
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995 327

Efficient Symbolic Computation of Approximated
Small-Signal Characteristics of Analog Integrated Circuits

Piet Wambacq, Francisco V. FernBndez, Georges Gielen, Willy Sansen, and Angel Rodiguez-VBzquez

Abstract-A symbolic analysis tool is presented that generates
simplified symbolic expressions for the small-signal character-
istics of large analog integrated circuits. The expressions are
approximated while they are computed, so that only those terms
are generated which remain in the final expression. This principle
causes drastic savings in CPU time and memory, compared with
previous symbolic analysis tools. In this way, the maximum
size of circuits that can be analyzed, is largely increased. By
taking into account a range for the value of a circuit parameter
rather than one single number, the generated expressions are also
more generally valid. Mismatch handling is explicitly taken into
account in the algorithm. The capabilities of the new tool are
illustrated with several experimental results.

I. INTRODUCTION
URRENT tools for small-signal symbolic analysis of C analog integrated circuits, like for instance ISAAC [11

and ASAP [2] , are able to evaluate network functions in the
s-domain with the complex frequency variable and the circuit
parameters (capacitances, resistances, transconductances, etc.)
kept as symbols. These functions are typically given as an
expanded cancellation-free sum of products,

in which xT = (21, Z Z , . . . , X Q } is the vector of symbolic
circuit parameters and the f i and gj are sums of products.

Since these expressions are calculated automatically, analog
designers are released from the involved calculations needed
to get insight into the ac behavior of circuits. Also, analog
cells can be automatically sized for given ac specifications
through the iterative optimization of the symbolic equations
generated for their gain, poles, zeros, terminal impedances,
PSRR, CMRR, etc. Other potential applications of symbolic
analyzers, for synthesis, statistical optimization, testability,
etc., exploit also the computational advantages to perform
repetitive evaluations of precalculated models [3]. However,
these applications can be realized at fully only if the au-
tomatic generation of symbolic expressions runs parallel to
the automatic pruning of insignificant terms in these expres-

Manuscript received July 13, 1994; revised November 4, 1994
P. Wambacq, G. Gielen, and W. Sansen are with Katholieke Universiteit

Lueven, Dep. Elektrotechniek, ESAT-MICAS, B-3001 Heverlee, Belgium.
F. V. Fernandez and A. Rodnguez-Vhquez are with Department of Analog

Circuit Design, Centro Nacional de Microelectr6nica. Edif. CICA, E-4101 2
Sevilla, Spain.

IEEE Log Number 9408739.

sions-similar to what expert analog designers do when they
analyze circuits by hand.

Although existing analyzers like ISAAC and ASAP in-
corporate such simplification feature, their algorithms have
two important drawbacks: a) simplifications are performed
only after the exact symbolic expression is generated in an
expanded sum-of-product format; and b) the significance of
each term in the sums-of-products is assessed on the basis
of numerical evaluations using typical values of the circuit
parameters, at a single point of the design parameter space.
Since the size of the exact symbol expressions increases
exponentially with the number of nodes and elements in
the circuit, the first drawback puts an upper limit on the
complexity of analyzable circuits; around ten transistors if each
transistor is represented by a high-frequency model containing
about nine circuit elements. On the other hand, approximating
symbolic expressions by considering just a single point of the
parameter space does not seem to be consistent with the very
nature of the symbolic analysis procedure, where the exact
numerical value of the parameters is, by definition, unknown
a priori. Even in the case symbolic analysis is used to study
critical parameter variations in an already sized schematic,
simplifying by using just information about a nominal point
may lead to important inaccuracies in mismatch-sensitive
characteristics, as for instance PSRR or CMRR of operational
amplifiers.

This paper presents a simplification algorithm to overcome
both drawbacks above. First of all, the complexity limits
of analyzable circuits are extended by generating only the
dominant terms, without first computing the complete exact
expression. In this approach, which is denoted as simplijication
during generation, the dominant terms are generated until
the accuracy falls within a given user-supplied accuracy. As
shown in Fig. 1, this is a much more efficient approach,
both in terms of memory usage and CPU time, than the
classical approach followed in [l], [2] . The idea of simpli-
fication during generation was first mentioned in [4], and
later found also in [5] and [6] . However, simplifications in
[4] and [6] are performed at a nominal point of the design
space, and, consequently, any evaluation of the expressions in
another operating point might cause large errors. To reduce
these errors, this paper further elaborates the approach in [5]
to combine the concept of simplification during generation
with the use of ranges [7] , instead of single values, for the
circuit design parameters. This increases the compliance of
generated expressions, while keeping the computation time
and the memory resources needed for symbolic analysis of
large analog circuits bounded. Also, the combination of both

0018-9200/95$04.00 0 1995 IEEE

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 20,2020 at 15:22:04 UTC from IEEE Xplore. Restrictions apply.

