
Strathprints Institutional Repository

Dong, Changyu and Russello, Giovanni and Dulay, Naranker (2008) Shared and Searchable
Encrypted Data for Untrusted Servers. In: 22nd Annual IFIP WG 11.3 Working Conference on
Data and Applications Security, 2008-07-13.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9034587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Shared and Searchable Encrypted Data for

Untrusted Servers�

Changyu Dong, Giovanni Russello, and Naranker Dulay

Department of Computing, Imperial College London
180 Queen’s Gate, London, SW7 2AZ, UK

{changyu.dong,g.russello,n.dulay}@imperial.ac.uk

Abstract. Current security mechanisms pose a risk for organisations
that outsource their data management to untrusted servers. Encrypting
and decrypting sensitive data at the client side is the normal approach in
this situation but has high communication and computation overheads
if only a subset of the data is required, for example, selecting records in
a database table based on a keyword search. New cryptographic schemes
have been proposed that support encrypted queries over encrypted data
but all depend on a single set of secret keys, which implies single user
access or sharing keys among multiple users, with key revocation requir-
ing costly data re-encryption. In this paper, we propose an encryption
scheme where each authorised user in the system has his own keys to
encrypt and decrypt data. The scheme supports keyword search which
enables the server to return only the encrypted data that satisfies an
encrypted query without decrypting it. We provide two constructions of
the scheme giving formal proofs of their security. We also report on the
results of a prototype implementation.

1 Introduction

Data growth is inevitable for nearly all organisations. According to Forrester
Research, enterprise storage needs grow at 52 percent per year [1]. To reduce
the increasing costs of storage management, many organisations choose to out-
source their data storage to third party service providers. Recent research from
TheInfoPro shows that nearly 20% of Fortune 1000 organisations outsource at
least some portion of their storage management activities [2].

One of the biggest challenges raised by data storage outsourcing is security
and trust. Business data is a valuable asset for many companies. While compa-
nies may trust a Storage Service Provider’s (SSP) reliability, availability, fault-
tolerance and performance, they cannot trust that an SSP is not going to use the
data for other purposes, especially when the value of the data is high. Traditional
access controls which are used to provide confidentiality are mostly designed for
in-house services and depend greatly on the system itself to enforce authorisation
� This research was supported by the UK’s EPSRC research grant EP/C537181/1. The

authors would like to thank the members of the Policy Research Group at Imperial
College for their support.

V. Atluri (Ed.): DAS 2008, LNCS 5094, pp. 127–143, 2008.
c© IFIP International Federation for Information Processing 2008

128 C. Dong, G. Russello, and N. Dulay

policies, effectively relying on a trusted infrastructure. In the absence of trust,
traditional security models are no longer valid. Another common approach to
provide data confidentiality is cryptography. Server side encryption is not appro-
priate when the server is not trusted. The client must encrypt the data before
sending it to the SSP and later the encrypted data can be retrieved and de-
crypted by the client. This could ease a company’s concern about data leakage,
but introduces a new problem. Because the encrypted data is not meaningful to
the servers, many useful data management functionalities are not possible. For
example, if a client wants to retrieve documents or records containing certain
keywords, how can this request be processed? Can we keep the data incompre-
hensible to servers and their administrators while efficiently retrieving the data?
Consider the following scenarios:

Scenario 1. Company A is considering outsourcing its data processing centre
to a service provider B. This will cut its annual IT cost by up to 25%. But
the CIO is concerned about data security. The company’s databases contain
valuable production data and customer information. It would be unacceptable
if competitors got hold of the data. Administrative controls such as formal
contracts, confidential agreements and continuous auditing provide a certain
level of assurance, but the CIO would also like to encrypt the sensitive data
and have fast searches over it.

Scenario 2. Bob subscribes to a Personal Health Record service from company
C. The service allows Bob to maintain his electronic medical records and
share them with his doctors through a web interface. Bob wants to encrypt
his records, ensuring the staff of company C will not be able to know what is
inside.

A trivial solution is to download all the data to the client’s computer and de-
crypt it locally. This does not scale to large datasets. Recently, several innovative
schemes have been proposed to address the above problems. The basic idea is
to divide the cryptographic component between the client and server. The client
performs the data encryption/decryption and manages the keys. The server pro-
cesses search queries by carrying out some computation on the encrypted data.
The server knows nothing about the keys or the plaintexts of the data nor the
queries, but is still able to return the correct results.

These schemes also have an important limitation. The operations, e.g. en-
cryption, decryption and query generation, more or less rely on some secret
keys. This implies that the operations can only be executed by one user, or by a
group of users who share the secret keys somehow. A single user is usually not
an adequate assumption for data outsourcing. Perhaps the biggest problem for
supporting multiple user access to encrypted data is key management. Sharing
keys is generally not a good idea since it increases the risk of key exposure. In
response to this, keys must be changed regularly. The keys must also be changed
if a user is no longer qualified to access the data. However, changing keys may
result in decrypting all the data and re-encrypting it using the new keys. For
large data sets, this is not practical.

