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Abstract

We expect wireless body-area networks of pervasive wearable devices will enable

in situ health monitoring, personal assistance, entertainment personalization, and

home automation. As these devices become ubiquitous, we also expect them to

interoperate. That is, instead of closed, end-to-end body-worn sensing systems, we

envision standardized sensors that wirelessly communicate their data to a device

many people already carry today, the smart phone. However, this ubiquity of wireless

sensors combined with the characteristics they sense present many security and

privacy problems.

In this thesis we describe solutions to two of these problems. First, we evaluate

the use of bioimpedance for recognizing who is wearing these wireless sensors and

show that bioimpedance is a feasible biometric. Second, we investigate the use of

accelerometers for verifying whether two of these wireless sensors are on the same

person and show that our method is successful as distinguishing between sensors on

the same body and on different bodies. We stress that any solution to these problems

must be usable, meaning the user should not have to do anything but attach the

sensor to their body and have them just work.

These methods solve interesting problems in their own right, but it is the

combination of these methods that shows their true power. Combined together they
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allow a network of wireless sensors to cooperate and determine whom they are

sensing even though only one of the wireless sensors might be able to determine this

fact. If all the wireless sensors know they are on the same body as each other and

one of them knows which person it is on, then they can each exploit the transitive

relationship to know that they must all be on that person’s body. We show how

these methods can work together in a prototype system. This ability to operate

unobtrusively, collecting in situ data and labeling it properly without interrupting the

wearer’s activities of daily life, will be vital to the success of these wireless sensors.
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1
Introduction

Wearable devices are becoming more prevalent in our lives. Today, it is not uncom-

mon for people to carry multiple computing devices, such as smart phones, music

players, and cameras; increasingly, they also carry, hold, or wear devices to measure

physical activity (e.g., Fitbit [50] or BodyBugg [12]), to interact with entertainment

devices (e.g., the Xbox 360 + Kinect [111]), or to monitor their physiology (e.g., a

cardiac patient concerned about heart arrhythmia or a diabetic managing her blood

glucose). Many more such devices and systems have been proposed or developed as

research prototypes [80, 81]. These unobtrusive wearable devices make it possible to

continuously or periodically track many health- and lifestyle-related conditions at an
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unprecedented level of detail. Wireless connectivity enables interaction with other

nearby devices (e.g., entertainment systems, climate-control systems, or medical

devices), the automatic sharing of sensor data with a social-networking service or

(in the case of health applications) a user’s Personal Health Record (PHR) system or

an Electronic Health Record (EHR) system for review by a health care provider.

More so, as the population of the world grows, it will become increasingly

necessary to use these technologies to monitor, diagnose, and treat individuals.

These wearable devices will enable the collection of longitudinal health-related data,

and physicians will use this data to make better medical decisions. However, these

devices present new and unique security and privacy challenges. If we expect them to

become a solution for monitoring the world’s aging population, then it is imperative

that we be mindful of these challenges. Indeed, the kind (medical) and magnitude

(continuous) of data they collect in a mobile health application can be considered

protected health information [71]. More generally, many researchers have noted that

these wearable devices are energy scarce, and, in doing so, have made significant

steps towards developing energy-aware security solutions such that the overhead

of security is minimal if not nil [66, 139]. Finally, we must also remind ourselves

that any security and privacy solutions ought to be usable, because they will only be

adopted if they are both useful and usable.

1.1 Motivation

Suppose Alice and Fred, a health-conscious couple living together, each decide to

buy a fitness-monitoring sensor. The instructions indicate that they should each

“pair” their respective sensor with their own smart phone. Pairing ensures, through

cryptographic means, that a sensor is only able to communicate with a specific smart

phone. One day, when Alice and Fred go for a run, Alice unknowingly wears Fred’s
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sensor, and Fred wears Alice’s sensor. As they run together, and therefore remain in

communication range, Fred’s smart phone would be collecting data about Alice, but

labeling the data as Fred’s and placing it in Fred’s health record. Alice’s smart phone

would be similarly swapping labels and data. This problem, a result of the one-to-one

pairing model, is even more likely as the number of sensors grows. Pairing makes

the implicit assumption that the sensor paired with the smart phone will not be used

by anyone else but the user of the smart phone. Depending on the usage of the data,

this can be a security problem.

Today, many of the commercial versions of these devices one can buy are highly

specialized, end-to-end solutions that use protocols (e.g., Bluetooth [23], ANT [11],

or ZigBee [163]) with little to no security. It has been shown, for example, that

there is very little security built into the Fitbit [122]. When a commercial device

does use some type of security, the solutions are usually manual and intrusive. They

often require the input of passwords or personal identification numbers or require

some kind of challenge-response scheme. Additionally, as the example with Alice

and Fred shows, these devices are also usually statically associated with a particular

person. That is, this smart phone is my phone, whereas that fitness sensor is your

fitness sensor. This assumption implies that any data generated by a sensor must

also be associated with that person. However, there are many situations where this

assumption fails. In some settings, a given device might be shared by many people

(e.g., a blood-pressure cuff). In other settings, two people might accidentally wear

the wrong sensor (as in the example). Finally, a person might actively try to fool the

device (e.g., a smoker who places his “smoking” sensor on a non-smoking friend to

receive incentives for smoking cessation).

Our goal is to make life easier for people like Alice and Fred. Although Alice

and Fred buy identical sensor devices, Alice should be able to put on either device

and have her smart phone recognize which device is attached to her, automatically
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creating the phone-device association without an explicit pairing step. Similarly, if

Alice and Fred jointly own another sensor device, either may use the sensor at any

time, and again the correct smart phone should detect which body is wearing the

sensor and receive the data into the correct person’s health record.

1.2 Challenges

Given this vision, there are significant security, privacy, and usability challenges. We

have outlined elsewhere many of these problems [134, 36]. For example: How does

each device authenticate the other? How do devices discover each other without

exposing their own presence? How does a user pair devices together? How can

users trust that their devices are not leaking the data they are collecting? How do

we balance privacy, usability, and utility of a network of these devices? We have

proposed a device and architecture, called Amulet, that could act as solution to some

of these problems [134].

This thesis focuses on three specific challenges whose solutions would con-

tribute to the realization of an Amulet:

1. How can we recognize who is wearing a device?

2. How can we verify whether a suite of devices are attached to same person?

3. How do the solutions to these challenges fit into an system?

These problems matter for at least one important reason. If we expect physi-

cians to make decisions about health data collected from wearable devices, then

they will need some confidence that all the data they are examining has come, at

the very least, from the same body. It is risky to make medical decisions without said

confidence, and until such measures are in place, we should be wary of using data

from these devices.
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1.3 Contributions

This thesis contributes two methods as solutions to challenges described above and

integrates them into a working system.

The first method explores the use of bioimpedance to recognize wearers. We

describe a sensor that is the first wrist-worn sensor capable of sensing bioimpedance.

We also describe a dataset we collected from individuals that wore our sensor. Addi-

tionally, we empirically show the feasibility of this sensor in its ability to recognize

the wearer over time and to distinguish among several wearers. Finally, we exam-

ine the feasibility of this sensor in different environmental conditions and motion

artifacts.

The second method explores the use of acceleration and orientation to verify

whether sensors are on the same body. We sense these quantities using an accelerom-

eter and gyroscope placed at different locations on the body – the wrists, the ankles –

and describe a method to determine whether these sensors are on the same body

as an accelerometer and gyroscope placed at a person’s waist. Using a dataset of

subjects wearing these sensors, we provide empirical results that our method works

and is robust to cases even when subjects are walking together.

Finally, we integrate these methods into a network of wearable devices. We

describe methods for detecting when these sensors are attached to a person. Ad-

ditionally, we show how to pair these devices to bootstrap a privacy-preserving

protocol. We also show that our system is feasible by analyzing the number of walk-

ing intervals per subject. Finally, we provide an analysis the amount of energy our

system consumes.
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1.4 Outline

This thesis is organized according to each method. Chapter 2 establishes a common

language and some background about each method. Chapter 3 motivates and evalu-

ates the use of bioimpedance as a biometric. In Chapter 4, we describe how to use

acceleration and orientation to determine whether two sensors are on the same body

and empirically evaluate this method. Chapter 5 neatly integrates these two methods

into a usably secure wireless body-area network. Lastly, Chapter 6 describes some

open problems with this work and Chapter 7 concludes.
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2
Background

The solutions to these problems were designed with two considerations in mind.

First, that a network of these wearable devices exists (i.e., there is more than just

one device present), and second, that usability was of paramount concern. To better

understand the context in which these solutions were developed, this chapter defines

what we mean by these two considerations and formalizes the particular kind of

adversary and threats we intend to mitigate. It also introduces some terminology

regarding the machine-learning techniques we use.
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2.1 Wireless body-area networks

We believe the sensors in these wearable devices will become commodities. They

will interoperate with each other and other devices that people carry with them,

like a smart phone. In the future, we imagine smart phones will be replaced with

“an mHealth architecture that provides strong security and privacy guarantees” we

call Amulet [134]. A person will wear several sensors of varying types (e.g., blood-

pressure monitor, pulse oximeter, pedometer, blood-glucose meter) and due to

physiological requirements, or comfort, these sensors will necessarily be attached at

different locations on the body. These sensors will primarily communicate with each

other and other devices over some wireless medium. The central hub of this network

will store and aggregate all data coming from the sensors. In fact, constructing such

a system is feasible today as there are commercially available medical and fitness

sensors capable of communicating with smart phones via Bluetooth.

This network of wearable devices is called a Wireless Body-Area Network

(WBAN). Figure 2.1.1 depicts such a network. In a WBAN, a person wears one or

more Sensor Nodes (SNs), like a blood-glucose monitor, pedometer, or electrocardio-

graphy sensor, on their body and carries a single Mobile Node (MN), like a smart

phone or Amulet, at their waist. The MN and SNs communicate wirelessly at a range

near the body (typically, less than 2 m) in a star network topology. If desired, this

WBAN can communicate with some back-end using the MN’s Internet connectivity.

However, we are more concerned with the WBAN itself rather than the Internet

connectivity of the MN.

In a WBAN, we assume the MN is capable of communicating with some back-

end service system (e.g., an EHR or PHR). The SNs, on the other hand, have limited

computational and energy resources, and, as such, are only capable of communi-

cating with the MN. Additionally, we assume SNs have the ability to detect when
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Figure 2.1.1: The components of a Wireless Body-Area Network. Many SNs communi-
cate wirelessly with a central MN. The MN is capable of forwarding information from the
SNs to an application in the cloud (such as an EHR or PHR).

they are attached to a person (although they might not know to whom). An SN,

for example, might contain a circuit that is completed. For example, when a person

straps an SN onto their body, the two ends of a necklace or wrist-strap come into

contact and complete the circuit. How this might be accomplished for other locations

is explained in more detail in Chapter 5.

Sensor Nodes can be further divided into one of two categories: personal and

shared. A personal SN is one that is exclusively used by one person (e.g., a wearable

blood-glucose monitor). A shared SN is one that can be used by several people (e.g.,

a fitness monitor). Sensor Nodes can also be classified by their intended usage. For

example, an ephemeral SN is one that a person sporadically uses (e.g., a wireless

digital scale). These types of SNs tend to be embedded in the environment, typically

allowing multiple people to use them (although there can be personal, ephemeral

SNs like a blood-glucose monitor). On the other hand, continuous SNs are those

that a person wears continuously (e.g., a fitness monitor). This thesis is primarily

concerned with these kind of SNs because they are continuously worn by people.

We assume the MN and SNs interact with the following entities: a manufacturer,

a user, and a service provider. A manufacturer is an entity that produces the sensors,
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and distributes them to the service provider and the users. A user is a person that uses

the MN and SNs to get information about their own health. Typically, users obtain an

MN or an SN either directly from a manufacturer or from a service provider. Users can

also choose to forward this information to a service provider for consultation or keep

the data local for self-monitoring. A service provider is an entity that provides services

such as configuring sensors, analyzing sensed data, and providing consultation to

users. For example, a service provider can be a hospital, PHR provider, a home-health

organization, or some other business or service provider.

Wireless Body-Area Networks have long been studied by researchers, often

under different names (e.g., body-area sensor networks and personal area net-

works) [142, 66]. The Institute of Electrical and Electronics Engineers (IEEE) 802.15

task group six formally defines a Body-Area Network (BAN) as “a communication

standard optimized for low power devices and operation on, in or around the human

body (but not limited to humans) to serve a variety of applications including medical,

consumer electronics / personal entertainment and others” [73]. However, while

the underlying physical, medium access control, and network layers are interesting,

we take them for granted since we are primarily concerned with providing usable

security mechanisms for the wireless variant of BANs.

2.1.1 Locations of interest

There are many locations on your body where you could wear an SN. Figure 2.1.2

graphically depicts several likely locations. The highlighted locations – Left Hand

(HL), Right Hand (HR), Left Ankle (AL), Right Ankle (AR), Right Waist (WR) –

indicate those locations we examine in this thesis. Notably, we did not investigate

locations located on the upper body. Your head, for example, is one location where

you might wear an SN (e.g., Google Glass [57]). Likewise, you might also wear an

SN on your Left Chest (CL) if you wanted to monitor your heart [129] or respiratory
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Figure 2.1.2: Some locations where a person could wear an SN. The highlighted ones –
HL, HR, WR, AR, and AL – are the locations we examined in this thesis.

rate [115]. Additionally, some sensors are designed to be worn on the upper arm

(e.g., BodyBugg [12]). We leave these other locations for future work.