328 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

..... . . .,.........,
nested -

expanded approximated

(a) (b)

Fig. 1. Schematic representation of the memory usage during simulation
time with the classical approach (a) and with the proposed approach of
simplification during generation (b). Classically, a symbolic expression is first
generated in a nested format. For a reliable approximation, the expression is
then expanded and the cancelling terms are elaborated. This expansion can
lead to a huge number of terms whose storage exceeds the memory limits
(dashed line), while only a few terms are retained after approximation. This
problem is circumvented if the expression is simplified when it is generated:
the memory usage increases with the required accuracy or the number of
terms of the symbolic expression.

techniques, simplification during generation and the use of
ranges, demonstrate better results than previous approaches
for the handling of matching between symbolic parameters
and mismatches.

Section I1 presents the concept and outlines the algorithms

the IC-th power, spanning trees in decreasing order must be
generated containing exactly IC capacitance branches. This
can be formulated as the following graph-theoretical problem:
given a graph with n nodes and with red (corresponding to
(trans)conductances) and blue (corresponding to capacitances)
weighted branches, enumerate in decreasing order the spanning
trees that contain exactly IC blue branches and n - k - 1 red
branches, in which IC can have a value between zero and n - 1.
For this problem, an algorithm [9] has been developed whose
time complexity and memory requirements increase linearly
with the number of generated spanning trees.

111. GENERATION OF THE NUMERICAL
REFERENCE AND APPROXIMATION OVER RANGES

The tree enumeration procedure described above obviously
needs a stopping criterion to know when enough terms have
been generated. The generation of terms for a certain power IC
of s in the enumerator or denominator can stop when

ICnum. evaluation of generated terms1
(num. value of coeficient of sk I > (1 -Ek). (2)

-
used for simplification during generation. Section 111 explains
how intervals are incorporated in the stopping criterion that
controls the generation of terms. In Section IV it is explained
how matching elements and corresponding mismatches are
handled in the new approach. Finally, Section V presents
examples that demonstrate the suitability of the techniques
presented for analog cells containing more than 20 transistors,
which approaches the size of practical circuits used in todays
IC designs.

In this equation, the numerical evaluation is performed in
a nominal operating point of the circuit. The denominator
in (2) represents the numerical value of the coefficient of
sk in either the numerator or denominator of the network
function. The complete coefficients are never generated and,
hence, their numerical value must be calculated in advance
(without knowing the symbolic expressions). This is efficiently
performed using the polynomial interpolation method [lo].

For the extension of the stopping criterion of (2) to intervals,

11. SIMPLIFICATION DURING GENERATION
The idea of simplification during generation needs a term by

term generation mechanism, which finds the terms in decreas-
ing order of magnitude, without skipping any term. This can
be achieved with the undirected tree enumeration method [8].
This is a topological method that operates on two weighted
graphs, the voltage graph and the current graph, which are
easily derived from the given (small-signal) network. A term is
valid only if its corresponding branches constitute a spanning
tree in both graphs. The symbolic term is given by the product
of the branch weights (admittances) in any of the graphs.
The sign of a term is determined separately, using topological
information of both graphs. By augmenting the network in a
special way with fictitious elements, it is possible to generate
the terms for both numerator and denominator at the same
time [8].

The number of trees increases exponentially with the circuit
size. Since we are interested only in the dominant terms
and therefore not in all trees, the new algorithm enumerates
spanning trees in the voltage graph in decreasing order. For
every spanning tree, it is checked whether the corresponding
branches in the current graph constitute a spanning tree as
well. If so, a valid term is found and its sign is determined.

This technique is performed for every power of the fre-
quency variable s in both the numerator and denominator
of the network function. For a nonzero power of s, say

it is assumed that a symbolic parameter z can take a value
inside a given interval determined by its lower bound X L and
its upper bound XH.

The introduction of intervals for the symbolic circuit pa-
rameters gives rise to multidimensional intervals for the value
of the coefficients fi and gj from (1). These are computed by
an interval extension of the polynomial interpolation method.
The resulting interval for a coefficient is usually a pessimistic
overestimate. Therefore, intervals are narrowed using the
algorithm described in [1 I].

Intervals for the small-signal circuit parameters are either
determined by specifying a relative variation around a given
nominal value, or they can be derived from intervals of the bias
values and technological parameters. Intervals for symbolic
terms or sums of products are then determined using the direct
interval extension [l l] , or, more accurately, with the mean
value form [l l] .