Shared and Searchable Encrypted Data for Untrusted Servers 129

In this paper, we propose a scheme for multi-user searchable data encryption.
Our scheme does not require a fully trusted server. The server can search an
encrypted keyword on the encrypted data. More importantly each authorised
user in the system has his own unique keys which simplifies key revocation and
avoids data re-encryption. All the authorised users can insert encrypted data,
decrypt the data inserted by other users and search encrypted data without
knowing the other users’ keys. The keys of one user can easily be revoked without
affecting other users or the encrypted data at the server.

2 Related Work

Song et al. [3] introduced the first practical scheme for searching on encrypted
data. The scheme enables clients to perform searches on encrypted text with-
out disclosing any information about the plaintext to the untrusted server. The
untrusted server cannot learn the plaintext given only the ciphertext, it cannot
search without the user’s authorisation, and it learns nothing more than the
encrypted search results. The basic idea is to generate a keyed hash for the key-
words and store this information inside the ciphertext. The server can search the
keywords by recalculating and matching the hash value. Yang et al. [4] proposed
an elegant scheme for performing queries on encrypted data and also provided a
secure index to speed up queries by two-step mapping. Goh’s scheme [5] enables
searches on encrypted data by constructing secure indexes based on bloom filter.

In the bucketization approach for searching encrypted databases [6,7,8,9], an
attribute domain is partitioned into a set of buckets each of which is identified by
a tag. These bucket tags are maintained as an index and are utilised by the server
to process the queries. Bucketization has relatively small performance overhead
and enables more complex queries such as range queries and comparison queries
at the cost of revealing more information about the encrypted data.

All the schemes above rely on secret keys however, which implies single user
access or sharing keys among a group of users. Boneh et al. [10] presented a
scheme for searches on encrypted data using a public key system that allows
mail gateways to handle email based on whether certain keywords exist in the
encrypted message. The application scenario is similar to [3], but the scheme
uses identity-based encryption instead of symmetric ciphers. Using asymmet-
ric keys allows multiple users to encrypt data using the public key, but only
the user who has the private key can search and decrypt the data. Curtmola
et al. [11] partly solved the multi-user problem by using broadcast encryption.
The set of authorised users share a secret key r (which is used in conjunction
with a trapdoor function). Only people who know r will be able to access/query
the data. A user can be revoked by changing r, and using broadcast encryption
to send the new key r′ to the set of authorised users. The revoked user does not
know r′, and hence cannot search. In this scheme, the database is searchable,
but is read-only and cannot be updated. In our scheme, any authorised user can
read, search and update the database.

130 C. Dong, G. Russello, and N. Dulay

3 Multi-user Searchable Data Encryption Scheme: Basic
Construction

In this section, we introduce the basic construction of the multi-user search-
able data encryption scheme which is built upon proxy encryption. The scheme
does not require sharing keys among the users. We also formalise the notions of
security and provide proofs later in this section.

3.1 An RSA-Based Proxy Encryption Scheme

The notion of proxy encryption was first introduced in [12]. In a proxy encryp-
tion scheme, a ciphertext encrypted by one key can be transformed by a proxy
function into the corresponding ciphertext for another key without revealing any
information about the keys and the plaintext. Proxy encryption schemes can be
built on top of different cryptosystems such as El Gamal [13] and RSA [14].
Applications of proxy encryption include: secure email lists [15], access control
systems [16] and attribute based publishing of data [17]. A comprehensive study
on proxy cryptography can be found in [18].

Fig. 1. Encryption/Decryption in Our RSA-based Proxy Encryption Scheme

Our scheme uses an RSA-based proxy encryption scheme. Let’s use E=(IGen,
UGen, UEnc,UDec, PEnc, PDec) to denote the proxy encryption scheme.
Fig. 1 shows the encryption/decryption process in the proxy encryption scheme.

– IGen is the master key generation algorithm which is identical to the key
generation algorithm in the standard RSA. It takes a security parameter
k and generates (p, q, n, φ(n), e, d). IGen needs only to be run once at the
beginning of the system setup. All the outputs except n must be kept secret.
In the rest of the paper, we assume all arithmetic to be mod n unless stated
otherwise.

– UGen is the algorithm for generating the key pairs for the users and the
proxy. For each user i, UGen takes the output of IGen and finds ei1, ei2, di1,
di2 such that ei1ei2 ≡ e mod φ(n) and di1di2 ≡ d mod φ(n). This can be
efficiently done. Take the ei1, ei2 pair for example, we can pick ei1 < φ(n)
randomly, where ei1 is relatively prime to φ(n), i.e. gcd(ei1, φ(n)) = 1. Since

Shared and Searchable Encrypted Data for Untrusted Servers 131

ei1x ≡ 1 mod φ(n) always has a solution, then ei2 ≡ ex mod φ(n) always
satisfies ei1ei2 ≡ e mod φ(n). Note that knowing only a is not sufficient for
solving the two variable equation ax ≡ y mod n. Therefore by knowing only
ei1 or ei2, one cannot compute its counterpart (ei2 or ei1 respectively) and
e. The user’s key pair is (Kuei, Kudi) = (ei1, di1). The proxy’s corresponding
key pair for the user i is (Kpei, Kpdi) = (ei2, di2). The lower bound of the
number of valid key pairs is φ(φ(n)) >

√
φ(n).

