7,787 research outputs found

    The Case for Quantum Key Distribution

    Get PDF
    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009 Workshop on Quantum and Classical Information Security; version 2 minor content revision

    Shared and Searchable Encrypted Data for Untrusted Servers

    Get PDF
    Current security mechanisms pose a risk for organisations that outsource their data management to untrusted servers. Encrypting and decrypting sensitive data at the client side is the normal approach in this situation but has high communication and computation overheads if only a subset of the data is required, for example, selecting records in a database table based on a keyword search. New cryptographic schemes have been proposed that support encrypted queries over encrypted data but all depend on a single set of secret keys, which implies single user access or sharing keys among multiple users, with key revocation requiring costly data re-encryption. In this paper, we propose an encryption scheme where each authorised user in the system has his own keys to encrypt and decrypt data. The scheme supports keyword search which enables the server to return only the encrypted data that satisfies an encrypted query without decrypting it. We provide two constructions of the scheme giving formal proofs of their security. We also report on the results of a prototype implementation. This research was supported by the UK’s EPSRC research grant EP/C537181/1. The authors would like to thank the members of the Policy Research Group at Imperial College for their support

    Encrypted Shared Data Spaces

    Get PDF
    The deployment of Share Data Spaces in open, possibly hostile, environments arises the need of protecting the confidentiality of the data space content. Existing approaches focus on access control mechanisms that protect the data space from untrusted agents. The basic assumption is that the hosts (and their administrators) where the data space is deployed have to be trusted. Encryption schemes can be used to protect the data space content from malicious hosts. However, these schemes do not allow searching on encrypted data. In this paper we present a novel encryption scheme that allows tuple matching on completely encrypted tuples. Since the data space does not need to decrypt tuples to perform the search, tuple confidentiality can be guaranteed even when the data space is deployed on malicious hosts (or an adversary gains access to the host). Our scheme does not require authorised agents to share keys for inserting and retrieving tuples. Each authorised agent can encrypt, decrypt, and search encrypted tuples without having to know other agents’ keys. This is beneficial inasmuch as it simplifies the task of key management. An implementation of an encrypted data space based on this scheme is described and some preliminary performance results are given

    Information-Theoretic Security for the Masses

    Full text link
    We combine interactive zero-knowledge protocols and weak physical layer randomness properties to construct a protocol which allows bootstrapping an IT-secure and PF-secure channel from a memorizable shared secret. The protocol also tolerates failures of its components, still preserving most of its security properties, which makes it accessible to regular users.Comment: 4 page

    Distributed Key Management for Secure Role Based Messaging

    Get PDF
    Secure Role Based Messaging (SRBM) augments messaging systems with role oriented communication in a secure manner. Role occupants can sign and decrypt messages on behalf of roles. This paper identifies the requirements of SRBM and recognises the need for: distributed key shares, fast membership revocation, mandatory security controls and detection of identity spoofing. A shared RSA scheme is constructed. RSA keys are shared and distributed to role occupants and role gate keepers. Role occupants and role gate keepers must cooperate together to use the key shares to sign and decrypt the messages. Role occupant signatures can be verified by an audit service. A SRBM system architecture is developed to show the security related performance of the proposed scheme, which also demonstrates the implementation of fast membership revocation, mandatory security control and prevention of spoofing. It is shown that the proposed scheme has successfully coupled distributed security with mandatory security controls to realize secure role based messaging

    Efficient and secure ranked multi-keyword search on encrypted cloud data

    Get PDF
    Information search and document retrieval from a remote database (e.g. cloud server) requires submitting the search terms to the database holder. However, the search terms may contain sensitive information that must be kept secret from the database holder. Moreover, the privacy concerns apply to the relevant documents retrieved by the user in the later stage since they may also contain sensitive data and reveal information about sensitive search terms. A related protocol, Private Information Retrieval (PIR), provides useful cryptographic tools to hide the queried search terms and the data retrieved from the database while returning most relevant documents to the user. In this paper, we propose a practical privacy-preserving ranked keyword search scheme based on PIR that allows multi-keyword queries with ranking capability. The proposed scheme increases the security of the keyword search scheme while still satisfying efficient computation and communication requirements. To the best of our knowledge the majority of previous works are not efficient for assumed scenario where documents are large files. Our scheme outperforms the most efficient proposals in literature in terms of time complexity by several orders of magnitude

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms
    corecore