The stopping criterion given in (2) can now be reformulated
as:

(3)

In this equation (SL , S H] represents the interval of the coeffi-
cient of sk obtained as described above. The interval [GL, G H]
denotes the interval of the sum of the significant terms that
have already been generated. The symbols L and U denote
the lower and upper bound of an interval, respectively.

L(l[GL, GHll) > - tk),
U(I[SLr SHII)

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 20,2020 at 15:22:04 UTC from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995 329

Fig. 2. CPU time on a SUN SPARC 10 for the symbolic computation with a
25% error of the voltage gain Vout/K, of the resistive ladder network. The
dotted line corresponds to times measured with ASAP (conventional symbolic
analyzer). The solid line corresponds to the new approach.

The use of intervals provides a very good trade-off between
accuracy and complexity. Obviously, more terms appear in the
final result than when using fixed values, and if the intervals
are taken too wide, then the interpretation of results can
become complicated again.

IV. MATCHING ELEMENTS

Matching elements play an important role in analog and
especially in differential integrated circuits. In symbolic cal-
culations they are represented by the same nominal symbol.
After doing so, product terms can occur with exactly the same
symbols, so that they cancel or add, depending on their sign.
The detection of matching terms requires a lot of overhead in
CPU time and memory consumption in conventional symbolic
analyzers [11, [2]. With the new technique, however, matching
terms are easily detected: since they are equal in magnitude,
they are generated one immediately after the other. Hence,
the cancellations can be elaborated by looking only at the last
few generated terms that have the same magnitude as the last
generated term.

Mismatches are modeled explicitly by adding a small sym-
bolic mismatch element in parallel with the nominal element.
From that moment, both elements are handled independently,
and with their own numerical magnitude. For example, the
transconductances of two matching transistors M I A and M ~ B
are written as gmM1 and gmM1 + ASmMleA, respectively.
In this way, product terms containing mismatch symbols are
generated much later than the corresponding nominal terms
and only when necessary.

In techniques previously used [11, [2] in symbolic analyzers,
mismatch terms were always given a magnitude (the maximum
deviation) and a sign. This is not realistic, since their sign is
not known in advance. This problem is overcome here by
representing a mismatch term by a symmetric interval around
zero.

V. EXAMPLES

The new technique not only exceeds the limits of a con-
ventional symbolic analyzer, it can also-for smaller cir-
cuits-generate an approximate expression in a CPU time that
is up to several orders of magnitude smaller than with con-
ventional analysis. This is shown with the symbolic analysis
of the resistive ladder network shown in Fig. 2, which is often

9-
-1

m D

. - . .
GND

..

Fig. 3. A filly differential BiCMOS operational transconductance amplifier
with common-mode feedback.

1 0‘

!Io3 1 o2

/
IO’

relatlveemr 10’ IO-’ IO-* IO” loJ IO”
terms 32 182 664 1898 1606 9334

#different terms 7 36 120 339 788 1606

Fig. 4. CPU time (in seconds on a SUN SPARC 10 workstation) versus the
relative error of the generated symbolic expression for the denominator of the
low-frequency differential-mode gain of the BiCMOS amplifier (Fig. 3). The
number of tenns that corresponds to the accuracy is indicated as well.

used as a benchmark circuit for symbolic analyzers. The CPU
time is shown as a function of the number of stages for the
symbolic computation of the voltage gain with a 25% error.
The dramatic increase in CPU time with the number of stages
for conventional symbolic analysis is due to the fact that the
exact expression must be generated.

The efficiency of the simplification during generation tech-
nique in terms of CPU time is illustrated with the symbolic
computation of the system determinant of the BiCMOS am-
plifier of Fig. 3. This circuit, containing twenty transistors,
is far too complex to be analyzed with classical symbolic
analyzers. Fig. 4 indicates how with the new technique the
CPU time increases with the accuracy of the generated sym-
bolic expression and hence with the number of terms, just
as with the principle idea shown in Fig. 1. In contrast with
the conventional symbolic analysis approaches, the less terms
are generated (the larger the error), the less CPU time is
required, which is a very “natural” way of generating terms
that constitute a large expression.

For large circuits complicated expressions may be gener-
ated. This is illustrated in Fig. 5 , which shows the symbolic
expression of the low-frequency differential-mode gain of the
amplifier of Fig. 3. This expression has been generated in
58 s on a SUN Sparc 10. The expression, however, can be
further simplified without increasing the error by a symbolic
postprocessing procedure, that factorizes the expressions and
that takes advantage of the fact that the error on a ratio of
two coefficients of a network function is often much smaller
than the error on the coefficients individually. Doing so, the

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 20,2020 at 15:22:04 UTC from IEEE Xplore. Restrictions apply.