– UEnc is the algorithm for user encryption. For a message m, user i encrypts
it using his encryption key Kuei = ei1. The resulting ciphertext is c = mei1 .

– PEnc is the algorithm for proxy encryption. When the proxy receives a
ciphertext c from user i, it re-encrypts it using the corresponding encryption
key Kpei = ei2 as c∗ = cei2 .

– PDnc is the algorithm for proxy decryption. Before sending the ciphertext
to user j, the proxy decrypts it using the corresponding decryption key
Kpdj = dj2 as c′ = (c∗)dj2 .

– UDec is the algorithm for user decryption. When a user j receives a cipher-
text c′ from the proxy, he decrypts it using his decryption key Kudj = dj1.
He will be able to recover the plaintext m = (c′)dj1 .

Note that in the system, for any user i and any user j, ei1ei2 ≡ ej1ej2 ≡
e mod φ(n) and di1di2 ≡ dj1dj2 ≡ d mod φ(n). Therefore c∗ = cei2 = mei1ei2 =
me, c′ = (c∗)dj2 = medj2 and the user j can correctly decrypt c′ because (c′)dj1 =
medj2dj1 = med = m.

In our system, we use a trusted key management server (KMS) controlled by
the data owner to manage the keys. First, the KMS runs IGen to generate a
master key pair (e, d) and publishes the only public parameter n. When a new
user is enrolled into the system, the KMS runs UGen to generate a unique tuple
((ei1, di1), (ei2, di2)) and sends (ei1, di1) to the user and (ei2, di2) to the data
server through secure channels. If the user is removed from the system at a later
stage, the KMS can send a instruction to the data server to remove the key pair
(ei2, di2) at the server side. We will see in the following sections, without the
server side key pairs, the user cannot search and decrypt the data.

Although requiring a trusted KMS seems at odds with using an untrusted
data storage service, we can argue that the KMS requires less resources and
less management effort. Securing the KMS is much easier since a very limited
amount of data needs to be protected and the KMS can be kept offline most of
time.

3.2 Data Encryption

In our system, each data item Dx is associated with a set of searching keywords
{W1, W2, ..., Wn}x. The encryption algorithm is shown in Fig. 2. The data item
could be a document, an email, or a data cell in a database etc..

The data encryption is done at the client side using a semantically secure [19]
symmetric encryption algorithm E. For each data item Dx, the user i picks a
key Kx uniformly randomly from the key space of E and encrypts Dx under the

132 C. Dong, G. Russello, and N. Dulay

Fig. 2. Basic Data Encryption Scheme

key which generates a ciphertext c1 = EKx(Dx). Kx is then encrypted by the
user’s piece of RSA encryption key as c2 = (Kx)ei1 .

For each search keyword Wm, the client uses a hash function H to compute
σwm = H(Wm) and computes cwm = (σwm)ei1 . The client then sends the tuple
(c1, c2, {cw1, cw2, ..., cwn}) to the server.

After receiving the tuple, the server first computes c∗2 = cei2
2 . For each en-

crypted keyword cwm, the server computes c∗wm = cei2
wm. The final cipher stored

on the server is a tuple (c1, c
∗
2, {c∗w1, c

∗
w2, ...c

∗
wm}).

3.3 Keyword Search

A user j may want to retrieve all the documents on the server which contain a
keyword W . To do so, j first computes the hash value of the keyword σ = H(W).
Then j encrypts σ as Q = σej1 and sends Q to the server.

The server re-encrypts Q as Q∗ = Qej2 . Then it tests each ciphertext: in the
encrypted keywords set {c∗w1, ..., c

∗
wm}x, if there exists a c∗wm such that c∗wm = Q∗,

then adds this ciphertext into the result set.
Recall that ei1ei2 ≡ ej1ej2 ≡ e mod φ(n), so Q∗ = (H(W))e and c∗wm =

(H(Wm))e are equal if and only if W = Wm. If the server cannot find the
corresponding key for the user j, it cannot correctly compute the searching
keyword. Therefore an unauthorised user cannot perform searching on the data.

3.4 Data Decryption

If an authorised user j wants to retrieve Dx, the server gets the tuple (c1, c
∗
2, {c∗w1,

c∗w2, ...c
∗
wm}) from the data storage, computes c′2 = (c∗2)

dj2 and sends c1, c
′
2 to

j. The user j then computes (c′2)dj1 = (c∗2)d = (Kx)ed = Kx and can decrypt
the data item Dx = E−1

Kx
(c1). An unauthorised user cannot decrypt the data

because the server does not have the corresponding proxy decryption key.