2.2 Usability

One can imagine all kinds of solutions to the challenges we outlined, but we empha-

size that any solution to these challenges must be usable. Often the target population

for these kind of systems is the elderly, very young, ill, or disabled, and so usability

is important. More so, the more usable a device is the more likely people are to

adopt it. We define a usable solution to mean a person should only need to attach

an SN to their body – whether clipped on, strapped on, stuck on, slipped into a

pocket, or even implanted or ingested – and have them just work. That is, without

any other action by the user, the MN and SNs would discover each other’s presence,

recognize that they are on the same body, transitively learn whose body they are

on, independently compute shared secrets from which to derive encryption keys,
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and finally establish reliable and secure communications. Some solutions to these

problems might require a training period (e.g., to learn some characteristic about the

user that can be later used to recognize them), which should also be accomplished

in a manner that minimize the amount of work the user has to do. This ability

to operate unobtrusively, collecting in situ data without interrupting the wearer’s

activities of daily life, is vital to the success of WBANs.

The idea that security mechanisms ought to be usable is by no means a new

idea. Venkatasubramanian et al. define usable security mechanisms “as those which

activate on deployment, in a plug-n-play manner, with minimal (ideally none)

initialization procedures” [147]. We adopt this same definition of “usable” and use

it to guide our own usable security mechanisms. The idea that there ought to be

minimal initialization is important, because some solutions to these challenges will

necessarily require some initialization on part of the user. For example, to identify

who is wearing a device, the device needs to have some data about that user. In the

ideal case, the device would detect that a new user is wearing it and prompt them

(via the MN, for example). Alternatively, the MN need not prompt the user, rather,

it could create a unique but temporary label until a more permanent label can be

supplied by the user. Such a scheme would not interrupt the user at all.

2.3 Security model

In any system, designers make a set of assumptions about the system and the entities

that interact with it. For example, designers make assumptions about the capabilities

of an adversary and the kind of threats adversaries might try to commit against the

system. We state those assumptions here and define those security goals our system

achieves under these assumptions.
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2.3.1 Hardware capabilities

We make the following assumptions about the kind of hardware that is necessary to

support our system. The MN and SNs must have wireless capabilities (e.g., 802.15.4,

802.11, or Bluetooth) and support cryptographic primitives like encryption and

authentication.1 We also assume the MN and SNs can securely pair; that is, they can

authenticate each other and share keys using a pairing method that makes use of

the cryptographic primitives.2 We also assume the MN and SNs have some common

sensor or sensors, like an accelerometer or gyroscope.

2.3.2 Trust assumptions

We define trust to mean those assumptions that one entity has about another entity.

We make the following assumptions about how the three entities – manufacturer,

service provider, and users – trust each other in our system. First, a user and the

service provider trust the manufacturer to produce calibrated SNs that operate

correctly. This assumption allows users and service providers to trust that the SNs

are providing correct data. A user also trusts the service provider to not disclose the

sensor data it has received from the MN. The service provider trusts the users to

not tamper with the hardware or software of the MN or the SN. The manufacturer

assumes nothing about any of the other entities.

2.3.3 Adversary model

Adversaries want to thwart the security of the system. As such, we assume they have

the following capabilities that would allow them to attack the system. We assume

the adversary has the ability to observe all (encrypted) messages at all times in
1 The TI CC2420 [30], for example, supports 802.15.4 wireless communications and provide

a hardware-based implementation of Advanced Encryption Standard (AES) with support for both
encryption and authentication.

2 For a good overview of pairing methods, see Kumar et al. [87].
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the wireless medium. That is, they can observe those messages being sent between

the MN and SNs. An adversary can use this capability, for example, to identify the

types of SNs and MN in the system. We also assume the adversary has the ability to

arbitrarily inject, modify, and discard messages in the wireless medium. Thus, by

disrupting a message and later re-injecting that message, they can also arbitrarily

delay or replay the message. An adversary can use these capabilities to track users

while they use the system or to tamper with the data in the system.

We also assume the following limitations about any adversary. First, we as-

sume an adversary is computationally bounded, meaning that it cannot break the

cryptographic primitives without using a brute-force attack. Second, we assume an

adversary will not access or modify the hardware nor modify the software of the MN

or SN in our system. Third, we assume an adversary will not be able to acquire a

subject’s biometric. Like a password, each subject has an incentive to make sure their

biometrics will not be divulged to an adversary. Finally, we assume an adversary will

not jam the wireless medium; that is, an adversary will not try to disrupt the usage

of the system by performing denial-of-service attacks.

2.3.4 Security goals

The goal of our system is to allow users to wear an MN and SNs that will collect data

about their self and their environment and forward this data to a service provider

for analysis according to the trust assumptions. An adversary seeks to disrupt this

process and obtain sensitive data according to the threat model outlined above.

Despite such an adversary, our system should still achieve the following goals:

G1 Our system should preserve the confidentiality of the sensed data and meta-

data. That is, the sensed data and its meta-data should not be revealed to

anyone but the user and service provider.

G2 Our system should preserve the integrity of the sensed data and meta-data,
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meaning that the service provider and user should be able to trust that the

sensed data or meta-data has not been tampered with.

G3 Our system should preserve the authenticity of the sensed data and meta-data.

That is, the service provider should be able to trust that the sensed data and

meta-data was acquired from the specified user and the specified SN.

G4 Our system should preserve the obscurity of the sensors, meaning that the type

of SN and MN the user is wearing should not be revealed to anyone but the

user and the service provider.

We provide an analysis of how our system achieves these goals in Chapter 5.

2.4 Machine learning

Machine learning is the broad field of using computers to learn representations

of data. It encompasses many techniques and continues to be an open area of

research. Additionally, it has proven successful at solving many real-world problems,

including natural language processing, speech recognition, handwriting recognition,

and others.

In this thesis, we formulate many of the challenges as pattern-recognition prob-

lems, and, in particular, we construct them as classification problems. Classification

is the process of determining which class a piece of data belongs to. That is, we want

to assign a label to a piece of data. For example, given biometric data, we would like

to know from which user that biometric data was collected; in this case the set of

labels (classes) is the set of user identities (users).

Because we assign these labels, this task is called supervised learning. The

process works by first collecting some raw data, and then assigning labels to them

to create a dataset. Instead of using raw data itself, one usually transforms the raw

data into a feature vector. A feature vector represents features of the raw data (like
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the mean). Given such a dataset, we can train a classifier. The classifier’s job is to

generate a model that is capable of assigning the correct label to each feature vector

in the dataset. One can view this task as learning a function that outputs some value

(i.e., label) for some input (i.e., feature vector). This process is called training and

when a dataset is used for training we call it a training dataset. Once a classifier

learns a model, then we can use the model to classify some new feature vector

(computed from some new sample) into one of the labels in the training dataset the

model was trained on. This process is called testing and a dataset used for testing is

called a testing dataset.

2.4.1 Classifiers

There are many different classifiers one can use to solve supervised learning tasks. In

this thesis we use four popular classifiers that span the gamut of possible functions

one can learn.

k-Nearest Neighbors

The first classifier, and perhaps the simplest to understand, is the k-Nearest Neighbors

(KNN) classifier. To train a k-Nearest Neighbors (KNN) classifier, no computation is

necessary. Instead, the training dataset is itself the model. At test time, the k-nearest

data points to the new sample are found (typically using some specified metric like

Euclidean distance) and the model outputs the label equal to the most frequent label

(i.e., majority vote) of those k neighbors. It is also possible to apply other statistics

than majority vote. If, for example, the distribution of labels is skewed in the training

dataset, then voting can be weighted according to the distribution of labels.
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Naive Bayes

The second classifier, Naive Bayes (NB) [161], takes a probabilistic view of classifica-

tion by assuming that a label C can be conditionally modeled by the features Fi of

the training feature vector:

p(C|F0, . . . , Fn)

Given this probability, we can label some new feature vector f by computing the

posterior probability p(C = c|Fi = fi) for each label c. The model chooses the label c

that maximizes the posterior probability:

arg max
c

p(C = c|Fi = fi)

The remaining question is: how does one compute the posterior probability p(C|F0, . . . , Fn)?

According to Bayes’ rule, the posterior probability is equivalent to:

p(C|F0, . . . , Fn) =
p(F0, . . . , Fn|C)p(C)

p(F0, . . . , Fn)

We can compute p(C) easily because we know the distribution of each label in the

training dataset. We also know that p(F0, . . . , Fn) is a constant since the feature

vector is also known. However, it is not clear how to compute p(F0, . . . , Fn|C). To do

so, we make the simplifying (naive) assumption that features of the feature vector

are independent:

p(F0, . . . , Fn|C) = p(F0|C) ∗ p(F1|C) ∗ . . . ∗ p(Fn|C)

Under this assumption, it is now easy to compute p(C|F0, . . . , FN).

The assumption is that given the label c, each feature Fi of the feature vector

can be modeled by some distribution p(Fi|C = c). For continuously valued features,
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the chosen distribution is often the Gaussian distribution since it is easy to compute

and many values tend to be normally distributed. Since a Gaussian distribution is

described by a mean and variance only, the NB classifier computes these values for

each feature across all training feature vectors. In addition to the mean and variance

of each feature, the NB classifiers also computes the prior probability of each label

in the training dataset. These values are the model. As test time, the NB classifier

classifies a test feature vector as the label that maximizes the posterior probability of

the model.

Random Forest

A Random Forest (FOREST) [27] is a collection of Decision Trees (hence, forest)

trained on different subsets of the dataset. For classification, a Random Forest outputs

the mode of the outputs of the decision trees. The use of many classifiers (or, more

generally, models) is called ensemble learning and they are the state-of-the-art method

for many tasks [39].

A Decision Tree can be thought of as tree of simple if-then-else statements.

That is, starting at the root, each node of the tree uses one particular feature of the

input and decides to traverse the left or right child node based on the value of that

feature. The leaves of the Decision Tree represent outputs (or classifications, in the

case of classification trees) corresponding to those labels. Thus, a path from the root

node to a leaf can be thought of as a conjunction that represents one of the labels.

Other paths represent the same or different label. Given a test data, each sample

evaluates the root node and recursively evaluates the appropriate child node until a

leaf is reached. The output of the classification is the label of the leaf node.

Support Vector Machine

A Support Vector Machine (SVM) [38] is linear, binary classifier. An SVM classifies
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samples by finding a hyper-plane with the largest separation between the set of

positive training feature vectors and negative training feature vectors (i.e., the

maximum-margin hyper-plane). Mathematically, this hyper-plane can be described

using the vectors that lie exactly on the margin of the hyper-plane (i.e., those vectors

that “support” the hyper-plane). Thus, these support vectors are the model. Given

this model, an SVM can classify a test feature vector by determining on which side

of the hyper-plane the test feature vector lies on and outputting the associated label.

Even if the training feature vectors are not linearly separable, we can use the

“kernel trick” to map the examples into a higher dimensional space where they might

become linearly separable [26]. An oft-used example of such a kernel is the Gaussian

radial-basis function.

Random

Finally, we compare each classifier to the Random (RAND) classifier as a baseline

to see how well the other classifiers are performing. It classifies test feature vectors

by randomly choosing a label weighted according to the occurrence of that label in

the training dataset. Thus, this serves merely as a baseline classifier, and, ideally, all

other classifiers should do at least as well as the RAND classifier.

2.4.2 Statistical measures

The problems we examine can be formulated as binary classification problems. This

means, that there are exactly two labels the classifier can output: positive or negative

(the semantics of the label are left to the specific problem). As such, we define the

statistical measures by which we will evaluate these classifiers according to these

labels.

We define a true feature vector as a feature vector in the training set that has a

positive label, and a false feature vector as a feature vector in the training set that has
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Figure 2.4.1: The definition of different classification results: TP, FP, TN, FN. Each sam-
ple is represented by a + and −. The left side represent a positive classification, while
the right side represents a negative classification. Thus, − sample on the positive side
represents a false positive, while a + on the negative side represents a false negative.

a negative label. A positive classification means the classifier assigned a positive label

to a test feature vector, while a negative classification means the classifier assigned

a negative label to a test feature vector. It follows, then, that a True Positive (TP)

occurs when a true feature vector is classified as positive, and a True Negative (TN)

occurs when a false feature vector is classified as a negative. A False Positive (FP)

occurs when a false feature vector is classified as positive, and a False Negative (FN)

occurs when a true feature vector is classified as negative. Figure 2.4.1 shows this

graphically.

Given such classification results, there are many statistical measures one can

compute. Table 2.4.1 summarizes the most common types of statistical measures one

can compute. Since different fields (e.g., biometrics, information retrieval, medicine)

tend to use different nomenclature, several measures go by multiple different names.

We use the following statistical measures to evaluate the performance of each

classifier:

Balanced Accuracy (BAC) tells us how well the classifier is performing by

weighting the negative and positive examples equally, since sometimes there

are more negatively labeled feature vectors than positively labeled feature
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Measure Formula Also Known As

True Positive Rate TP/(TP+FN) recall, sensitivity, true accept rate

True Negative Rate TN/(TN+FP) specificity, true reject rate

Pos. Predictive Value TP/(TP+FP) precision

Neg. Predictive Value TN/(TN+FN)

False Negative Rate FN/(TP+FN) false reject rate, false non-match rate

False Positive Rate FP/(TN+FP) false accept rate, false match rate

False Discovery Rate FP/(TP+FP)

False Omission Rate FN/(TN+FN)

Accuracy (TP+TN)/(TP+TN+FP+FN)

Balanced Accuracy 1/2*(TP/(TP+FN) + TN/(TN+FP))

Table 2.4.1: List of common binary classification statistical measures, their formulas, and
what they are also known as.

vectors in our datasets. A perfect classifier performs at 100 %.

Precision tells us what portion of positively predicted feature vectors were

correctly classified. A perfect classifier performs at 100 %.

