables to achieve high scalability. We have proved

that the scheme is deadlock-free and takes at most logN steps to complete. Although built

on MPI point-to-point operations, our experimental results show that the multicast scheme

is close to the vendor optimized collective MPI operations.

8.2 Future work

The dissertation mainly focuses on the static affinity thread scheduling and the dynamic

DAG scheduling research. Along the dissertation line, further research and improvement

are possible.

The affinity graph submodel could be more accurate. On a cache-coherent shared mem-

ory system, a memory write often invalidates the corresponding cache lines in the other

processors. The cache invalidation is an expensive operation. Therefore when partitioning

affinity graphs, we can give a higher priority to writes than to reads. The submodel repre-

sents the affinity relationship by the number of addresses accessed in common by threads.

A more accurate way would be to use cache lines (in virtual memory addresses) to reflect

the actual data movement between CPUs and caches such as load/store of cache lines. It

can also reduce the space complexity of the trace analysis algorithms.

The feedback directed optimization prototype system is limited by the total amount of

memory due to its diskless scheme. A large graph with hundreds of millions of vertices that

has no edge alone still requires too much memory. We can revise our algorithms to create and

store graphs to disks to solve the issue. We can even design parallel distributed algorithms

to make use of more memories. It would also be possible to implement the feedback-directed
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strategy in commercial compilers so that the programmer can automatically achieve high-

performance on leading-edge shared memory systems.

In the dynamic DAG scheduling approach, a large block size NB is desirable because it

can maximize the cache hit rate and compensate for the associated scheduling overhead. But

when the input matrix is small, we must choose a small block size to keep the parallelism

degree sufficiently high. For small blocks (or vectors), we need to add an affinity-based

mechanism to our scheduling runtime system to improve data reuse between tasks. We

also need to continue to optimize our runtime system to minimize the scheduling expense.

Improving data reuse is even more critical on NUMA multicore systems. So far we assume

that processor cores are homogeneous and have the same computational power. An im-

portant research would be to design a scalable dynamic runtime system on heterogeneous

architectures such as hybrid CPU+GPU manycore machines.
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