Shared and Searchable Encrypted Data for Untrusted Servers 133

3.5 Attack Model

We focus the scope of our scheme on protecting data confidentiality, therefore
we will not consider attacks on data integrity and availability which can be
handled by other mechanisms. For the scheme, we assume that the KMS and the
authorised users are fully trusted. We also assume they can properly protect their
secrets, for example, the key pairs and the parameters for generating keys. The
server is modelled as “honest-but-curious”, i.e. we trust it to correctly execute
the instructions from the clients, but do not want it to access the plain data. An
adversary Adv is an attacker (or a software agent) that gains privileged access
to the data storage: either an outsider or a untrustworthy employee in the data
centre. The adversary can also intercept the communications between clients
and the server, but it is computationally bounded. In addition, the adversary is
restricted to only perform passive attacks, i.e. attacks are based upon observed
data. This restriction is reasonable because: (1) in most cases Adv is physically
isolated from the users; (2) most communications between the clients and the
server are one-round and initialised by the client, i.e. query-reply. The goal of
the adversary is to gather direct or indirect information about the stored data.

3.6 Security Analysis

We now give the formal notions of security and proof of security for our system.
Note that in the basic construction, the ciphertexts are encrypted by two differ-
ent schemes. In such situations, the security of the whole system depends on the
individual scheme. We assume that the symmetric key scheme is semantically
secure, and will prove our proxy encryption scheme is One-Way secure.

Readers who are familiar with RSA may have concerns because there are sev-
eral known attacks on RSA, e.g. common modulus attack [20,21], which enables
an attacker to recover the plaintext. Because our proxy encryption scheme is
RSA-based, readers may be curious about how secure it is. We will prove in
lemma 1 that if an attacker can recover a plaintext encrypted under our proxy
encryption scheme, then he can recover any message encrypted by any arbitrary
RSA key by knowing only the ciphertext and the modulus n. This contradicts
the RSA assumption, therefore our scheme should be secure against all such
attacks.

Definition 1. Let E = (IGen, UGen, UEnc,UDec,PEnc, PDec) be the proxy
encryption scheme. E is said to be One-Way secure against any PPT attacker
A if SuccA,E is negligible. SuccA,E is defined as follows:

SuccA,E = Pr

�
�m′ = m

(p, q, n, φ(n), e, d)← IGen(1k),
(Ku,Kp)← UGen(φ(n), e, d),
m′ ← A(Kp, n, mε), ε ∈ Ku

�
�

Loosely speaking, the proxy encryption scheme is one-way secure if by knowing
the public parameter n, all the key pairs on the server side, ciphertexts encrypted
under an authorised user’s encryption key and any information can be derived
from above, e.g. intermediate ciphertexts calculated using the server side keys,

134 C. Dong, G. Russello, and N. Dulay

but without knowing any key pairs in the authorised user key pair set Ku, no
PPT adversary can find the corresponding plaintext.

Lemma 1. Under the RSA assumption, the proxy encryption scheme is One-
Way secure against Adv.

Proof. We will show that if Adv can break the proxy encryption scheme, i.e.
SuccA,E is not negligible, then there is an attacker B who can solve the RSA
problem with non-negligible probability.

Given an RSA ciphertext c = me where the corresponding key pair is (e, d),
the goal of B is to decrypt it, i.e. to find m. B can pick x pairs of random primes
n
2 < (eB, dB)i < n − 2161. The primes are relatively prime to φ(n) because
φ(n)

2 < (eB, dB)i < φ(n). B then sends c, n, (eB, dB)i, i = 1, ..., x to Adv.
Adv can computes c1 = ceB1 , c2 = cdB1

1 . Next we will show that c, c1, c2, n,
(eB, dB)i, i = 1, ..., x can correctly simulate adv’s knowledge in the proxy encryp-
tion scheme. First we will show that c, c1, c2 are valid ciphertexts for the proxy en-
cryption scheme. The ciphertexts are valid if there exists a d′ such that ed′

2 = m,
i.e. eeB1dB1d

′ ≡ 1 mod φ(n). Because eB1, dB1 are relatively prime to φ(n), we
can always find y such that eB1dB1y ≡ 1 mod φ(n). Therefore there always ex-
ists d′ ≡ dy mod φ(n) such that eeB1dB1d

′ ≡ eeB1dB1dy ≡ (ed)(eB1dB1y) ≡
1 mod φ(n). We also need to show that (eB, dB)i, i = 1, ..., x are valid server side
key pairs, this can be easily proved using the similar method as above therefore
is omitted.

Now with the message from B, Adv can find m with probability SuccA,E
and returns the result to B. This means B can solve the RSA problem with
non-negligible probability SuccA,E , which contradicts the RSA assumption.

Theorem 1. The basic construction is One-Way secure against Adv.

This is quite straightforward. The ciphertext is encrypted disjointedly by two
encryption schemes. The symmetric encryption scheme is semantically secure,
i.e. ciphertext indistinguishable, which implies it is One-Way secure against Adv.
Since the proxy encryption scheme has been proved to be One-Way secure, over-
all, the basic construction is One-Way secure against Adv.

One-Way secure is sufficient to protect a data item, since an adversary cannot
recover the symmetric key and then decrypt the data item. But it does leak some
information about the keywords. Because the proxy encryption is deterministic,
the ciphertexts of keywords are not indistinguishable. All the occurrences of the
same keyword generate the same ciphertext. The adversary can make inferences
from the keyword distribution by observing the encrypted data service.

In the following section, we will show a enhanced scheme which is semantically
secure and makes the above attack impossible.