Recall tells us what portion of positively labeled feature vectors does the

classifier classify correctly. A perfect classifier performs at 100 %.

False Accept Rate (FAR) tells us what portion of negatively labeled feature

vectors does the classifier mis-classify. A perfect classifier performs at 0 %.

False Reject Rate (FRR) tells us what portion of positively labeled feature

vectors does the classifier mis-classify. A perfect classifier performs at 0 %.
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2.4.3 Validations

Given a dataset, it is useful to validate how well it performs under the given metrics.

We performed three types of validations to evaluate the performance of our method.

k-fold cross-validation

A k-fold cross-validation divides the dataset into k subsets where each subset contains

the same proportion of samples according to the distribution labels for the entire

dataset. We then train a classifier over k − 1 of the subsets (the training set) and

classify the remaining subset (the testing set). We repeat this procedure for each

subset. This type of cross-validation tells us how well our classifier generally performs

since it will classify every sample in the dataset.

Leave-one-out cross-validation

Rather than split the dataset into random subsets, a leave-one-out cross-validation

splits the dataset according to some rule. For example, a leave-one-sample-out cross-

validation would divide the dataset into n subsets, where n is the number of samples

in the dataset. That is, we train a classifier using n− 1 samples, and test it on the

left-out sample. This would be repeated for each sample. This is equivalent to an

n-fold cross-validation. There are other rules one could use to split the dataset.

A leave-one-subject-out cross-validation leaves an entire subject’s samples out

as the testing set and trains the classifier using the remaining samples. We then

test the classifier using the left-out subject’s samples, repeating this procedure for

each subject. This type of cross-validation will tell us how general our classifier

is. Ideally our classifier would not be subject-specific yet do well in the case of a

never-before-seen subject.

A leave-one-location-out cross-validation leaves out all of the samples from a
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specific location as the testing set, and trains the classifier using the remaining

samples. We then test the classifier using the left-out samples from the chosen

location, repeating this procedure for each location. Like the leave-one-subject-out

cross-validation, this cross-validation tells us how sensitive our classifier is to location.

In the ideal case, our classifier would not be location-specific yet do well for each of

the locations we specify.

Hold-out validation

A hold-out validation, holds out a proportion from the dataset as the testing dataset.

That is, we train a classifier on the first N samples and leave the remaining samples

for testing. As the number of training samples increases, we expect the performance

of the classifier to improve since the classifier has more training samples to learn

from.

One can think of this kind of validation as a 2-fold cross-validation, however

it is somewhat different. First, the portion of training data versus testing data can

be different and not just half and half. More over, the training datasets and testing

datasets are not randomly chosen; rather, the first N samples are chosen for training

and the remaining are left for testing. This is important when time can be a factor

(e.g., the data is a time series) because it means we have no information from the

future, so to speak. As such, a hold-out validation more accurately simulates the

performance of a method when time is a factor.
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3
Recognizing wearers using

bioimpedance

We recognize people by learning a tell-tale characteristic about them. At some later

time, we can use this characteristic to determine whether that same person is present.

We call such characteristics biometrics [24]. Today, many systems use a wide variety

of biometrics to recognize individuals. A biometric, for example, can be used as an

authentication mechanism to control access to a particular resource.
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3.1 Introduction

In this chapter, we focus on a fundamental problem involving WBANs: who is

wearing the MN and SNs? The ability to recognize who is interacting with a device is

fundamental to many applications. For an entertainment device, it can recognize the

user and load the right game profile or music play list. For a home climate control,

it can adjust the environment to the wearer’s preference. Most compellingly, for a

health-monitoring device, it can label the SN’s data with the correct identity so that

it can be stored in the correct health record. (A mix-up of SN’s data could lead to

incorrect treatment or diagnosis, with serious harm to the patient.)

This problem is a form of the one-body verification problem [36], which asks:

how can one ensure that the SNs in a WBAN are collecting data about one individual

and not several individuals? This chapter deals with the strong version of this

problem, which requires identifying the specific individual these SNs are attached to.

Chapter 4 deals with the weak version of this problem.

To solve this problem, we present a biometric-based solution. In a biometric-

based solution, an SN or an MN collects some identifying information about the

wearer. It will then learn a model of that biometric so that it can use the model to

recognize that user at some later time. What we want is a simple, wearable device

that uses biometric techniques to recognize the user, then share that identity with

the WBAN. This device should be trained once, for each user that might wear it, but

thenceforth be completely automatic and unobtrusive.

3.2 Biometrics

Attaching an identity to sensor data requires some method of recognizing who the

device is sensing. To accomplish recognition, we use a biometric. In this section we
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describe what is a biometric, the kinds of biometrics that exist, and how they can be

used to recognize people.

3.2.1 Characteristics

According to Jain et al. [78], to qualify as a biometric, the chosen characteristic must

have the following properties: universality, measurability, uniqueness, permanence,

performance, circumvention, and acceptability. We adopt this characterization. A

characteristic must be measurable, meaning that there is some sensor capable of

capturing the characteristic for processing. Next, a characteristic must be universal,

meaning that most people have it. Likewise, although everyone may have such a

characteristic, the characteristic must also be individually unique within a given

population. For personal health sensors and other pervasive applications, performance

is the ability to unobtrusively measure the characteristic while maintaining good

measures of success. This ability to unobtrusively measure a biometric stems from

our desire to provide usable security for personal health sensing systems. The

characteristic must also have some permanence such that it does not vary over the

relevant time scale. Likewise, a biometric needs to be difficult to circumvent because

there are incentives for people to circumvent them. Finally, the biometric should

be acceptable, meaning that the target population is both willing to use the sensor

necessary to acquire the characteristic and allow that characteristic to be used for

recognition purposes.

3.2.2 Categorization

Physiological biometrics use some characteristic of your physiology to identify you.

These tend to be the biometrics people are most familiar with: fingerprint, hand

geometry, facial recognition, iris or retina recognition. Physiological characteristics

range from non-invasive characteristics like facial features and hand geometry to
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more invasive characteristics like the impression of a finger, the makeup of DNA, or

the structure of the iris. These type of biometrics typically require a sensor attached

to the subject or require the subject to place a limb on a sensor.

On the other hand, behavioral biometrics use some characteristic of your

behavior to identify you. Behavioral characteristics include things like the dynamics

of using a keyboard, the acoustic patterns of the voice, the mechanics of locomotion,

and how one signs a signature. In contrast to a physiological biometric, behavioral

biometrics can exhibit wide within-subject variation since they are sensitive to things

like mood. Likewise, they also tend to be easier to collect since they generally do not

require the subject to be interrupted. For an overview of behavioral biometrics, see

Yampolskiy et al. [159].

These categories are not mutually exclusive. For example, a voice-recognition

biometric has both physiological and behavioral aspects. Your voice is shaped by

your vocal tract (the larynx, pharynx, oral and nasal cavities), however your current

behavior can also affect your voice. For example, your current state of mind (e.g.,

being excited or nervous) can alter your vocal tract and therefore your voice.

Unfortunately, many of the mentioned biometrics are all ill-suited for use with

wearable sensing systems. The makeup of DNA, the structure of the iris, and the im-

pression of a finger may be difficult, if not impossible, to forge; however, they are also

difficult to unobtrusively measure. Recognition requires subjects to interrupt what

they are doing to measure the biometric. The behavioral characteristics mentioned

above can be measured unobtrusively as the person goes about their day, but they

may be easier to forge since they can be easily measured. A microphone can capture

a person’s voice, a camera can observe a subject’s gait, or a malicious application

could learn one’s typing rhythm [98]. In contrast, recognition for wearable sensing

applications demands a biometric that is simultaneously difficult to circumvent and

easy to measure continuously. We call such a biometric a passive biometric.
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3.2.3 Recognition

The usefulness of biometrics relates to their ability to be used to recognize a person

for some population.1 The size of the population is important since some sensors,

while seemingly unfit for distinguishing large populations, maybe be able to distin-

guish smaller populations. For example, Srinivasan et al. [136] used height sensors

to distinguish the subjects of a household. Although height might not be a distin-

guishing factor for large populations, they showed it is sufficiently distinct for a

population the size of a household. Given a population, biometrics can be used in

one of two ways: identification and verification.

Identification

Identification is a one-to-many matching. First, the system collects many biometric

samples from a population. The combination of the biometric samples and the

subject’s identity forms a biometric template for each subject. The system can then

use these biometric templates to determine the identity of any subject in that

population. That is, some unknown subject would present themselves to the system,

and it is the system’s job to determine which subject that is from the population. A

biometric system accomplishes by first measuring the unknown subject’s biometric. It

then examines its database of biometric templates, and finds the biometric template

that best matches that subject’s biometric sample. The system then asserts that the

identity of the unknown subject is the identity of the biometric template that best

matches that unknown subject’s biometric sample.

1 The target population is especially important in forensic science [35]. For a long time the Federal
Bureau of Investigation believed fingerprints were unique until an innocent man was linked to the
2004 Madrid train bombings using fingerprint matching [152].
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Verification

Verification, on the other hand, is a one-to-one matching. That is, a subject presents

an identity (e.g., a name), and it is the job of the biometric system to verify that

identity. First, the system collects a biometric template from the subject and stores

it. At some later time, a subject presents themselves to the system and asserts their

identity. The system would then retrieve from the database the biometric template

associated with that identity. It would then measure that subject’s biometric, and

try to match that subject’s biometric sample with the biometric template. If the

biometric sample matches the biometric template (for some matching metric), then

the asserted identity is verified. For example, one might use a generative model

to learn the distribution of a subject’s biometric and select a threshold to accept

a new biometric sample according to likelihood. Notice that there is no assumed

population; rather, it should reject everyone else in the world.

3.3 Bioimpedance

Our approach is to use bioimpedance, which measures the response of a living tissue

when exposed to an electrical current. In our wearable device, as seen in Figure 3.3.1,

eight electrodes are placed in contact with the wrist. Using two of these electrodes,

the device applies a small current to the body and then measures the impedance

of the tissue. Comparing these bioimpedance measurements with a model, built

earlier during a training phase, allows the device to determine that the person being

measured is indeed the person for whom we trained the model. If we train the device

for a set of users, e.g., the members of a household, then the device should be able

to recognize which of those people is wearing the device, or that none of them are

wearing the device.
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Figure 3.3.1: A subject wearing one of our bioimpedance sensors. The exposed wires
connect the electrodes to our custom sensor module (which is connected to the Shimmer
via the internal expansion port).

Such solutions have many advantages. Not all wearable devices need have

the ability to recognize the user; only one device need do so, assuming it can

communicate the identity to other devices proven to be on the same body. The

devices may be smaller and simpler than a device like a smart phone since they need

no interface for user recognition (or personal identification number or password

for authentication). The use of a biometric provides important security and privacy

properties. They can prevent unauthorized users from accessing sensitive data (e.g.,

in which an adversary Alice tricks Bob’s sensor into divulging his activity data to her

smart phone), or prevent the mis-labeling of sensor data that might later be used

for medically important decisions. Privacy is particularly important in health-related

pervasive applications [13]. Furthermore, these methods can support personalization

techniques so often envisioned in pervasive computing.

3.3.1 Theory

Bioimpedance is a physiological property related to a tissue’s resistance to electrical

current flow and its ability to store electrical charge. In in vivo human applications,
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it is typically measured through metallic electrodes placed on the skin and around

an anatomic location of interest (e.g., the wrist). These electrical properties are

predominantly a function of the underlying tissue being measured, including the

specific tissue types present (e.g., blood, adipose, muscle, bone), the anatomic

configuration (i.e., bone or muscle orientation and quantity), and the state of the

tissue (normal or osteoporotic bone, edematous versus normally hydrated tissue,

and so forth). Significant impedance differences exist between the varying tissue

types, anatomic configurations, and tissue state, each of which may provide a unique

mechanism for distinguishing among people.

We measure bioimpedance by applying a small sinusoidal current between a

pair of electrodes attached to the skin. The injected current creates an electrical

field within the tissue and results in a measurable voltage difference between the

two electrodes. Thus, potential voltage difference is a function of the underlying

tissue impedance. Specifically, the alternating-current version of Ohm’s law, V = IZ,

can be used to relate the voltage V and current I to the impedance Z of the

tissue sample. Many tissues show dispersive characteristics, meaning that their

electrical properties are dependent on the frequency at which they are measured.

Typically, the frequency of the alternating current is swept over a specific band

and enables electrical impedance spectroscopy. As a result, complex bioimpedance,

Z(ω), combines resistive and reactive components, Z(ω) = R(ω) + jX(ω), where R

is the frequency dependent tissue resistance, X is the frequency dependent tissue

reactance, ω is the signal frequency, and j represents the imaginary quantity2
√
−1.

Because two electrodes apply current and two electrodes measure voltage, there

are two modes of sensing. The first mode, called bi-polar sensing, occurs when the

voltage-measuring electrodes also apply current, which only requires two electrodes.

The second mode, called tetra-polar sensing, occurs when the two voltage measuring

2We use j, instead of i, so as to not confuse it with I for current.
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electrodes are distinct from the current-applying electrodes, which requires four

electrodes. Tetra-polar measurements do not suffer the high contact impedances

occurring at the electrode-tissue interface of current-applying electrodes, while

bi-polar measurements do [126]. However, as a result, tetra-polar measurements

require complex hardware for making accurate impedance readings.

Both tissue (physiologic) conditions (i.e., pH, temperature, and fluid flow)

and geometry will influence impedance measurements. Bioimpedance is dependent

upon the tissue being measured along with the configuration and geometry of the

impedance-measuring probe (i.e., electrode size and electrode spacing). Resistance

is primarily associated with the ability of a tissue to carry charge (i.e., current flow

through ionic solutions, both intra- and extra-cellular), and reactance is associated

with the ability of a tissue to store charge (i.e., the capacitive nature of a cell’s double

membrane). Geometrically, in the most generic case of a parallel plate geometry in

which a tissue sample is placed between electrodes of area A and spaced a distance

d apart, the resistance is proportional to d/(σA) where σ is a geometry-independent

tissue conductivity.

