179 research outputs found

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Usable Security for Wireless Body-Area Networks

    Get PDF
    We expect wireless body-area networks of pervasive wearable devices will enable in situ health monitoring, personal assistance, entertainment personalization, and home automation. As these devices become ubiquitous, we also expect them to interoperate. That is, instead of closed, end-to-end body-worn sensing systems, we envision standardized sensors that wirelessly communicate their data to a device many people already carry today, the smart phone. However, this ubiquity of wireless sensors combined with the characteristics they sense present many security and privacy problems. In this thesis we describe solutions to two of these problems. First, we evaluate the use of bioimpedance for recognizing who is wearing these wireless sensors and show that bioimpedance is a feasible biometric. Second, we investigate the use of accelerometers for verifying whether two of these wireless sensors are on the same person and show that our method is successful as distinguishing between sensors on the same body and on different bodies. We stress that any solution to these problems must be usable, meaning the user should not have to do anything but attach the sensor to their body and have them just work. These methods solve interesting problems in their own right, but it is the combination of these methods that shows their true power. Combined together they allow a network of wireless sensors to cooperate and determine whom they are sensing even though only one of the wireless sensors might be able to determine this fact. If all the wireless sensors know they are on the same body as each other and one of them knows which person it is on, then they can each exploit the transitive relationship to know that they must all be on that person’s body. We show how these methods can work together in a prototype system. This ability to operate unobtrusively, collecting in situ data and labeling it properly without interrupting the wearer’s activities of daily life, will be vital to the success of these wireless sensors

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    An enhanced fuzzy commitment scheme in biometric template protection

    Get PDF
    Biometric template protection consists of two approaches; Feature Transformation (FT) and Biometric Cryptography (BC). This research focuses on Key-Binding Technique based on Fuzzy Commitment Scheme (FCS) under BC approach. In FCS, the helper data should not disclose any information about the biometric data. However, literatures showed that it had dependency issue in its helper data which jeopardize security and privacy. Moreover, this also increases the probability of privacy leakage which lead to attacks such as brute-force and cross-matching attack. Thus, the aim of this research is to reduce the dependency of helper data that can caused privacy leakage. Three objectives have been set such as (1) to identify the factors that cause dependency on biometric features (2) to enhance FCS by proposing an approach that reduces this dependency, and (3) to evaluate the proposed approach based on parameters such as security, privacy, and biometric performance. This research involved four phases. Phase one, involved research review and analysis, followed by designing conceptual model and algorithm development in phase two and three respectively. Phase four, involved with the evaluation of the proposed approach. The security and privacy analysis shows that with the additional hash function, it is difficult for adversary to perform brute‐force attack on information stored in database. Furthermore, the proposed approach has enhanced the aspect of unlinkability and prevents cross-matching attack. The proposed approach has achieved high accuracy of 95.31% with Equal Error Rate (EER) of 1.54% which performs slightly better by 1.42% compared to the existing approach. This research has contributed towards the key-binding technique of biometric fingerprint template protection, based on FCS. In particular, this research was designed to create a secret binary feature that can be used in other state-of-the-art cryptographic systems by using an appropriate error-correcting approach that meets security standards

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    MEMS sensors as physical unclonable functions

    Get PDF
    A fundamental requirement of any crypto system is that secret-key material remains securely stored so that it is robust in withstanding attacks including physical tampering. In this context, physical unclonable functions (PUFs) have been proposed to store cryptographic secrets in a particularly secure manner. In this thesis, the feasibility of using microelectromechanical systems (MEMS) sensors for secure key storage purposes is evaluated for the first time. To this end, we investigated an off-the-shelf 3-axis MEMS gyroscope design and used its properties to derive a unique fingerprint from each sensor. We thoroughly examined the robustness of the derived fingerprints against temperature variation and aging. We extracted stable keys with nearly full entropy from the fingerprints. The security level of the extracted keys lies in a range between 27 bits and 150 bits depending on the applied test conditions and the used entropy estimation method. Moreover, we provide experimental evidence that the extractable key length is higher in practice when multiple wafers are considered. In addition, it is shown that further improvements could be achieved by using more precise measurement techniques and by optimizing the MEMS design. The robustness of a MEMS PUF against tampering and malicious read-outs was tested by three different types of physical attacks. We could show that MEMS PUFs provide a high level of protection due to the sensitivity of their characteristics to disassembly.Eine grundlegende Anforderung jedes Kryptosystems ist, dass der verwendete geheime SchlĂŒssel sicher und geschĂŒtzt aufbewahrt wird. Vor diesem Hintergrund wurden physikalisch unklonbare Funktionen (PUFs) vorgeschlagen, um kryptographische Geheimnisse besonders sicher zu speichern. In dieser Arbeit wird erstmals die Verwendbarkeit von mikroelektromechanischen Systemen (MEMS) fĂŒr die sichere SchlĂŒsselspeicherung anhand eines 3-achsigen MEMS Drehratensensor gezeigt. Dabei werden die Eigenschaften der Sensoren zur Ableitung eines eindeutigen Fingerabdrucks verwendet. Die Temperatur- und LangzeitstabilitĂ€t der abgeleiteten FingerabdrĂŒcke wurde ausfĂŒhrlich untersucht. Aus den FingerabdrĂŒcken wurden stabile SchlĂŒssel mit einem Sicherheitsniveau zwischen 27 Bit und 150 Bit, abhĂ€ngig von den Testbedingungen und der verwendeten Entropie-SchĂ€tzmethode, extrahiert. Außerdem konnte gezeigt werden, dass die SchlĂŒssellĂ€nge ansteigt, je mehr Wafer betrachtet werden. DarĂŒber hinaus wurde die Verwendung einer prĂ€ziseren Messtechnik und eine Optimierung des MEMS-Designs als potentielle Verbesserungsmaßnahmen identifiziert. Die Robustheit einer MEMS PUF gegen Manipulationen und feindseliges Auslesen durch verschiedene Arten von physikalischen Angriffen wurde untersucht. Es konnte gezeigt werden, dass MEMS PUFs aufgrund der Empfindlichkeit ihrer Eigenschaften hinsichtlich einer Öffnung des Mold-GehĂ€uses eine hohe WiderstandsfĂ€higkeit gegenĂŒber invasiven Angriffen aufweisen

    On the Security and Privacy of Implantable Medical Devices

    Get PDF
    • 

    corecore