4 Enhanced Construction

The problem with the basic construction comes from the fact that the keyword
encryption is not semantically secure. Using some probabilistic padding schemes

Shared and Searchable Encrypted Data for Untrusted Servers 135

can solve the problem, but then the encrypted keywords are no longer search-
able. In this section, we will show a enhanced construction with a new keyword
encryption scheme which is both semantically secure and searchable.

4.1 Keyword Encryption Scheme

In the new construction, to avoid the problem discussed in section 3.6, the key-
words are no longer encrypted under the proxy encryption scheme. Instead, we
encrypt each keyword as a non-interactive zero-knowledge proof style witness.
An additional key pair is generated for encrypting the keywords and in the
queries. The new keyword encryption scheme is based on Discrete Logarithms.

Let E ′ = (IGen′,UGen′,UEnc′,PEnc′) denote the keyword encryption
scheme.

– IGen′ is the algorithm for generating the public parameters and the master
key. It takes a security parameter k and generates {p′, q′, g, x, h, a, gaha}.
p′ and q′ are two large prime numbers such that q′ divides p′ − 1. g is a
generator of Gq′ , the unique order-q′ subgroup of Z∗

p′ . h ≡ gx mod p′ where
x is chosen uniformly randomly from Zq′ . a is also a random number from
zq′ . p′, q′, g, h, gaha are publicised and x, a must be kept secret. The reason
why we publish gaha instead of ga is that if ga is available to the adversary,
then it can generate search queries of any chosen keywords.

– UGen′ is the algorithm for generating the key pairs for the users and the
proxy. For a user i, it finds ai1ai2 ≡ a mod q′. The user’s keyword encryption
key is ai1, and the proxy’s share is ai2. The number of key pairs is at least
φ(q′) = q′ − 1.

– UEnc′ is the client-side encryption algorithm.
– PEnc′ is the server-side encryption algorithm.

Note that there is no decryption algorithm for this keyword encryption
scheme. This is because the ciphertexts of the keywords are only used for testing
whether there is a match and do not need to be decrypted.

4.2 Data Encryption/Decryption

The new encryption scheme is shown in Fig. 3. The data item encryption/
decryption is the same as in the basic construction. Although plain RSA can
sufficiently protect the symmetric keys used to encrypt the data items, it cannot
make the ciphertexts indistinguishable and may leak some information. If the
adversary can somehow distinguish the encrypted keys and uses the keys as tags,
he can distinguish the data items. To prevent such attacks, we pad the keys with
OAEP (Optimal Asymmetric Encryption Padding) [22], a probabilistic padding
scheme, before encryption. RSA-OAEP has been proved to be indistinguishable
under adaptive chosen ciphertext attack in the random oracle model [23]. Now
the symmetric key is encrypted by the user’s piece of the RSA encryption key

136 C. Dong, G. Russello, and N. Dulay

Fig. 3. Data Encryption Algorithm 2

as c2 = (Pad(Kx))ei1 . The server side proxy encryption/decryption algorithms
remain the same, i.e. modular exponentiation.

The keywords are now processed as follows: for each keyword Wm, the user
i computes σwm = H(Wm) using a hash function H . The user also picks a
random number rwm ∈ Zq′ and computes cwm,1 = (grwm+σwmhrwm)ai1 mod p′,
cwm,2 = H((gaha)rwm), where g, h, gaha, p′ are public parameters in the system
and ai1 is the user’s keyword encryption key. The user then sends the tuple
(c1, c2, {cw1, cw2, ..., cwn}) to the server, where cwm is the tuple (cwm,1, cwm,2).

The server re-encrypts the data encryption key as in the basic construction.
Then it processes the keywords information. For each cwm, the server computes
c∗wm,1 = cai2

wm1 = (grwm+σwmhrwm)ai1ai2 = (grwm+σwmhrwm)a mod p′, c∗wm,2 =
cwm,2. The final cipher stored is a tuple (c1, c

∗
2, {c∗w1, c

∗
w2, ...c

∗
wm}), where c∗wm =

(c∗wm,1, c
∗
wm,2).

4.3 Keyword Search

To search for a keyword W , the user j computes σ = H(W). The user then
computes the encrypted query Q = g(−σ)aj1 mod p′ and sends it to the server.
The server computes Q′ = Qaj2 mod p′ = g(−σ)a mod p′. For each c∗wm, the
server computes:

y1 = c∗wm,1Q
′ = (grwm+σwmhrwm)ag(−σ)a = (garwm+aσwmharwm)g(−aσ) mod p′

y2 = H((y1))

We can see that if aσwm − aσ = 0, i.e., Wm = W , then y1 = (garwmharwm) =
(gaha)rwm mod p′ and therefore y2 = H((gaha)rwm) = c∗wm,2. Then by comparing
y2 and c∗wm,2, the server can decide whether the keyword matches the query.

Shared and Searchable Encrypted Data for Untrusted Servers 137

4.4 Security Analysis

We first prove that the keyword encryption is semantically secure. Semantic secu-
rity means that the ciphertexts are indistinguishable to the adversary, therefore
the adversary learns nothing by looking at the ciphertext.