3.3.2 Location of interest

To explore the possibility of using bioimpedance as a biometric device, we identified

the wrist as the most viable anatomic location for which a wearable device could

be realized. We constructed a wrist wearable device with eight Ag/AgCl electrodes

(8 mm diameter) embedded within an elastic strap. The eight electrodes are inter-

faced through a set of 8× 1 multiplexors to a custom-built impedance analyzer [63]

such that current source and sink and voltage sensing pins can be connected to

any of the 8 electrodes. This configuration permits impedance measurements to be

recorded between any pair of electrodes as seen in Figure 3.3.2. The anatomy of the

forearm proximal to the wrist includes skeletal bones (radius and ulna), arteries,
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veins, nerves, muscles, adipose, skin, and interstitial fluids. Over the frequency range

of 10 kHz to 10 MHz reported values of bone conductivity and adipose conductiv-

ity are relatively stable at 0.1 Siemens per meter (S/m) and 0.01 (S/m). In muscle,

skin, and blood, however, the conductivity monotonically increases with frequency

with reported values ranging from 0.3 S/m to 0.5 S/m, 0.001 S/m to 0.5 S/m, and

0.7 S/m to 1.0 S/m [55]. While these numbers represent the values from a single

sample, “biological tissues are inhomogeneous and show considerable variability in

structure or composition and hence in dielectric properties” [55].

We can sense these different parts of the wrist anatomy by using multiple elec-

trode locations because different combinations of electrode locations will measure

impedance across different pathways. For example, impedances recorded between

adjacent electrodes are a function primarily of skin and peripheral structures, while

impedances recorded between opposing electrodes sense more internal structures.

By switching through multiple configurations of electrodes, a list of impedances

associated with an individuals’ wrists can be recorded and ultimately used for recog-

nizing an individual within a group of individuals. Figure 3.3.2 shows the anatomy

of a human wrist with several electrodes and paths where the current can travel.

Person-to-person differences at the wrist include: size, skin thickness, skin

water content, bony anatomy (bone sizes), vascular branch size and locations,

sub-dermal water content, and adipose content, muscle volume, bone size, and

vasculature within the sensing region. All of these parameters affect the impedance

measured at the wrist. For example, a difference in wrist size would represent a

change in electrode location, while a difference in the content and distribution of

the underlying tissue types would represent a person-specific conductivity.
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Figure 3.3.2: The anatomy of a human wrist [60]. We colored the bones (ulna and radius)
in gray, the muscle in red, and the skin in brown. The gray boxes on the outside of the
anatomy represent the placement of electrodes with corresponding labels. If electrode 0
were chosen as the current applying electrode, the blue dashed line represent possible
paths from it to electrode 1, 3, or 4. Notice how, depending upon the selected electrodes,
the path may pass through a variety of structures.
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3.4 Recognizing wearers

Recall that the goal of our device is to recognize who is wearing it. The intuition is

quite simple: gather bioimpedance measurements from a person and build a model

to represent that person’s bioimpedance signature; later, use that model to determine

whether a new and unknown bioimpedance measurements match. Thus, there are

two specific phases: enrollment and recognition. Before we discuss the details of the

enrollment and recognition phases, we first discuss the details of the bioimpedance

measurements and features we use in those phases.

3.4.1 Bioimpedance measurements

Due to collection time, it would be infeasible to measure bioimpedance from all

combinations of the eight electrodes. Instead, we carefully chose specific electrode

configurations. We captured measurements from two types of electrode configura-

tions: those electrodes directly across from one another (e.g., electrodes 0 and 4

as shown in Figure 3.3.2), since they are the maximal distance away from each

other and therefore provide more tissue for the current to travel through; and those

electrodes that are exactly one electrode apart (e.g., electrodes 0 and 2), since

the current will travel through the outer regions of the wrist. We did not mea-

sure bioimpedance at electrodes directly next to each other since the skin would

be the primary tissue, which is subject to variability due to sweat and externally

applied fluids (e.g., lotions, hand sanitizers, or topical medicines). Likewise, we

did not measure bioimpedance for those electrodes spaced exactly two electrodes

apart because in our preliminary tests those measurements exhibited characteristics

similar to those collected from electrodes maximally apart. Figure 3.4.1 shows an

example bioimpedance measurement from a single subject for the different electrode
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Example bioimpedance measurements of a single subject

Figure 3.4.1: Example bioimpedance measurements collected from a single subject
for the 12 different electrode configurations. Note: frequency is plotted on a logarithmic
scale.

configurations.

3.4.2 Feature extraction

Given a set of frequencies and their corresponding bioimpedance measurements, we

extract four features from each bioimpedance measurement: two from the impedance

magnitude and two from the impedance phase. The features are simple: we fit one

line to the impedance magnitude and another line to the impedance phase both in

log-log space. The inspiration for this feature can be seen in Figure 3.4.1, which

shows the impedance magnitude and phase of a human wrist. In log-log space,

they exhibit a linear relationship. Because measurements are inherently noisy, a line

smooths over the individual measurements while also preserving the general shape

of the curve formed by the measurements. Because each line is succinctly described

by a slope and intercept there are four such features (two for each of the magnitude

and phase components). We found these properties to be mostly unique among

individuals. Additionally, these features reduce the dimensionality of the data from

100 (i.e., the number of frequencies) to 4, which in turns lowers the computational

and energy overhead. Although we explored other features, including using the raw

data itself, we found these features performed the best according to our metrics.
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Our final feature vector consists of the concatenation of these features for each

electrode configuration. Since we take measurements from 12 electrode configura-

tions, this results in a feature vector of dimension 12× 4 = 48, which is much smaller

than the raw data (which is of dimension 12× 50× 2 = 1200). This concatenation

assumes all electrode configurations will provide some information about the iden-

tity of the wearer; however, this may not always be the case. We explore different

combinations of electrode configurations that perform best according to our metrics.

Because many of our studies took place outside of the lab, we had to discard

some bioimpedance samples. We discarded all samples where we did not collect

a full bioimpedance measurement at each electrode configuration and frequency.

There were only 5 such instances of incomplete bioimpedance measurements and the

reason for this is unknown. In a real system, incomplete bioimpedance measurements

could be detected and the measurement could be retaken. We also discarded all

samples where the wrist was deemed to not be in contact with the device. We

deemed a sample to be non-contact if the maximum impedance magnitude was

greater than an empirically determined threshold of 10× 106 Ω as the non-contact

impedance magnitude shows in Figure 3.4.2. Finally, we discarded all samples where

the sum of squared errors of the fitted line in log-log space was above an empirically

determined threshold of 0.5. We discarded these samples because such a poor fit

indicated a noisy sample, due to motion or other interference with the reading.

3.4.3 Cohort of subjects

Because we cannot know a priori the population of subjects who will be using the

device, we necessarily need to choose a cohort of subjects as an example population.

We believe the archetypal cohort is a family since that is the target population for

many applications of interest. This means that the cohort of subjects in which the

37



101 102

Frequency (kHz)

10-1

100

101

102

103

Im
p
e
d
a
n
ce

 M
a
g
n
it

u
d
e
 (

kΩ
)

No Contact Human Wrist 4 kΩ Resistor

Various bioimpedance measurements using electrode pair 04

Figure 3.4.2: Example impedance measurements from electrode configuration 04 for
1) no contact, 2) bracelet in contact with a human wrist, and 3) bracelet attached to 4 kΩ
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device will be used is relatively small (typically 2 to 8 subjects).

3.4.4 Enrollment mode

Before a person can use the device daily, they must train it to recognize their

bioimpedance by putting the device into enrollment mode. In this mode the device cap-

tures bioimpedance measurements for some designated time (a single bioimpedance

measurement takes about 15 seconds). The device uses these training measure-

ments as inputs to an enrollment algorithm that learns a model of the enrollee’s

bioimpedance. (It might be necessary to compute this model off the device because

of resource constraints.) Once a model of the enrollee’s bioimpedance is trained, it is

loaded into the device for use.

Given a set of training feature vectors from a subject, we learn a model of their

bioimpedance measurements using the enrollment algorithm. To do so, for each

subject we learn a binary classifier using that subject’s feature vectors as positive

examples (i.e., they are labeled positively) and all other subjects’ feature vectors

as negative examples (i.e., they are labeled negatively). For a device being used by

multiple people, we load it with multiple models and use a one-versus-all strategy

for multi-class classification [124], but we limit our analysis to a single enrolled user.
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We explore how the amount of training data affects our performance metrics, since

typically more samples means better performance.

We examined three different classifiers for use as an enrollment algorithm: NB,

SVM, and FOREST. See Section 2.4 for details about these classifiers.

3.4.5 Recognition mode

Once a user is enrolled, the device enters recognition mode. In recognition mode,

the device periodically collects bioimpedance measurements. The device uses an

identification algorithm or a verification algorithm to determine whether the enrollee’s

model matches the measured bioimpedance.

Given a set of test feature vectors from an unspecified subject, we can use

the enrolled subject’s trained model to determine whether a particular test feature

vector came from that subject. A feature vector that is classified as positive for a

given subject’s model is said to match that subject’s bioimpedance; otherwise, the

test feature vector is classified as negative because it does not match that subject’s

bioimpedance.

3.4.6 Evaluation parameters

The FOREST and SVM classifiers require us to choose some parameters. (The NB

classifier has no such parameters.) To choose parameters, we ran a 10-fold cross-

validation of a small subset of our dataset over the parameter space of each classifier.

In the case of the FOREST classifier, we looked at different settings of the number

of trees in the forest and found that 10 worked best. In the SVM case, we looked at

different kernels (linear, polynomial, and radial-basis function), soft-margin costs,

and, in the case of polynomial and radial-basis function kernels, their respective

kernel coefficient gamma [26]. We used a grid-search to search this parameter space

and found that a 3rd degree polynomial kernel with a cost of 32 and gamma of
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0.03125 worked best. During this parameter search, the performance of the SVM

classifier tended to be better than the KNN classifier, so we excluded the KNN from

any further consideration.

3.4.7 Evaluation metrics

Consider a set of test feature vectors from a given subject and a set of test feature

vectors from other subjects. We label the test vectors measured from that subject

as positive and all other test vectors as negative. We then use the model trained for

that subject to classify all the test feature vectors, resulting in a positive or negative

classification for each. Ideally, the model classifies only those test feature vectors

from the subject as positive and all others as negative. Given such classification

results, we evaluated the performance of these classifiers using the BAC, FAR, and

FRR metrics described in Section 2.4.

Although we computed these metrics for every subject in our datasets, we

present summary statistics of these metrics over all subjects. Thus any mentions of

BAC, FAR, and FRR should be interpreted as the average BAC, average FAR, and

average FRR over all subjects. Note that because the number of positive samples

for any given subject is smaller than the number of negative examples by a factor

of N − 1 where N is the number of subjects, a classifier that always predicts the

negative case will perform at a FAR of 0 %, BAC of 50 %, but FRR of 100 %. For

comparison’s sake, we also computed these metrics using the RAND classifier. This

classifier serves as a baseline performance measure to compare with our methods

that we present.
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Figure 3.5.1: Our bench-top bioimpedance system. The bracelet has a Velcro fastener to
hold it in place during bioimpedance measurements. Here, the bracelet is attached to a
resistor array we use for calibration.

3.5 Measurability

Recall that a passive biometric has the following characteristics: universality, unique-

ness, permanence, unobtrusively measurable, and difficult to circumvent. In this

section, we describe the hardware used to measure bioimpedance.

3.5.1 Unwearable device

To collect a large dataset over many frequencies and electrode configurations, we

used a custom-designed impedance analyzer constructed specifically to record in

vivo bioimpedance measurements [64]. Figure 3.5.1 shows this bench-top system.
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Hardware

The impedance analyzer is designed around a 32-bit ADSP-21065L digital signal

processor [7] and a Spartan XC2S30 field programmable gate array [158]. These

digital processing devices interface with a wide-band (up to 300 MHz with 1 µHz

resolution) AD9852 direct digital synthesizer [5] used to drive digital signals through

a 14-bit AD9754 digital-to-analog converter [4] and generate sinusoidal voltages over

wide range of frequencies (10 kHz to 10 MHz). A front-end analogue amplification

stage drives these voltages through a 100 Ω current sensing resistor to a channel

output (and ultimately to an electrode in contact with the skin) and 16-bit AD7677

analogue-to-voltage converters [3] are used to gauge both voltages and currents from

the system through which impedance can be calculated. This impedance analyzer

generates output voltage signals up to 2 V peak-to-peak and maximum currents of

10 mA, has a bandwidth of 10 MHz, a signal-to-noise ratio greater than 94 dB up to

2 MHz, 90 dB up to 7 MHz, and 65 dB at 10 MHz, an accuracy of 99.7 %. It is able

to record both bi-polar and tetra-polar impedance sweeps from 20 logarithmically

spaced frequencies ranging from 10 kHz to 10 MHz in 10 seconds. A Topward 6303D

digital power supply [1] provides power to the impedance analyzer.

The impedance analyzer is interfaced to a bracelet with eight electrodes (visible

at lower right) through an 8-to-1 multiplexer and digital input/output control mod-

ule [45] that connects current and voltage channels to individually chosen electrodes.

