266 research outputs found

    Novel Methods Based on Deep Learning Applied to Condition Monitoring in Smart Manufacturing Processes

    Get PDF
    The Industry 4.0 is the recent trend of automation and the rotating machinery takes a role of great relevance when it comes to meet the demands and challenges of smart manufacturing. Condition-based monitoring (CBM) schemes are the most prominent tool to cover the task of predictive diagnosis. With the current demand of the industry and the increasing complexity of the systems, it is vital to incorporate CBM methodologies that are capable of facing the variability and complexity of manufacturing processes. In recent years, various deep learning techniques have been applied successfully in different areas of research, such as image recognition, robotics, and the detection of abnormalities in clinical studies; some of these techniques have been approaching to the diagnosis of the condition in rotating machinery, promising great results in the Industry 4.0 era. In this chapter, some of the deep learning techniques that promise to make important advances in the field of intelligent fault diagnosis in industrial electromechanical systems will be addressed

    Denoising Magnetic Resonance Spectroscopy (MRS) Data Using Stacked Autoencoder for Improving Signal-to-Noise Ratio and Speed of MRS

    Full text link
    Background: Magnetic resonance spectroscopy (MRS) enables non-invasive detection and measurement of biochemicals and metabolites. However, MRS has low signal-to-noise ratio (SNR) when concentrations of metabolites are in the range of the million molars. Standard approach of using a high number of signal averaging (NSA) to achieve sufficient NSR comes at the cost of a long acquisition time. Purpose: We propose to use deep-learning approaches to denoise MRS data without increasing the NSA. Methods: The study was conducted using data collected from the brain spectroscopy phantom and human subjects. We utilized a stack auto-encoder (SAE) network to train deep learning models for denoising low NSA data (NSA = 1, 2, 4, 8, and 16) randomly truncated from high SNR data collected with high NSA (NSA=192) which were also used to obtain the ground truth. We applied both self-supervised and fully-supervised training approaches and compared their performance of denoising low NSA data based on improved SNRs. Results: With the SAE model, the SNR of low NSA data (NSA = 1) obtained from the phantom increased by 22.8% and the MSE decreased by 47.3%. For low NSA images of the human parietal and temporal lobes, the SNR increased by 43.8% and the MSE decreased by 68.8%. In all cases, the chemical shift of NAA in the denoised spectra closely matched with the high SNR spectra, suggesting no distortion to the spectra from denoising. Furthermore, the denoising performance of the SAE model was more effective in denoising spectra with higher noise levels. Conclusions: The reported SAE denoising method is a model-free approach to enhance the SNR of low NSA MRS data. With the denoising capability, it is possible to acquire MRS data with a few NSA, resulting in shorter scan times while maintaining adequate spectroscopic information for detecting and quantifying the metabolites of interest

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach

    A Stacked Multi-Granularity Convolution Denoising Auto-Encoder

    Get PDF
    With the development of big data, artificial intelligence has provided many intelligent solutions to urban life. For instance, an image-based intelligent technology, such as image classification of diseases, is widely used in daily life. However, the image in real life is mostly unlabeled, so the performance of many image-based intelligent models shows limitations. Therefore, how to use a large amount of unlabeled image data to build an efficient and high-quality model for better urban life has been an urgent research topic. In this paper, we propose an unsupervised image feature extraction method that is referred to as a stacked multi-granularity convolution denoising auto-encoder (SMGCDAE). The algorithm is based on a convolutional neural network (CNN), yet it introduces a multi-granularity kernel. This approach resolved issues with image unicity by extracting a diverse category of high-level features. In addition, the denoising auto-encoder ensures stability and improves the classification accuracy by extracting more robust features. The algorithm was assessed using three image benchmark datasets and a series of meningitis images, achieving higher average accuracy than other methods. These results suggest that the algorithm is capable of extracting more discriminative high-level features and thus offers superior performance compared with the existing methodologies

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Semi-supervised detection of structural damage using Variational Autoencoder and a One-Class Support Vector Machine

    Full text link
    In recent years, Artificial Neural Networks (ANNs) have been introduced in Structural Health Monitoring (SHM) systems. A semi-supervised method with a data-driven approach allows the ANN training on data acquired from an undamaged structural condition to detect structural damages. In standard approaches, after the training stage, a decision rule is manually defined to detect anomalous data. However, this process could be made automatic using machine learning methods, whom performances are maximised using hyperparameter optimization techniques. The paper proposes a semi-supervised method with a data-driven approach to detect structural anomalies. The methodology consists of: (i) a Variational Autoencoder (VAE) to approximate undamaged data distribution and (ii) a One-Class Support Vector Machine (OC-SVM) to discriminate different health conditions using damage sensitive features extracted from VAE's signal reconstruction. The method is applied to a scale steel structure that was tested in nine damage's scenarios by IASC-ASCE Structural Health Monitoring Task Group

    Targeted collapse regularized autoencoder for anomaly detection: black hole at the center

    Full text link
    Autoencoders have been extensively used in the development of recent anomaly detection techniques. The premise of their application is based on the notion that after training the autoencoder on normal training data, anomalous inputs will exhibit a significant reconstruction error. Consequently, this enables a clear differentiation between normal and anomalous samples. In practice, however, it is observed that autoencoders can generalize beyond the normal class and achieve a small reconstruction error on some of the anomalous samples. To improve the performance, various techniques propose additional components and more sophisticated training procedures. In this work, we propose a remarkably straightforward alternative: instead of adding neural network components, involved computations, and cumbersome training, we complement the reconstruction loss with a computationally light term that regulates the norm of representations in the latent space. The simplicity of our approach minimizes the requirement for hyperparameter tuning and customization for new applications which, paired with its permissive data modality constraint, enhances the potential for successful adoption across a broad range of applications. We test the method on various visual and tabular benchmarks and demonstrate that the technique matches and frequently outperforms alternatives. We also provide a theoretical analysis and numerical simulations that help demonstrate the underlying process that unfolds during training and how it can help with anomaly detection. This mitigates the black-box nature of autoencoder-based anomaly detection algorithms and offers an avenue for further investigation of advantages, fail cases, and potential new directions.Comment: 16 pages, 4 figures, 4 table
    • …
    corecore