Lemma 2. Let the keyword encryption KE = (Pub para, Sec para,Ku,Kp,
Enc) where Pub para is the public parameter set, Sec para is the secret pa-
rameter set, Ku,Kp are the user and proxy key sets respectively, Enc, Dec are
the encryption/decryption algorithms. It is semantically secure against any PPT
attacker (i.e. SuccA,KE is negligible) where

SuccA,KE = Pr

�
�b′ = b

m0, m1 ∈ {0, 1}l,
b

R← {0, 1},
b′ ← A(Pub para,Kp, Enck(mb)), k ∈ Ku

�
�− 1

2

Proof. The ciphertext of a keyword mb in the form of cmb
= ((grmb

+σmb hrmb)ai1 ,
H((gaha)rmb)). It’s easy to see that if rmb

is selected uniformly randomly from
Zq′ , then grmb

+σmb hrmb is distributed uniformly in Gq′ . We will show that if
SuccA,KE is non-negligible, then there is an attacker B who can win the following
game with a non-negligible probability SuccB,C, which contradicts the fact that
r is random.

SuccB,C = Pr

�
�b′ = b

m0, m1 ∈ {0, 1}l,
b

R← {0, 1}, r R← Zq′ , σmb = H(mb)
b′ ← A(p′, q′, g, h, H, gr+σmb hr)

�
�− 1

2

B first sends m0, m1 to the encryption oracle and receives gr+σmb hr. Then
it chooses a random number a ∈ Zq′ and generates n pairs of (ai1, ai2) such
that ai1ai2 ≡ a mod p′. It also computes σm0 = H(m0) and θ = gr+σmb hrg−σm0 ,
it is clear that Pr[θ = grhr] = 1

2 . Then B sends (m0, m1, p
′, q′, g, h, gaha,

(gr+σmb hr)a11 , (gr+σmb hr)a, H(θa), a12, ..., an2) to A. If θ = grhr, then A can
output b′ = b with probability SuccA,KE . Therefore the probability of B winning
the game is SuccB,C = SuccA,KE/2, which is non-negligible.

The semantically secure definition for searchable encryption is tricky because
searching leaks information inevitably. As long as the searching algorithm is
correct, it always returns the same result set for the same query. Although the
queries and the result sets are encrypted, the adversary can still build up search
patterns. Therefore the security definition for searchable encryption should be
modified to reflect the intuition that nothing should be leaked beyond the out-
come and the pattern of a sequence of searches. Here we adapt the definition
from [11] and prove our scheme is non-adaptive semantically secure. Informally,
non-adaptive semantic security means that given two non-adaptively generated
query histories with the same length and outcome, no PPT adversary can distin-
guish one from another with non-negligible probability. Non-adaptive means the
adversary cannot choose queries based on the prior queries and results. This is
acceptable because in our setting, only the authorised user can generate queries.

We first introduce some notions to be used in the definition. Δ is the set of
all possible data items, i.e. documents. D = {D1, ..., Dn} denotes an arbitrary

138 C. Dong, G. Russello, and N. Dulay

subset of Δ, i.e. D ∈ P(Δ), and each Di is a document. W = {w1, ..., wd} is a
dictionary which contains all the possible words can be used in the queries. Each
document in D is associated with a local unique identifier id(Di), and a set of
keywords kw(Di) which is a subset of W . The result set of a search query w on a
document set is denoted by rs(w), which is the set of document identifiers of all
the documents in D that contain the keyword, i.e. {id(D)|D ∈ D∧w ∈ kw(D)}.
A history is defined in terms of a sequence of queries made on a document set.

Definition 2 (History). A history Hq ∈ P(Δ)×Wq is an interaction between a
client and a server over q queries on a document set D, i.e. Hq = (D, w1, ..., wq).

During the interaction, the adversary cannot directly see the history because the
documents, keywords and queries are encrypted. What the adversary can see is
a view, i.e. the encrypted version of the history. Let E be the symmetric key
encryption scheme, E be the proxy encryption scheme and KE be the keyword
encryption scheme, Qi be an encrypted query, the view of the adversary is then
defined as:

Definition 3 (View). Given a document set D with n documents and a history
over q queries Hq = (D, w1, ..., wq), an adversary’s view of Hq is defined as:
V (Hq) = (id(D1), ..., id(Dn), Ek1(D1), ..., Ekn(Dn), E(k1), ..., E(kn), KE(kw(D1)), ...,

KE(kw(Dn)), Q1, ..., Qq).

As we have stated above, searching leaks information. The maximum information
we have to leak is captured by trace. In our settings, a trace contains information
from three sources: the encrypted file stored on the server, e.g. the id, length and
number of keywords of each document, the result set and the query pattern.

Definition 4 (Trace). Given a document set D with n documents and a history
over q queries Hq, the trace of Hq is defined as:
Tr(Hq)=(id(D1),..., id(Dn), |D1|,..., |Dn |, |kw(D1)|,..., |kw(Dn)|, rs(w1),..., rs(wq), Πq).

Πq is the search pattern over the history which is a symmetric binary matrix
where Πq[i, j] = 1 if wi = wj, and Πq[i, j] = 0 otherwise, for 1 ≤ i, j ≤ q.