This permits impedance measurements to be recorded between any pair of electrodes

and thus across almost any part of the wrist. Depending on the selected electrodes,

our system can take two kinds of measurements. A bi-polar measurement (i.e., a

measurement using two electrodes) occurs when the voltage-measuring electrodes

also apply current. Conversely, a tetra-polar measurement (i.e., a measurement using

four electrodes) occurs when the two voltage measuring electrodes are distinct from

the current-applying electrodes. Tetra-polar measurements do not suffer the high
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contact impedances occurring at the electrode-tissue interface of current-applying

electrodes, while bi-polar measurements do. However, as a result, tetra-polar mea-

surements require more complex hardware for making accurate impedance readings.

Because impedance can be measured across different pairs of electrodes, the system

is (in effect) sensing different parts of the anatomy. By switching through multiple

configurations of electrodes, a list of bioimpedance measurements associated with an

individual’s wrist can be recorded and ultimately used for recognizing an individual

from within a group of individuals. Finally, we use a resistor array to calibrate the

system, and a laptop computer to communicate with the analyzer and multiplexer

through a USB-based serial communication protocol.

Software

We wrote custom software in Ruby [127] to control the system. For each desired

electrode configuration, we ran the following sequence. First, the multiplexer is

instructed to select the correct electrode configuration. Next, the impedance analyzer

is instructed to sweep through the desired frequency range. Once complete, we

compute the impedance from the returned data over all frequencies and save the

impedance to a file. We repeat this sequence to acquire five measurements per

electrode configuration per subject.

3.5.2 Wearable device

We imagine the device to be a piece of jewelry, not unlike a watch or bracelet, that

would contain small electrodes to measure bioimpedance. The form factor of a

watch has several technical advantages. First, it is worn the same way each time,

more or less; issues with placement of the electrodes are diminished because it can

sense data from nearly the same location each time and in the same orientation.

Second, a watch can be instrumented to detect when it has been placed on and taken
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off a person. Attachment can be detected, for example, by the ends of the watch

being clasped together or by detecting properties of the skin such as temperature

or moisture. Because we require the electrodes to be in contact with the body and

not all form factors will afford continuous contact, a mechanism to detect when the

device is in contact with a body is necessary. Such simple detection mechanisms also

allow us to conserve energy by only performing recognition when the device is in

contact with a person.

To explore this vision, we designed and manufactured a wearable sensor

to measure the bioimpedance of a person’s wrist. The wearable sensor is built

on top of the Shimmer Platform [132] and uses a custom bioimpedance sensor

module we designed. Shimmer is an open-source, low-power, wireless sensing

platform. It provides processing (via a MSP430 microcontroller unit), wireless

communication (via Bluetooth or 802.15.4), and storage (via a Secure Digital (SD)

card) capabilities and includes a simple sensor in the form of an accelerometer. It

also provides an internal and external expansion connector that allows it to interact

with custom sensor modules (e.g., a gyroscope, magnetometer, Electrocardiography

(ECG), Electromyography (EMG), or Electro-dermal Response (EDR)). Our custom

bioimpedance sensor module (Figure 3.5.2) uses this internal expansion connector,

both enclosed by a custom-designed case. The bioimpedance sensor module includes

a receptacle that enables a series of electrodes to be connected to it. As such, we

designed and manufactured an elastic sleeve with eight evenly spaced electrodes.

The sleeve connects to the bioimpedance sensor module and includes a pocket that

holds the Shimmer. Figures 3.3.1 and 3.5.3 show the final form factor.

The bioimpedance sensor module (Figure 3.5.2) is designed around the Ana-

log Devices AD5933 Impedance Analyzer [2], which allows us to do bi-polar

bioimpedance sensing. The AD5933 includes a frequency generator that allows
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Figure 3.5.2: Our custom designed bioimpedance sensor module with the major compo-
nents labeled. It is approximately 45 mm long by 19 mm wide and fits comfortably on top
of a Shimmer with a custom-designed enclosure.

Figure 3.5.3: Our wearable bioimpedance sensor. The sleeve (top) is inside out to display
the electrodes. The Shimmer (bottom) and wires are typically housed within the sleeve,
but are shown exposed here. For reference, the Shimmer is approximately 53 mm long by
32 mm wide.
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the excitation at a specified frequency between 1 kHz and 100 kHz with a resolution

of 0.1 Hz, and it can measure impedances between 1 kΩ and 100 MΩ to within 0.5 %

total system accuracy. It also includes an internal temperature sensor capable of

sensing between −40 ◦C to 125 ◦C (±2.0 ◦C), since error in impedance measure-

ments can be on the order of 30 ppm/◦C. The Shimmer controls the AD5933 via the

I2C bus. Because we want to allow multiple electrode locations, the sensor module

includes two Analog Devices ADG1608 8-Channel Multiplexors [6]. Thus, the sensor

module is capable of selecting 2 of 8 possible electrodes for bi-polar sensing. We

call such a selection an electrode configuration. These multiplexors are controlled

by setting specific general purpose input/output pins. Electrodes are connected

to the sensor module via an 8-pin Hirose 3260-8S3(55) Connector [70] such that

custom electrode configurations can be independently built and interfaced with

the sensor module. The Shimmer provides regulated power to the sensor module,

which is fed to an Analog Devices ADR433 ultra-low noise voltage reference. This

ADR433 [10] provides a stable 3 V supply voltage needed for the impedance analyzer

while a Microchip MCP1252 charge pump [110] feeds a 5 V supply voltage to the

multiplexors.

Software

The Shimmers run the TinyOS operating system [140]. We wrote custom software

to communicate with the impedance analyzer and multiplexors. The software is

divided into three major parts: a low-level driver, a high-level driver, and a logging

application.

The low-level and high-level drivers allow applications to communicate with

our sensor module. The low-level driver is a barebones interface to the AD5933 that

wraps the I2C communications. The high-level driver implements a state machine that

allows more natural interaction with the sensor module. It also allows applications
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to adjust the settling time (i.e., the duration between the stimulus and measurement)

and handles failures gracefully. In total, the low-level driver compromises 381 lines

of nesC code while the high-level driver compromises 363 lines of nesC code.

The logging application uses the high-level driver to interact with the sensor

module. Before taking bioimpedance measurements, it samples the accelerometer

for 5 seconds at 50 Hz to classify the type of motion (i.e., low energy, medium energy,

high energy) the subject’s wrist is experiencing. Afterwards, the impedance analyzer

is commanded to measure temperature using its internal temperature sensor. This

measurement allows us to account for variable temperatures since the input amplifier

gain varies with temperature. Next, two electrodes on the wrist strap are selected

using the multiplexors, both to be used as stimulus and measurement electrodes. We

then tell the impedance analyzer to take measurements at 50 logarithmically spaced

frequencies from 1 kHz to 100 kHz. Due to the logarithmic spacing of the frequencies,

the impedance analyzer’s internal mechanism to step through frequencies linearly

can not be used, so each measurement must be commanded individually. After one

frequency sweep, another set of stimulus and measurement electrodes is selected and

another frequency sweep is started. After a complete measurement, the impedance

analyzer is sent to sleep to conserve power. We use a timer to wake the impedance

analyzer after a preset interval and another measurement is started. Measurement

data can either be stored to a MicroSD card or sent via the Bluetooth or 802.15.4

radio. In total, the logging application compromises 512 lines of nesC code.

In addition to the logging application, we also developed an application that

allows collection of bioimpedance samples via Bluetooth. This proved useful for

doing many of the in-the-lab studies. It is also possible to use this application to

communicate with a smart phone or other Bluetooth-enabled mobile device, thereby

making our system a truly mobile system.
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Energy Measurements

Figure 3.5.4 shows how much energy our wearable device uses over the course of

one full sample. When idle, the Shimmer draws 1.0 mA on average. There are two

phases in the measurement. During the first phase, we sample the accelerometer,

which draws an average current of 6.8 mA, lasts 6 seconds, and consumes 11 µA h

of charge. During the second phase, we sample bioimpedance at 50 different fre-

quencies for 12 different electrode configurations (i.e., 600 frequencies in total).

On average it draws 32 mA of current, lasts 16 seconds, and consumes 140 µA h of

charge. The spikes present in the second and final phases are a result of writing

data to the MicroSD card. The full measurement consumes 151 µA h. Given that

the Shimmer has a 450 mA h battery and we sample every 5 minutes, our wear-

able sensor can log bioimpedance measurements for about 1.5 days. This energy

measurement represents our logging application. In a mobile system, the device

would communicate wirelessly with some other mobile device like a smart phone.

According to the Shimmer specifications, the Bluetooth radio consumes 20 mA “once

paired regardless of data payload” [132]. This 20 mA is an order of magnitude larger

than the average cost of writing to the MicroSD card (quoted as 3 mA), but we only

need to send one message per reading, and we can optimize the size of the data

payload.

Calibration

To compute bioimpedance from the raw data, the system first needs to be properly

calibrated. The AD5933 internally computes the Discrete Fourier Transform of

1024 ADC samples at each frequency. This gives the power of the signal in the

form of real r and imaginary i components. The magnitude of the impedance

measurement at frequency ω is computed as |Z(ω)| =
√
r2ω + i2ω. The phase of

48



 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25

Av
er

ag
e 

C
ur

re
nt

 (m
A)

Time (s)

Average current drawn by our wearable device over time for a single bioimpedance sample

accelerometer

bioimpedance

idle

Figure 3.5.4: A representative energy measurement of our bioimpedance sensor. Notice
the two phases present in the measurement: the accelerometer sampling phase, and the
bioimpedance sampling phase. The large spikes in each phase correspond to writing to
the SD memory card.

the impedance measurement is computed as ZØ(ω) = tan−1
(
iω
rω

)
, taking care to

ensure iω
rω

is positive quantity and rotating this phase angle such that it falls in the

appropriate quadrant in the complex plane depending on the actual signs of the

real and imaginary components. Given the magnitude and phase, we compute the

resistive and reactive components of impedance, represented by R(ω) and X(ω), by

projection onto the Cartesian plane:

Z(ω) = R(ω) + jX(ω)

= |Z| cos(ZØ(ω)) + |Z| sin(ZØ(ω))

where j is the imaginary number.

However, to get these impedance measurements, the device must be calibrated

using a known impedance value. Calibration is important because different sensor

modules will have different uncalibrated impedances due different parasitic elements

and/or artifacts from the amplifiers present in the hardware. We built three of these

sensor modules, so we must calibrate each device to be sure that our studies are

not affected by the particular choice of hardware. In addition, our particular device
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senses from different electrode configurations via a pair of multiplexors which can

themselves introduce additional parasitic elements. Thus, we also must calibrate for

every electrode configuration.

To calibrate our devices for a specific electrode configuration, we used a known

reference impedance value |Z|ref in the form of an array of 1 kΩ ± 5 % resistors

(shown in Figure 3.5.5; we used a digital multimeter to record the exact values

between electrodes). To calibrate impedance magnitude, we first compute the uncal-

ibrated impedance magnitude |Z(ω)|uncal of the measured impedance as described

above. Because we know the expected magnitude of the reference impedance |Z|ref

(the impedance magnitude of a resistor is equal to its resistance), we compute a gain

factor as:

Gain Factor(ω) =
1

|Z|ref × |Z(ω)|uncal

This gain factor allows us to compute the actual impedance magnitude for some new

uncalibrated impedance magnitude as:

|Z(ω)| = 1

Gain Factor(ω)× |Z(ω)|uncal

A similar calibration procedure can be followed for the impedance phase. Since

resistors have no impedance phase shift (aside from some parasitic capacitance,

which we can ignore because these effects fall outside of the 100 kHz bandwidth

of our system), we first compute the uncalibrated impedance phase ZØ(ω)uncal as

specified above. This value is the phase difference that accounts for all phase shift

attributed to the hardware itself since the impedance phase of a resistor should be

zero. Given this phase difference, we compute the actual impedance phase for some

new uncalibrated impedance phase as:

ZØ(ω) = ZØ(ω)uncal − Phase Difference(ω)
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Figure 3.5.5: The resistor array used to calibrate our bioimpedance device. The 1 kΩ ±
5 % resistors are connected in series and act like a pseudo-wrist that can be electrically
connected to the electrodes to calibrate the device. Since we measure bioimpedance at
multiple electrode configurations, the reference resistance between a pair of electrodes
will vary depending on the number of resistors between them. For example, the resis-
tance between electrodes 04 is 4 kΩ.

As mentioned above, these calibration procedures are performed for each electrode

configuration, which results in a gain factor and phase difference for each frequency

and electrode configuration that is specific to that sensor module. More information

on system calibration can be found in the AD5933 data-sheet [2].

The gain factor can also be computed for different temperatures, however, the

influence of temperature variation on the AD5933 is linear (30 ppm/◦C) and can

easily be accounted for. Moreover, the temperature variation in our datasets showed

little variation so we did not do any such compensation.

During calibration we noticed many of the lower frequencies exhibited random

noise in the signal. We therefore discard frequencies below 10 kHz, resulting in

50 total frequencies. Although the source of this noise is unknown, development

boards provided with the AD5933 exhibited similar noise so we do not believe it is

an inherent limitation in the design of our own sensor module. Henceforth, all data

reported represents measurements that have been calibrated in this way.
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3.5.3 Electrode configurations

Recall that there are two modes of measuring bioimpedance: tetra-polar and bi-polar

sensing. Tetra-polar sensing uses four electrodes, while bi-polar uses two as described

in Section 3.3. Additionally, recall that we sense from eight locations on a person’s

wrist according to Figure 3.3.2. We compactly represent the choice of electrode

configurations as such. For tetra-polar sensing, 1234 means that electrodes 1 and

2 were used to apply the current while electrodes 3 and 4 were used to sense the

voltage change. For bi-polar sensing, 12 means that electrodes 1 and 2 were used to

both apply the current and sense the voltage change.

