27,969 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Detection of advanced persistent threat using machine-learning correlation analysis

    Get PDF
    As one of the most serious types of cyber attack, Advanced Persistent Threats (APT) have caused major concerns on a global scale. APT refers to a persistent, multi-stage attack with the intention to compromise the system and gain information from the targeted system, which has the potential to cause significant damage and substantial financial loss. The accurate detection and prediction of APT is an ongoing challenge. This work proposes a novel machine learning-based system entitled MLAPT, which can accurately and rapidly detect and predict APT attacks in a systematic way. The MLAPT runs through three main phases: (1) Threat detection, in which eight methods have been developed to detect different techniques used during the various APT steps. The implementation and validation of these methods with real traffic is a significant contribution to the current body of research; (2) Alert correlation, in which a correlation framework is designed to link the outputs of the detection methods, aims to identify alerts that could be related and belong to a single APT scenario; and (3) Attack prediction, in which a machine learning-based prediction module is proposed based on the correlation framework output, to be used by the network security team to determine the probability of the early alerts to develop a complete APT attack. MLAPT is experimentally evaluated and the presented sy

    Anomaly-based Correlation of IDS Alarms

    Get PDF
    An Intrusion Detection System (IDS) is one of the major techniques for securing information systems and keeping pace with current and potential threats and vulnerabilities in computing systems. It is an indisputable fact that the art of detecting intrusions is still far from perfect, and IDSs tend to generate a large number of false IDS alarms. Hence human has to inevitably validate those alarms before any action can be taken. As IT infrastructure become larger and more complicated, the number of alarms that need to be reviewed can escalate rapidly, making this task very difficult to manage. The need for an automated correlation and reduction system is therefore very much evident. In addition, alarm correlation is valuable in providing the operators with a more condensed view of potential security issues within the network infrastructure. The thesis embraces a comprehensive evaluation of the problem of false alarms and a proposal for an automated alarm correlation system. A critical analysis of existing alarm correlation systems is presented along with a description of the need for an enhanced correlation system. The study concludes that whilst a large number of works had been carried out in improving correlation techniques, none of them were perfect. They either required an extensive level of domain knowledge from the human experts to effectively run the system or were unable to provide high level information of the false alerts for future tuning. The overall objective of the research has therefore been to establish an alarm correlation framework and system which enables the administrator to effectively group alerts from the same attack instance and subsequently reduce the volume of false alarms without the need of domain knowledge. The achievement of this aim has comprised the proposal of an attribute-based approach, which is used as a foundation to systematically develop an unsupervised-based two-stage correlation technique. From this formation, a novel SOM K-Means Alarm Reduction Tool (SMART) architecture has been modelled as the framework from which time and attribute-based aggregation technique is offered. The thesis describes the design and features of the proposed architecture, focusing upon the key components forming the underlying architecture, the alert attributes and the way they are processed and applied to correlate alerts. The architecture is strengthened by the development of a statistical tool, which offers a mean to perform results or alert analysis and comparison. The main concepts of the novel architecture are validated through the implementation of a prototype system. A series of experiments were conducted to assess the effectiveness of SMART in reducing false alarms. This aimed to prove the viability of implementing the system in a practical environment and that the study has provided appropriate contribution to knowledge in this field

    Enabling stream processing for people-centric IoT based on the fog computing paradigm

    Get PDF
    The world of machine-to-machine (M2M) communication is gradually moving from vertical single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organizations and people - A world of Internet of Things (IoT). The dominant approach for delivering IoT applications relies on the development of cloud-based IoT platforms that collect all the data generated by the sensing elements and centrally process the information to create real business value. In this paper, we present a system that follows the Fog Computing paradigm where the sensor resources, as well as the intermediate layers between embedded devices and cloud computing datacenters, participate by providing computational, storage, and control. We discuss the design aspects of our system and present a pilot deployment for the evaluating the performance in a real-world environment. Our findings indicate that Fog Computing can address the ever-increasing amount of data that is inherent in an IoT world by effective communication among all elements of the architecture
    • …
    corecore