The security definition is then based on the idea that the scheme is secure if
no more information is leaked beyond what the adversary can get from the
traces. This intuition is formalised by defining a game where the adversary has
to distinguish two histories, possibly on two different document sets, which have
the same trace. Since the traces are identical, the adversary cannot distinguish
the two histories by the traces, i.e. the knowledge he already has. He must
extract additional knowledge from what he can see during the interactions, i.e.
the views. The negligible probability of the adversary successfully distinguishing
the two histories implies that he cannot get extra knowledge and in consequence
the scheme is secure.

Definition 5 (Non-Adaptive Semantic Security). Our searchable data en-
cryption is Non-Adaptive Semantically Secure if for all q ∈ N, for all (H0, H1)
which are histories over q queries and Tr(H0) = Tr(H1), and any PPT adver-
sary A, SuccA is negligible:

Shared and Searchable Encrypted Data for Untrusted Servers 139

SuccA = Pr

�
���b′ = b

Pub para, Sec para,Ku,Kp ← SETUP (1k),
H0, H1 ∈ P(Δ)×Wq ,

b
R← {0, 1},

b′ ← A(Pub para,Kp, V (Hb))

�
���− 1

2

Theorem 2. The enhanced construction is non-adaptive semantically secure.

Proof. Let’s examine each part of the view.
Document identifiers id(D1), ..., id(Dn): Because Tr(H0) = Tr(H1), this

part of the view must be identical for the two histories. So the adversary cannot
distinguish the two histories by the document identifiers.

Encrypted documents Ek1(D1), ..., Ekn(Dn): The adversary cannot distin-
guish because E is semantically secure.

Encrypted symmetric keys E(k1), ..., E(kn): E is based on RSA-OAEP
which is IND-CCA2 secure. Therefore is also indistinguishable.

Encrypted keywords KE(kw(D1)), ...,KE(kw(Dn)): We have proved they
are indistinguishable to the adversary in lemma 2.

Encrypted queries Q1, ..., Qq: Because Tr(H0) = Tr(H1), we don’t need to
consider the query pattern and can reduce the problem to distinguish any two se-
quences of distinct queries: (Q01, ..., Q0m), (Q11, ..., Q1m), m ≤ q. For each Qij , i ∈
0, 1, 1 ≤ j ≤ m, it is a pseudorandom number ga1H(wij) mod p′. Therefore the
queries are not distinguishable as long as the discrete logarithm problem is hard.

5 Other Considerations

Access to encrypted data involves both client-side and server-side keys. So re-
voking a user’s access is quite simple. The KMS can send an instruction to the
server to let it remove the user’s corresponding keys on the server side. After
the keys have been removed, the user cannot access the data unless the KMS
generates new keys for him. Even a revoked user can masquerade as an autho-
rised user, his requests cannot be processed correctly if he does not know the
authorised user’s keys.

Each authorised user has his own RSA key pair (ei1, di1) and the server holds
the corresponding key pair (ei2, di2). Because ei1di1ei2di2 ≡ ed ≡ 1 mod φ(n),
k1 = ei1di1 and k2 = ei2di2 form another RSA key pair. This key pair can be used
for public key based mutual authentication and to establish a secure channel e.g.
SSL. This adds another layer of protection against unauthorised users.

The main concern with proxy encryption schemes comes from a collusion at-
tack. If a user colludes with adversary Adv, who knows all the server side keys,
they can easily recover the master keys by combining their keys. Although some
work has been done in [16] using bilinear map to prevent the colluded parties
from recovering the master key, the colluded parties are still able to decrypt
the ciphertext with a weak secret they can recover. Theoretically, the design of
collusion-resistant proxy encryption schemes is an open problem. But in practice,
we can lower the risk to an acceptable level by implementing other mechanisms.
For example, we can limit the access to the keys by using tamper-proof devices.

140 C. Dong, G. Russello, and N. Dulay

Fig. 4. Performance of the Operations

We can also split the master keys into multiple shares and introduce additional
servers, making collusion more difficult. Monitoring and auditing to detect col-
lusion can also help to mitigate the risk.

6 Implementation and Performance

We implemented a prototype in Java using the packages provided in the standard
Java 1.5 distribution. We use our encryption scheme to encrypt a single table
database. We chose AES as the symmetric cipher which encrypts the actual data
and SHA-1 as the hash function. For the RSA-based proxy encryption scheme,
we used 1024-bit keys. For the keyword encryption scheme, q′ was 160-bit and
p′ was 1024-bit. The tests were executed on a Intel Pentium IV 3.2 GHz (dual
core) with 1 GB of RAM.

The first evaluation consists of measuring for each scheme the execution time
of the following operations: (1) Client Encryption: that consists of encrypting
a data item using the symmetric cipher, encrypting the symmetric key and en-
crypting the keywords; (2) Server Encryption: re-encryption of the symmetric
key and the keywords using the server side keys; (3) Server Decryption: pre-
decryption of the symmetric key; (4) Client Decryption: decryption of the
symmetric key and the data item.