3.6 Uniqueness

Uniqueness is an import characteristic of biometrics. However, it must be qualified by

stating the size of the population for which the biometric is presumed to be unique.

Over the lifetime of a personal device, it might only be used by a very small set of

people (e.g., those living in a household). Thus, the purpose of this section is to

understand how unique bioimpedance is for small populations.

3.6.1 Dataset

We collected data from human subjects using a protocol and device approved by our

Institutional Review Board. After obtaining informed consent, we instructed users

to fill out a questionnaire to collect their age and gender. We used an AccuFitness

MyoTape Body Tape Measure [113] (as shown in Figure 3.6.1, at right) to measure

the circumference of their left wrist, to millimeter precision. We measured the

circumference at the location just below the ulnar styloid process as shown in

Figure 3.6.1 at left.
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Figure 3.6.1: The AccuFitness MyoTape Body Tape Measure we used to measure the
circumference of each subject’s wrist just below the subject’s ulnar styloid process.

Once enrolled, we used the bench-top system (Figure 3.5.1) to collect data

from subjects. We placed the electrode bracelet on the subject’s left wrist and we

instructed them to keep their wrist still until data collection finished. The data

collection sequence took roughly 12 minutes per subject. After completion, the

subject was compensated for their time.

We collected bioimpedance measurements from 46 subjects, 22 males and

24 females. The average subject age was 21± 3 years; all subjects were 18 years or

older. In total, we collected 80 measurements from each subject (5 measurements for

each electrode configuration), resulting in 3680 total bioimpedance measurements.

Figure 3.6.2 shows a histogram of wrist circumferences by gender. The average

subject wrist circumference was 16.00 cm± 1.33 cm. For females, the average wrist

circumference was 15.10 cm± 0.55 cm, and males 17.00 cm± 1.21 cm.

We collected bioimpedance samples from 16 different electrode configura-

tions, 4 bi-polar and 12 tetra-polar electrode configurations. The bi-polar electrode

configurations we collected were: 04, 15, 26, and 37. The tetra-polar electrode

configurations we collected were: 0415, 0426, 0437, 1526, 1537, 1540, 2637,

2640, 2651, 3740, 3751, and 3762. The electrode configurations correspond to

those electrodes that are maximally distant apart.
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Figure 3.6.2: A histogram of wrist circumferences by gender. Males tend to have larger
wrist circumferences.

3.6.2 Parameters

Recall that our method can be parameterized by cohort size and by electrode

configurations. We explored the parameter space to find an optimal setting that

maximizes recognition rates across all subjects. For each experiment we show the

top performing electrode configuration.

For each subject we ran a leave-one-out cross-validation over the set of feature

vectors in a cohort of subjects according to the algorithms specified in Section 3.4.

We computed the FAR, FRR, BAC for each subject, and we report the average of

these measures over all subjects in the cohort. See Chapter 2 for the definition of

these statistical measures.

Because of the large size of our dataset, we need to subdivide it into cohorts.

It is, however, infeasible to evaluate all combinations of subjects for the specified

cohort size (e.g., there are more than 260000000 combinations of subjects for a

cohort size of 8.) Thus, we randomly sampled all possible cohort combinations such

that we have a 95 % confidence (with a 1 % margin of error) that our sample size is

representative. In our experiments, we examined cohort sizes from 2 to 8 subjects.

We also present a 46-subject cohort for the sake of comparison.
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3.6.3 Evaluation

To evaluate the uniqueness of bioimpedance, this experiment focused on the ability

of our method to distinguish among people, also known as identification. We sought

to determine how well our method performs for small population sizes where all the

users are known and the goal is to recognize whether the device is worn by subjects

in that population.

Single electrode configurations

In this experiment, we tested all combinations of electrode configurations accord-

ing to the method described in Section 3.4. The purpose of this experiment was

to understand how well a single electrode configuration can recognize a subject.

Figures 3.6.3 and 3.6.4 show the results of this experiment for a single bi-polar and

tetra-polar electrode configuration and for different classifiers.

Recognition rates decreased as the cohort size increased, as one would expect.

The NB and FOREST classifiers perform better than the SVM classifier. The FOREST

classifier had lower FAR than the NB classifier, but at the expense of a higher FRR.

If we extrapolate out to the 46-subject cohort size, the NB classifier asymptotes

around 80 % BAC, while the FOREST classifier decreases linearly as the cohort size

increases. The SVM classifier becomes useless at such a large cohort size. Both the

SVM and FOREST classifiers were more sensitive to the unbalanced dataset than the

NB classifier.

There was little difference between the top performing single tetra-polar 2637

and bi-polar electrode configuration 37. Both the NB and FOREST classifiers per-

formed similarly. The SVM classifier, on the other hand, performed better slightly

better when it uses the tetra-polar electrode configuration. For a single electrode

configuration it makes more sense to use bi-polar sensing because the overhead of
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Figure 3.6.3: Electrode configuration 37 was the best-performing single, bi-polar elec-
trode configuration. The NB and FOREST classifiers performed better than the SVM
classifier.
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Figure 3.6.4: electrode configuration 2637 was the best-performing single, tetra-polar
electrode configuration. These results are similar to the bi-polar electrode configuration
case 37 shown in Figure 3.6.3.

tetra-polar sensing does not compensate for increased recognition performance.

Electrode configuration 37 clearly played a part in both the top performing bi-

polar and tetra-polar electrode configurations. In fact, the next best-performing tetra-

polar electrode configuration was 1537. There was power in sensing at electrode

configuration 37. The location of these electrodes on the bracelet corresponded to

the medial dorsal and medial palmar sides of the wrist. This was one of the smallest

distances between any pair of electrodes we examined because of the oval shape of

people’s wrists.
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Combined electrode configurations

Since we are not limited to just one particular electrode configuration, we hypoth-

esized that it might boost recognition rates to concatenate feature vectors from

multiple electrode configurations into a combined electrode configuration feature

vector. For example, in the bi-polar case we can incorporate feature vectors from elec-

trode configurations 15 and 26 by concatenating them together. This approach could

boost recognition rates because the applied current takes different paths through the

subject’s wrist for different electrode configurations.

In the bi-polar case, we explored all combinations of bi-polar electrode configu-

rations (e.g., 15 26, 15 37, . . ., 15 26 37 48); there are 11 such combinations.

In the tetra-polar case, we explored all combinations of tetra-polar electrode config-

urations such that the electrodes supplying current are distinct (e.g., 1526 2637,

but not 1526 1537); there are 243 such combinations.

Figures 3.6.5 and 3.6.6 show the results of this experiment. In comparison

to the single electrode configuration, the difference in performance was minimal

for both the NB and FOREST classifiers. For all classifiers, however, using multiple

tetra-polar electrode configurations reduced the FAR, but typically at the expense

of the FRR in the case of the NB classifier. However, the performance of the SVM

classifier increased dramatically with the use of multiple electrode configurations,

so much that it becomes the best-performing classifier with a BAC of 88.0 % for a

cohort of eight subjects. Overall, both the NB and SVM classifiers benefited from

multiple electrode configurations.

Once again, the electrode configuration 37 made an appearance in both exper-

iments. The top 6 bi-polar combined electrode configurations included 37, while at

least the top 10 tetra-polar combined electrode configurations do as well. Thus, we

recommend that a bracelet needs to include electrodes that have contact with the
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Figure 3.6.5: electrode configurations 15 26 37 were the top performing bi-polar com-
bined electrode configuration. The usage of multiple electrode configurations increase
performance slightly.
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Figure 3.6.6: electrode configurations 0437 1537 2637 3740 were the best-
performing tetra-polar combined electrode configurations. These results follow similar
trends to previous experiments in Figure 3.6.4 with a slight performance increase.

medial palmar and medial distal sides of the wrist to achieve the best recognition

performance.

Notice that the FAR decreased at the expense of a higher FRR. Thus, if an

application requires fewer false accepts, then we recommend using multiple com-

bined electrode configurations. The best-performing bi-polar combined electrode

configurations included almost all of the electrode configurations we used to take

bi-polar measurements. This suggests that we should have added other bi-polar elec-

trode configurations to our collection process. For example, we could have sensed
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Figure 3.6.7: Recognition performance for all electrode configurations. The SVM clas-
sifier benefits most from all electrode configurations while the NB and FOREST do not
benefit.

from electrode configurations 02, 03, etc. Even though the best-performing bi-polar

combined electrode configurations included most of the electrodes, electrode con-

figurations 26 37 performed similarly. Thus at least four electrodes are necessary

for bi-polar measurements. For tetra-polar measurements, we recommend at least

six to get recognition on par with the top performing electrode configurations. The

best-performing six-electrode tetra-polar combined configuration was 0437 2637.

All electrode configurations

Finally, we tried combining tetra-polar and bi-polar measurements into one feature

vector. That is, what happens when we give all the data we collected to each classifier

and evaluation how each performs? They should at least perform as well as the top

performing tetra-polar combined electrode configurations.

Figure 3.6.7 shows the results of this experiment. Given all electrode config-

urations, the SVM classifier performed the best once again. Since it takes around

2 minutes to collect all of these electrode configurations, we do not recommend this

approach. It does, however, give us a bound on how well our method performs when

given all the information in our dataset.
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Wrist circumference recognition

From the data in Figure 3.6.2, we hypothesized that a subject’s wrist circumference

might serve as a good feature for recognizing subjects because many of the subjects

fall into their own bin on the histogram. We did not, however, take multiple measure-

ments of each subject’s wrist circumference, and so the distribution of measurement

errors is unknown. Knowing this distribution is important because a hypothetical

device that measures wrist circumference will have some measurement error that

would depend on the measurement characteristics of that device. We can, however,

simulate taking multiple measurements by assuming some distribution of measure-

ment error. For example, if a subject’s wrist circumference was measured to be 15 cm

and the device has a measurement error of 5 mm, then we can randomly sample a

normal distribution with mean 15 cm and standard deviation of 5 mm. That is, we

assume the measurement error follows a normal distribution. In this experiment, we

examined how measurement errors of 0.1 cm, 0.5 cm, and 1.0 cm affect recognition

rates where the feature vector is the measurement itself.

Figure 3.6.8 shows the result of this experiment. With no measurement error,

we recognized subjects 98 % of the time regardless of the cohort size. (In a typical

household, with a broader cohort age diversity than in our subject population, the

performance should be even better because wrist sizes tend to correlate well with

age.) As measurement error increased, however, the recognition rates fell: with

1 mm measurement error, recognition rates fell to 54 % BAC for the full cohort of

subjects. For smaller cohort sizes, recognition rates remained above 80 % when the

measurement error was 1 mm or less. Recognition rates were even worse for 5 mm

and 1 cm measurement errors. This result implies that wrist size is a good biometric

for small cohorts when there is little measurement error; but can we do better with

a hybrid approach?
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Figure 3.6.8: Wrist circumference recognition rates for various cohort sizes and measure-
ment errors using the NB classifier.

To get a sense of how accurately an electronic device could measure a person’s

wrist circumference, we used the digital tape measure shown in Figure 3.7.1. We

took 10 consecutive measurements from a subject’s wrist, resetting the digital tape

measure each time. The standard deviation of these measurements was 0.199 cm.

The precision of the digital tape measure is only to the nearest 0.2 cm. Thus, we

expect a measurement error between 1 mm to 5 mm.

Combining bioimpedance with wrist circumference

Since wrist circumference appears to be a good indicator of identity, we added a

wrist-size feature to our bioimpedance models. Figure 3.6.9 shows the results of this

experiment for different cohort sizes using all electrode configurations and the SVM

classifier. In contrast to using wrist circumference alone, combining bioimpedance

and wrist circumference dramatically lowers the FRR and FAR for both larger cohort

sizes and larger measurement errors. If a device can be built to measure both wrist

circumference and bioimpedance, this device would be ideal for applications that

require security, especially in large cohorts, because of the lower FARs.

The analysis above assumes there is only one enrolled user per device. One

could extend our method to multiple enrolled users by changing the recognition
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Figure 3.6.9: Bioimpedance with wrist-circumference models: recognition rates for a
5-subject cohort and various measurement errors, using theSVM classifier.

algorithm to choose the model that classified the test feature vector positively, or

choose no model if no model or more than one model positively classified the test

feature vector. For a cohort of five subjects and wrist-size measurement error 1 mm,

our device would confuse subjects only 0.5 % of the time (2.0 % of the time for a

5 mm measurement error). Given such rates, we believe bioimpedance measurements

are individually unique for a household population.

3.7 Performance

The third characteristic we examine is the performance of the biometric. To deter-

mine the performance of bioimpedance as biometric, we manufactured a wearable

bioimpedance bracelet device. We then gave this device to subjects to wear for a day

to understand how well a wearable version of our bench-top system would perform.

3.7.1 Dataset

We collected bioimpedance data using our wearable sensor (Figure 3.5.3) from eight

people over a period of one day each. Before enrollment, participants were told the

reason we were collecting data and informed of the risks involved in wearing the
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Figure 3.7.1: The Health-O-Meter Digital Tape measure we used to measure each sub-
ject’s wrist circumference. It was placed just above the ulnar styloid process of the sub-
ject’s non-dominant wrist where the bracelet was worn.

device (e.g., possible inflammation at electrode site). Once they agreed to enroll, we

gathered three pieces of information about them: age, sex, and wrist circumference.

We measured the subject’s wrist using a Health-O-Meter Digital Tape Measure [69]

at the location where the bracelet would be worn as shown in Figure 3.7.1. Age and

sex were self reported. We then introduced each subject to the device and asked

them to wear the sensor on their non-dominant wrist for as long as possible during

the day and return it to us after at least eight hours. We told subjects that they could

remove the device at their leisure but should remove the device if it could come in

contact with water (e.g., before showering or swimming). Should they remove the

device, we instructed subjects to put the device back on in the same orientation as it

was previously put on. Subjects were paid $8 for their participation. Our device and

data-collection protocols were approved by our Institutional Review Board.