330 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

Fig. 5. Approximated expression (E = 20%) for the low-frequency differ-
ential-mode gain of the circuit of Fig. 3. The terms are sorted in decreasing
order. Due to matching, several product terms occur more than once, which
explains the occurance of integer coefficients 4 and 8. The element geq2 is a
lumped element 111 consisting of the parallel conductances goM9 and g O Q p .
Elements from the bias circuitry (like g m M 6) or from the common-mode
feedback circuitry (like g m ~ 4) that don’t influence the differential-mode gain
at all, disappear after factorization.

differential-mode gain reduces to

(4)

It is found that the output conductance of the bipolar cascode
is too small, even with the inclusion of intervals, to contribute
significantly to the conductance seen at the output node.

An even more complex circuit is the commercial pA741
opamp. This circuit contains 23 nodes, 22 transistors, and
13 resistors. The generation of a symbolic expression for the
amplifier’s transfer function with an error of 0.1% (1 10 terms)
requires 38 seconds on a SUN Sparc 10 workstation.

VI. CONCLUSION
A new program has been presented that generates approxi-

mated symbolic expressions for small-signal characteristics of
analog circuits. The approximation is performed during the
generation of the expression. In this way, only the necessary
terms of the simplified symbolic expressions are generated,

which contrasts to approaches of conventional symbolic an-
alyzers which require a lot of over head for the generation
of the exact symbolic expression, which is then pruned. The
new approximation technique also takes into account a range
for the value of the symbolic circuit parameters rather than
one single value. This extends the range of validity of the
generated symbolic expressions. Moreover, the new technique
allows an accurate control of the approximation error. The
interpretability of the expressions can be enhanced by further
postprocessing. Several examples have demonstrated that this
approach enables the symbolic analysis of large analog inte-
grated circuits of the size of practical analog cells, which were
impossible to analyze properly before.

ACKNOWLEDGMENT

The authors wish to thank P. Eindhoven, The Netherlands,
and the Human Capital and Mobility Program of the CEC for
their support.

REFERENCES

G. Gielen and W. M. Sansen, Symbolic Analysis for Automated Design
of Analog Integrated Circujrs. Norwell, MA: Kluwer Academic, 1991.
F. V. Femindez, A. Rodriguez-Vizquez, and J. L. Huertas, “Interac-
tive ac modeling and characterization of analog circuits via symbolic
analysis,” Kluwer Journal on Analog Inregrated Circuits and Signal
Processing, vol. 1.
G. Gielen, P. Wambacq, and W. M. Sansen, “Symbolic analysis methods
and applications for analog circuits: A tutorial overview,” Proc. IEEE,
vol. 82, pp. 287-304, Feb. 1994.
P. Wambacq, G. Gielen, and W. M. Sansen, “A cancellation-free
algorithm for the symbolic analysis of large analog circuits,” in hoc.
IEEE Int. Symp. Circuirs Sysf., 1992, pp. 1157-1 160.
P. Wamhacq, F. V. Femindez, G. Gielen, and W. M. Sansen, “Efficient
symbolic computation of approximated small-signal characteristics,” in
Proc. CICC 1994, 1994, pp. 21.5.1-21.5.4.
Q. Yu and C. Sechen, “Generation of color-constrained spanning trees
with application in symbolic circuit analysis,” in Proc. 4th Grear Lakes
Symp. VLSI, Mar. 1994, pp. 252-255.
F. V. Fernindez, J. D. Martin, A. Rodriguez-Vazquez, and J. L. Huertas,
“On simplification techniques for symbolic analysis of analog integrated
circuits,” in Proc. IEEE Inr. Symp. Circuits Sysr., pp. 1149-1 152, May
1992.
P.-M. Lin, Symbolic Nerwork Analysis. Amsterdam, The Nether-
lands: Elsevier, 1991.
P. Wambacq, F. V. Fernhdez, G. Gielen, W. M. Sansen, and A. R
odriguez-Vbquez, “An algorithm for efficient symbolic analysis of large
analogue circuits,” IEE Electron. Len., vol. 30, no. 14, pp. 1108-1 109,
July 1994.
J. Vlach and K. Singhal, Computer Methods for Circuir Analysis and
design. New York: Van Nostrand Reinhold, 1983.
R. Moore, Merhods and Applications of Interval Analysis, Studies in
Applied Mathematics, Philadelphia, 1979.

Norwell, MA: Kluwer, 1991, pp. 183-208.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 20,2020 at 15:22:04 UTC from IEEE Xplore. Restrictions apply.