The graph in Fig. 4-(a) shows the performance for the execution of encryption
and decryption operations for each construction. The time in the Y-axis is given
in milliseconds. The graph provides the average time for 10,000 executions. The
data item we used in the experiments was a 16-byte string with one associated
keyword. The result shows that the enhanced construction has better perfor-
mance than the basic construction in encryption. Since the data encryption and
key encryption are nearly identical in both constructions, the difference is due to
the fact that they encrypt the keywords using different schemes. The enhanced
construction encrypts the keywords using a Discrete Logarithm based scheme
and the basic construction uses an RSA-based scheme. The exponent used in
the DL scheme is smaller than that of the RSA scheme, therefore the keyword
encryption of the DL scheme is faster than the RSA scheme. The decryption

Shared and Searchable Encrypted Data for Untrusted Servers 141

part of both constructions are almost the same, so we can see from the figure
that the two constructions have nearly the same performance in decryption.

We also measured the time for processing a search query on the server side
in both constructions, the result is shown in Fig. 4-(b). Processing a search
query involves two operations: query re-encryption (Query Encr) and matching
(Match). The graph shows the time (in milliseconds) for a search operation (the
time scale is logarithmic) executed on several databases with different sizes in
both constructions. We used three databases containing 100, 1,000 and 10,000
keywords each. The graph shows that for the basic construction, the query en-
cryption dominates the overall searching time. This is easy to understand since
the matching operation in the basic construction is simply string comparison.
Therefore the size of the database has little effect on the searching time in the
basic construction. In contrast, the time spent on the matching operation is much
more significant in the enhanced construction. And when the database becomes
large, the time increases linearly. As a result, the basic construction has better
performance than the enhanced construction when searching large databases.

7 Conclusion and Future Work

In this paper, we presented a new data encryption scheme that does not require a
trusted data server. In the scheme the server can perform searches and updates
on the encrypted data without knowing the plaintext or the decryption keys.
Unlike previous searchable data encryption schemes that require a shared key
for multi-user access, each user in our system has a unique set of keys. The data
encrypted by one user can be correctly decrypted by all the authorised users in
the system. Moreover the keys can be easily revoked without any overhead, i.e.
without having to re-encrypt the stored data. We provided two constructions for
the scheme built on top of proxy encryption schemes. For each construction, we
gave the formal definitions and proofs of security. We also implemented them in
Java and compared the performance.

One aspect of our future work is to investigate and integrate our scheme with
Private Information Retrieval (PIR) schemes. PIR schemes [24,25,26] allow a
user to retrieve some items from a database without revealing to the database
which items were queried. A weakness of our scheme is that it allows statistical
attacks on the queries. By combining PIR techniques, we could potentially make
our scheme more secure. Secure indexes [4,5] is another promising technique
that is used to improve the performance and decrease the storage overhead of
searchable encryption schemes. We will investigate current schemes and develop
a new index scheme for the multi-user system.

References

1. Blackwood, J.: Is storage outsourcing a viable alternative? http://techupdate.

zdnet.com/techupdate/stories/main/0,14179,2851289,00.html
2. Connor, D.: Storage outsourcing on the rise, http://www.networkworld.com/

news/2007/012207-storage-outsourcing-rises.html

http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2851289,00.html
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2851289,00.html
http://www.networkworld.com/news/2007/012207-storage-outsourcing-rises.html
http://www.networkworld.com/news/2007/012207-storage-outsourcing-rises.html

142 C. Dong, G. Russello, and N. Dulay

3. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

4. Yang, Z., Zhong, S., Wright, R.N.: Privacy-Preserving Queries on Encrypted Data.
In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 479–495. Springer, Heidelberg (2006)

5. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216/

6. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing sql over encrypted
data in the database-service-provider model. In: SIGMOD Conference, pp. 216–
227 (2002)

7. Damiani, E., di Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Bal-
ancing confidentiality and efficiency in untrusted relational dbmss. In: ACM Con-
ference on Computer and Communications Security, pp. 93–102 (2003)

8. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: SIGMOD Conference, pp. 563–574 (2004)

9. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: VLDB, pp. 720–731 (2004)

10. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

11. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: ACM Conference on
Computer and Communications Security, pp. 79–88 (2006)

12. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

13. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

14. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

15. Khurana, H., Slagell, A.J., Bonilla, R.: Sels: a secure e-mail list service. In: SAC,
pp. 306–313 (2005)

16. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2005)

17. Kapadia, A., Tsang, P.P., Smith, S.W.: Attribute-based publishing with hidden
credentials and hidden policies. In: NDSS (2007)

18. Ivan, A.A., Dodis, Y.: Proxy cryptography revisited. In: NDSS (2003)
19. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. II. Cam-

bridge University Press, Cambridge (2004)
20. Simmons, G.J.: A “weak” privacy protocol using the rsa crypto algorithm. Cryp-

tologia 7(2), 180–182 (1983)
21. Delaurentis, J.M.: A further weakness in the common modulus protocol for the rsa

cryptoalgorithm. Cryptologia 8(3), 253–259 (1984)
22. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)

EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)
23. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP Is Secure under

the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001)

http://eprint.iacr.org/2003/216/

Shared and Searchable Encrypted Data for Untrusted Servers 143

24. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS, pp. 41–50 (1995)

25. Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval
with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

26. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer, Heidelberg (2005)