Of the participants enrolled (Table 3.7.1), 3 were female, 5 were male, with an

average age of 27 years± 8 years. The average wrist circumference was 18.0 cm± 1.0 cm

meaning that the group of subjects selected for this study each had a similar wrist

circumference. Table 3.7.1 shows, among other statistics, the duration the bracelet

was in contact for each subject. On average, it was on a subject’s wrist for 9.3 hours

resulting in 112 bioimpedance samples. This group of 8 subjects is larger than our
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Subject Total No Contact Contact Contact Time (h) Wrist (cm)

1 111 6 105 8.8 18.2

2 96 8 88 7.3 16.2

3 107 22 85 7.1 18.4

4 262 27 235 19.6 17.0

5 134 12 112 10.2 19.4

6 123 38 85 7.1 18.4

7 134 59 75 6.2 17.6

8 111 13 98 8.2 19.0

Avg 135± 50 23± 17 110± 52 9.3± 4.0 18.0± 1.0

Table 3.7.1: The total number of samples taken, the number of samples that were
deemed not to be in contact with the subject’s wrist, and the total time the bracelet was in
contact with the subject’s wrist.

uniqueness experiment, since we previously examined group sizes of up to 5 subjects.

Figure 3.7.2 shows how well an SVM classifier classified subjects for different

circumference error measurements. For no measurement error, using wrist circumfer-

ence alone we could recognize subjects with 93 % BAC, 1.4 % FAR, and 12 % FRR.

However, when the measurement error was 5 mm, the BAC fell to 56 %, FAR to 0.4 %,

and the FRR to 87 %. Because the FRR increased while the FAR remained stable,

the SVM over-fit each subject and thus rejected more and more of each subject’s

genuine samples. Thus, using wrist circumference alone would not be feasible for

this dataset.

3.7.2 Parameters

We chose parameters similar to those in our uniqueness study (Section 3.6). However,

since our wearable device does not support tetra-polar measurements, we only sam-

pled bi-polar measurements. To compensate for the lack of tetra-polar measurements,

in addition to sensing at the maximally distant electrodes as in our uniqueness study,

we also measured bioimpedance at those electrodes that were at least one electrode

64



0

20

40

60

80

100

M
e
a
su

re
 (

%
)

93%
86%

56%
51%

BAC

Measurement error (cm)

0.0 0.1 0.5 1.0

1% 2% 0% 0%

FAR

12%

25%

87%

97%

FRR

Wrist circumference recognition using SVM classifier for different measurement errors

Figure 3.7.2: Wrist circumference recognition rates for different circumference measure-
ment errors using an SVM classifier on our wearable dataset. As the measurement error
increases, the SVM classifier over-fits on each subject’s genuine examples more.
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Figure 3.7.3: The electrode configurations our wearable bioimpedance sensor used for
bi-polar measurements.

apart. Figure 3.7.3 graphically depicts these electrode configurations. According

to our uniqueness study, the combination of all of the maximally distant electrode

configurations performed the best of the bi-polar electrode configurations. Thus,

we hypothesized that adding other electrode configurations would only increase

performance because they give us considerably more coverage of the anatomy and

geometry of the wrist. These twelve electrode configurations gave four times more

coverage than those electrode configurations in our uniqueness study.
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3.7.3 Identification evaluation

Using this new wearable device, we sought to understand its performance. In contrast

to the setting in our previous study on uniqueness, the purpose of this study was to

understand the performance of our wearable bioimpedance sensor outside of the lab

and in the field. That is, we gave subjects our wearable bioimpedance sensor to wear

for a day while they went about their usual activities. In this set of experiments, we

sought to understand the performance of our wearable device in an identification

setting outside of the lab. Recall that identification is the process of identifying which

subject was wearing the device from a population of known subjects.

Uniqueness replication

We first validated the performance of our methods under conditions similar to our

uniqueness study. We did a 10-fold cross validation for each subject using only the

electrode configurations that were maximally distant (i.e., 04, 15, 26, and 37).

Figure 3.7.4 shows the results of this validation for the best-performing com-

binations of the specified electrode configurations for the NB, SVM, and FOREST

classifiers. The best-performing single electrode configuration in this study was 26 for

the NB classifier and 04 for the SVM and FOREST classifiers. That the 04 electrode

configuration performed well confirms our previous finding that the best-performing

single electrode configuration corresponded to those electrodes on the dorsal and

palmar sides of the wrist.

For the SVM and FOREST classifiers, the best combined electrode configuration

was 04 37. Because of the design of our bracelet, electrode configuration 04 did

not sit exactly at the top of the wrist, as in our uniqueness study, but shared the

top of the wrist with electrode configuration 37. Contrast this result to the best

electrode configuration for the NB classifier, where 15 26 correspond to the medial
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Figure 3.7.4: A replication of uniqueness study using the NB, SVM, and FOREST clas-
sifiers over our wearable dataset restricted to only those electrode configurations maxi-
mally distant. For a single electrode configuration, 04 and 26 does best. The SVM and
FOREST classifiers are significantly better than the NB classifier when using the all elec-
trode configurations.
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and lateral sides of the wrist.

The SVM classifier achieved the best performance when all electrode configu-

rations are combined. It achieved a BAC of 95.0 %, a FAR of 1.40 %, and a FRR of

8.62 %. The performance of the FOREST classifier was similar to the SVM classifier

with a BAC of 91.4 %, a FAR of 7.83 %, and a FRR of 16.4 %. In contrast, the NB

classifier only achieved a BAC of 86.4 %, a FAR of 15.4 %, and a FRR of 11.7 %,

similar to the findings in our uniqueness study. For comparison, the RAND classifier

empirically achieved 50.2 %, a FAR of 12.9 %, and a FRR of 86.7 %. In comparison to

our uniqueness study, our wearable device performed significantly better because we

have more data from each subject. The best-performing classifier in the uniqueness

study, the SVM classifier, only achieved a BAC of 88.4 % for a cohort of eight subjects

using all electrode configurations.

Cross-validation

Next, we did a cross-validation experiment over all combinations of electrode con-

figuration that were used to collect bioimpedance samples. This validation makes

the assumption that we have almost an entire day of training samples available. It

also means the training samples will necessarily capture the variability in a subject’s

bioimpedance across different environments, motions, and orientations. For each

subject we ran a 10-fold cross-validation over the set of feature vectors according

to the algorithms specified in Section 3.4. That is, we trained our model using 90 %

of the samples randomly chosen, leaving 10 % of the samples to be classified. We

computed the FAR, FRR, and BAC for each subject, and we report these measures

over all subjects.

Figure 3.7.5 shows these results for the top performing multi-electrode con-

figurations using the NB, SVM, and FOREST classifiers. The top performing multi-

electrode configurations achieved a BAC of 98.1 %, FAR of 0.70 %, and FRR of 2.83 %
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using the SVM classifier and electrode configurations 02 04 06 13 15 17 26

37. The NB classifier, on the other hand, achieved a BAC of 87.9 %, FAR of 3.83 %,

and FRR of 9.62 %. The FOREST classifier performed better than the NB classifier

but worse than the SVM classifier with a BAC of 93.6 %, a FAR of 0.53 %, and a

FRR of 12.2 %. The SVM classifier benefited from more electrode configurations,

while the performance of the NB classifier did not significantly increase except for

reductions in FAR and FRR.

Figure 3.7.6 shows a visualization of these top performing multi-electrode

configurations for each classifier. The top performing multi-electrode configurations

for the NB classifier was 04 06 26 35 37, for the SVM classifier was 02 04 06

13 15 17 26 37, and for the FOREST classifier was 02 04 06 13 15 17 26

35 37. In these top multi-electrode configurations for the SVM classifier, electrode

configurations 04, 06, 26, and 37 were present in each. Two of these electrode

locations of top performing multi-electrode configurations, 04 and 37, corresponded

to the ulnar side of wrist or medial palmar and medial dorsal (imagine your hand

sticking out of the page towards yourself, palm down). The top performing multi-

electrode configurations for the FOREST classifier tended to encompass the whole

wrist. As the number of electrode configurations increased, more of the geometry

of the wrist was being sensed by our device. This result shows that using electrode

configurations that are not just maximally distant increase recognition performance.

We recommend sensing from electrode configurations that capture the ulnar side of

the wrist.

Cross-validation with wrist circumference

In our uniqueness study, we considered adding wrist circumference as a distinguish-

ing feature, which decreased the FAR. We performed this same experiment using our
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Figure 3.7.5: Top performing electrode configurations for a 10-fold cross-validation as
classified by the NB, SVM and FOREST classifiers. The performance of the NB classifier
was flat while the SVM and FOREST classifiers benefited from more electrode configura-
tions.
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Figure 3.7.6: Visualization of best-performing combinations of electrode configurations
for the NB, SVM, and FOREST classifiers. Notice how the top performing multi-electrode
configurations for the SVM and FOREST classifiers encompasses the medial side of the
wrist.

wearable device. We assumed we can measure the subject’s wrist circumference with

measurement errors 0 cm, 0.1 cm, 0.5 cm and 1.0 cm.

Figure 3.7.7 shows the results of this experiment for the SVM classifier using

all electrode configurations. Notice how these results do not significantly differ from

the results shown in Figure 3.7.6. This means that wrist circumference provided

no additional recognition power. While this claim might seem contradictory to our

claim in the uniqueness study, it is not. Rather, we measured from more electrode

configurations which allowed the enrollment algorithm to learn more about the wrist.

Indeed, one of the defining features of a wrist is its circumference, and by measuring

bioimpedance at many locations on the wrist, they can serve as a surrogate measure

of the wrist circumference. Thus, such a device need only use bioimpedance to

achieve the best recognition rates.

Hold-out validation

Next, we performed a hold-out validation to see how well bioimpedance performs

over time. This kind of validation tells us how much training data is necessary to

achieve acceptable recognition performance. In this validation, for each classifier
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Figure 3.7.7: Combined bioimpedance and wrist circumference recognition rates for
different circumference measurement errors using an SVM classifier on our wearable
dataset.

we choose the best-performing electrode configuration combination reported in the

cross-validation as shown in Figure 3.7.6.

Figures 3.7.8 shows how well the NB, SVM, and FOREST classifiers performed

as the duration of training data increased. As expected, additional training data

caused the BAC to increase while the FAR and FRR decreased in the case of the SVM

classifier. However, in the case of the NB and FOREST classifiers, the BAC remained

relatively flat due to the FAR increasing while the FRR decreased. This suggests that

the NB and FOREST classifiers are unsuitable for recognition when there is limited

training data. Even when only 10 % of a subject’s bioimpedance samples were used

for training (which was about 10 training samples), the SVM classifier achieved a

BAC of 81.2 %, FAR of 5.62 %, and FRR of 32.0 %. This is on par with uniqueness

study despite the increased cohort size and number of bioimpedance samples.

3.7.4 Verification evaluation

In this experiment, we sought to understand how well our wearable device performs

in a verification setting. Recall that verification is the process of verifying whether a

subject is the person they claim to be. Thus, the general task is to train a classifier
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Figure 3.7.8: Hold-out validation as classified by NB, SVM, and FOREST classifiers for
different amounts of training data for the best-performing electrode configuration. As
the amount of training data increases, so did the BAC while the FAR and FRR decrease
in the case of the SVM classifier. The performance of the NB and FOREST classifiers
remains flat due to an increasing FAR.
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using a single subject’s data. In the testing phase, we see how well that classifier

performs for that particular subject’s data in contrast to all the other subjects’ data.

Notice, however, that our standard classifiers will not work for this procedure since

they require both negative and positive examples. In the verification setting, we only

have positive examples because the model is trained on only one subject.

Because we only have positive examples, we need to use a generative model

that learns the distribution of a subject’s bioimpedance samples. One such generative

model is a Gaussian Mixture Model (GMM). A GMM models the distribution of

bioimpedance samples using a weighted linear combination of Gaussian densities.

Each Gaussian density is parameterized by a mean vector and covariance matrix. To

learn the underlying distribution of a subject’s bioimpedance, we use the Expectation-

Maximization (EM) algorithm [40] to iteratively refine the mixture of Gaussian

densities until the maximum likelihood remains stable (i.e., the difference between

successive iterations is less than 0.01) or after a maximum number of iterations (100).

We choose initial Gaussian densities by clustering the set of feature vectors using

k-means clustering [84], where k is set to the desired number of Gaussian densities.

We then iteratively fit these initial Gaussian densities using the EM algorithm. We

modeled the full covariance matrix since the size of a bioimpedance sample is

relatively small. Because some values of the covariance matrix can become very

small, as in the case of outliers, we enforce a variance floor of 0.001 on the covariance

matrix. For our experiments, we found that 4 Gaussian densities best modeled the

distribution of a subject’s bioimpedance samples.

In this experiment we used a hold-out validation to validate the performance

of our method. However, it is not clear how to test a given bioimpedance sample

since a GMM has no intrinsic notation of a label like the classification algorithms do.

A GMM can tell us the likelihood of a bioimpedance sample given the parameters θ

of the GMM (i.e., p(x|θ)). Given some threshold τ , we can accept that bioimpedance

74



sample came from that subject if p(x|θ) > τ and reject it otherwise. However, there

is no good way of choosing the threshold τ a priori. Instead of choosing, we can vary

the threshold τ to see how well our method performs.

Figure 3.7.9 shows how well our method performs for a 90 % hold-out vali-

dation. We varied the threshold for each subject to see how the FAR and FRR vary.

In the ideal situation, both the FAR and FRR would remain near 0. In the legend of

Figure 3.7.9, we also show the Equal Error Rate (EER). This was the rate at which the

FAR equaled the FRR. There was a significant difference between EERs of subjects.

The average per-subject EER was 12.90 %± 8.15 %. Rather than a subject-specific

threshold, we also used a global threshold over all subjects. The EER for a global

threshold was 12.9 %. This EER resembles the result in our identification hold-out

validation using an SVM classifier as shown in Figure 3.7.8. In a verification-based

method one can easily change the threshold to suit the needs of the application to

account for less false-positives or false-negatives as Figure 3.7.9 shows.

3.8 Permanance

Although we expect the bioimpedance of a person to be reasonably permanent,

changing over long time scales because the size and shape of our wrist changes

as we age, we need to explore short- and medium-term variations due to diet or

physical activity. Likewise, we want to understand how motion, orientation and the

environment affect bioimpedance measurements. In this section, we explore these

factors.

3.8.1 Motion effects

To study the effect of motion, we collected a dataset from a single subject performing

three tasks: stationary, walking, and running. In the stationary task, the subject

75



0.0 0.2 0.4 0.6 0.8 1.0
FAR

0.0

0.2

0.4

0.6

0.8

1.0

FR
R

FRR vs. FAR for different subjects

Threshold     (EER)

Subject 1 (0.006)

Subject 2 (0.006)

Subject 3 (0.103)

Subject 4 (0.198)

Subject 5 (0.158)

Subject 6 (0.230)

Subject 7 (0.127)

Subject 8 (0.208)

Global      (0.129)
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The threshold, however, can be changed to suit the needs of the application (i.e., more
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remained still with their wrist supported on a desk. For the walking task, the

subject was asked to walk from when collection started to when it ceased as they

normally would. And in the running task, the subject was asked to run in place

with exaggerated arm movements. We captured five samples from each task, and

averaged over the samples.

Figure 3.8.1 shows the results of this experiment as impedance magnitude

plots for each task. While the samples in the stationary and walking scenarios have

similar shapes, they have different offsets. The relative ordering of the bioimpedance

samples in terms of magnitude is mostly preserved. The running task, on the other

hand, varies significantly from the stationary task. Because vigorous motion affects

bioimpedance measurements in our device (perhaps due to electrode contact since

our bracelet is top-heavy due to the Shimmer being firmly attached near the elec-

trodes), we can account for this effect by ensuring bioimpedance measurements are

only taken when the subject is mostly stationary.

3.8.2 Orientation

The orientation of the wristband matters because the absolute position of electrodes

will affect the pathway of the stimulus current. For this reason, the trained model

will be sensitive to the orientation of the device. We measured this change by rotating

the sleeve around a user’s wrist and capturing bioimpedance measurements after

each rotation. We rotated the device 45◦ around the wrist fully five times to record

five samples and finally averaged over the samples.

Figure 3.8.2 shows the results of this experiment in the form of impedance

magnitude plots for each rotation from 0◦ to 315◦. While the general shape of the

bioimpedance measurements is preserved, the offset of the measurement changes

with each rotation as expected. For rotations that are exactly 180◦ apart, the curves
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generally mirror each other. We expected this result because the magnitude of

impedance has no polarity. While our measurements are sensitive to orientation about

the wrist, we believe they can be compensated for by either detecting orientation or

by using different features that are invariant to rotation.

3.8.3 Environmental effects

We hypothesize that some environments might have effects on bioimpedance. Hu-

midity, for example, may affect the sensor due to the decreased resistance at the

contact site between the skin and electrode. To simulate this condition, we collected

bioimpedance measurements from three types of environments: a low humidity

control, high humidity, and a water-soaked bracelet. For each environment, we

captured five samples and averaged over them.

Figure 3.8.3 shows the results of this experiment for the different environments.

Humidity has a tendency to compress (i.e., their offsets are clumped together) and

reduce the magnitude of bioimpedance measurements overall. The relative ordering

is not preserved except for the highest and lower bioimpedance measurements. In

the case of a wet bracelet, bioimpedance measurements are useless. We need to

account for environmental effects due to humidity and moisture. It would be easy to

add a humidity sensor to the Shimmer, and use humidity as a feature in a training

model. We could easily detect a wet bracelet (or other short between electrodes), and

exclude those measurements. Such methods for compensating for these conditions

remain future work.

3.8.4 Longitudinal effects

To understand the longitudinal recognition rates of bioimpedance, we collected 10

additional bioimpedance samples from Subjects 1, 4, and 5 140 days after their
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initial enrollment in our wearable study. We ran a hold-out validation where the

testing dataset is equal to these new bioimpedance samples for Subjects 1, 4, 5 or

the last 10 % for every other subject. We trained a GMM for each subject similar to

our verification evaluation.

Figure 3.8.4 shows the results of this longitudinal verification validation. The

per-subject threshold EER was 9.57 %± 8.12 % while the global threshold EER was

13.3 %. The recognition rates of Subjects 1 and 5 are similar to their recognition

rates in the initial verification evaluation, while Subject 4 performed better than their

initial rates. Recall that these longitudinal samples were taken immediately after

each other and thus would be similar enough that if one should match a subject’s

model, then the majority of them would. Likewise, the per-subject threshold EER

and global threshold EER did not significantly differ from the initial verification

evaluation. These results indicate that a subject’s bioimpedance remains relatively

stable enough to be verified at least 4.5 months later.

3.9 Universality, acceptability, and circumvention

Finally, we come to the universality, acceptability and circumvention of bioimpedance.

For these characteristics, we offer qualitative arguments for why we believe bioimpedance

has these characteristics. More formal studies of these characteristics are left for

future work.

3.9.1 Universality

We assume that every person has a wrist where we can measure bioimpedance. Of

course this is true for most people. Our technique could be used at other locations

on the body, but is unclear how one could create an unobtrusive device that can

measure bioimpedance at, say, the chest. Ideally, the current should pass through as
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Figure 3.8.4: The longitudinal recognition rates of bioimpedance. We collected data from
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much tissue as possible, and, in the case of the chest, this should be from the anterior

to posterior part of the body. Having electrodes on the chest and back would require

some sort of wire, which could be intrusive. For some locations, like the ankle, it is

trivial to use our wearable device in those locations.

3.9.2 Acceptability

We chose the wrist location to allow unobtrusive measurements, as many people al-

ready wear watches or bracelets and our method could easily be integrated into such

a form factor. Anecdotally, many of our subjects found the sensor to be comfortable

yet a little constricting. While comfort might affect the adoption of bioimpedance,

we believe this obstacle can be overcome with further engineering of the form factor.

Our current form factor is a custom-sewn Lycra sleeve. Manufacturing these

sleeves is not ideal. The electrodes were manually sewn into the fabric and much

pain was taken to ensure the wires to the electrodes could withstand any torsion

and tension.

With 3D printing becoming more prevalent, it is now possible to custom-print

3D models. By using this technology to print a custom-designed wristband for the

specific geometry of the wearer, electrodes can always have good contact with the

skin while being minimally constricting. Mayton et al. [108], for example, describe

such a 3D printed wrist-worn device.

3.9.3 Circumvention

Although we did not experimentally explore methods to actively circumvent our

approach, we believe the bar is high enough to make such attacks infeasible. An

active attacker would have to model the physiology of an enrolled user’s wrist to

succeed. To model a user’s physiology, they would need to either get access to a

subject’s bioimpedance data or measure their bioimpedance data. Like anything
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that can be used for authentication purposes (e.g., a password), that piece of data

should be kept private. The same holds true for bioimpedance data. However, using

bioimpedance also raises the bar for an active attacker by forcing them to measure a

subject’s bioimpedance. To do so, they would need to attach a bioimpedance sensor

to a person’s wrist. With a little education, users can learn to not allow such attacks

to happen.

3.10 Related work

This work is the first research to use bioimpedance as a biometric. It has long been

used to measure a person’s body fat percentage since they are proportional to each

other [51]. Ailisto et al. [8] used bioimpedance and body weight to reduce error

rates of fingerprint biometrics from 3.9 % to 1.5 %. Others have used bioimpedance

to detect liveness in the case of fingerprint biometrics, since a fingerprint reader can

be easily fooled; Martinsen et al. [99] present such a system to detect liveness. Such

techniques could be incorporated into our system as well.

There are many other biometrics people have used to recognize users [78]. Face

recognition [92] uses a camera and locates common features on a person’s face or

determining how a person’s face relates to other faces. Fingerprint recognition [95]

uses a sensor and extracts features based on the ridges and valleys of a person’s

finger. It is probably the most common biometric used today. Gait recognition [114]

uses a camera and extracts features from a sequence of images of a person walking.

Iris recognition [29] uses a camera and extracts features from the appearance of

a person’s iris. Vein pattern recognition [155] uses an infrared sensor and extracts

features from an image of veins from some part of a person’s body. Finally, speaker

recognition [19] uses a microphone and extracts features from a person’s voice.

Without liveness tests, most of these biometrics can be fooled, while others can be

83



intrusive to measure.

Srinivasan et al. [136] used height sensors to distinguish the subjects of a

household. Although height might not be a distinguishing factor for large populations,

they showed it is sufficiently distinct for a population the size of a household. Our

cohort size was inspired by their household population approach. Our method,

however, is suitable for wearable sensors that can be used anywhere, even outside of

the home.

Sriram et al. [137] provide a method to identify patients using ECG and accel-

eration data for remote health monitoring. While ECG has proven to be useful for

authentication, they observe that these methods do not perform well in the real world

because physical activity perturbs the ECG data. By employing an accelerometer to

differentiate physical activities, they can use ECG data from those physical activities

to authenticate patients. We both make the observation that “the monitoring system

needs to make sure that the data is coming from the right person before any medical

or financial decisions are made based on the data” [137]. Sriram’s framework for

using other sensors to compensate for certain affects could be similarly applied to

our method.

Finally, others have used capacitive sensing to differentiate subjects using a

capacitive touchscreen. Vu et al. [149] require the subject to wear a special ring that

would inject a signal through the subject’s finger and into the tablet screen while they

are touching the screen. They could, for example, encode the ring wearer’s identity

into this signal. Indeed, this signal could be used to communicate anything to the

tablet while the user touches the screen, although the data rate (4 bit/s to 5 bit/s)

limit the amount of information that can be communicated. Harrison et al. [67]

show how to differentiate between subjects using a capacitive touchscreen. Rather

then identifying each subject, they focus on determining and tracking the number

of users touching the screen. They accomplish this by modifying the touchscreen to
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measure the impedance between the user and ground across many frequencies. By

doing this, they differentiate between subjects interacting with the touchscreen.

3.11 Limitations

We indicated above that one advantage of the wrist location is that the wristband is

placed in about the same location and at about the same orientation every time it is

worn. We experimented with changes in wristband orientation, and determined that

it does affect bioimpedance measurements, depending upon the amount of rotation

about the wrist. A better physical design might reduce this problem by ensuring

the proper band orientation on the wrist. If not, we could use kinematic sensors to

determine the orientation of the band and compensate for different orientations. For

example, the accelerometer can be used to determine the orientation of the device

relative to gravity. This would not, however, detect the case that the device is put

on backwards (i.e., electrodes are swapped in direction) or on the wrong wrist. In

the general case, it might be possible to engineer rotation- and reflection-invariant

features. For example, an electrode configuration could be assumed to be rotated by

duplicating the measured impedance, while reflection could be handled by swapping

measurements at different electrode configurations. The details of such a super

feature vector are left for future work.

We did not explicitly consider potential variations in the bioimpedance due to

changes in skin temperature (e.g., for a person with a fever, or who steps outside on

a cold winter day), or due to changes in diet (e.g., level of hydration or blood sugar).

These and other body conditions may have a measurable impact on bioimpedance

that could make it more difficult to develop a tight model for each subject. It might be

the case, for example, that a change in blood glucose adversely affects bioimpedance

at the wrist.

85



Although we designed the bracelet for ourselves, a few subjects complained

about the tightness of the bracelet. Future bracelets would be designed with different

wrist sizes in mind and with better electrodes. Some subjects complained that the

electrodes pulled the hair on their wrist. Other subjects mentioned that the device

was too bulky to fit under a coat. Our reliance on the Shimmer platform is the

source of much of the bulk. Future bracelets could incorporate their own storage,

processing, communication, and power without relying on external sources.

We evaluated the feasibility of this method as tested on eight subjects each

wearing the device for an average of 10 hours. Although we achieve good perfor-

mance according to our metrics, this only gives us confidence that bioimpedance is

stable over the time periods for which we collected data. To be truly confident in this

method, however, we need to explore the stability of bioimpedance over years, to

sample a larger number of subjects, and to explicitly and implicitly explore a broader

range of environmental conditions.

Our method will suffice for identifying the bracelet’s wearer in many interesting

applications. In some applications, however, there may be individuals with the

motivation to fool the sensor into believing that the wearer is a different person. For

example, perhaps the bracelet is used as part of a biometric authentication system,

or the person wishes to have data collected under someone else’s identity. We

believe, however, that it would be difficult to forge another person’s bioimpedance.

In principle, an adversary could measure the desired person’s bioimpedance (by

hacking our bracelet to extract the data) and then construct a bracelet liner that

replays the impedance using fixed resistors, but this attack would be difficult to

accomplish given the frequency-dependent nature of bioimpedance. See Chapter 6

for more discussion about this issue.

Finally, there are several ways the current design could be optimized for lower

cost or reduced energy consumption. The current wristband includes 8 electrodes, but
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we can remove some electrodes at the cost of reduced recognition rates. Furthermore,

we measure bioimpedance across a wide sweep of 50 frequencies, but we could

optimize the number of frequencies necessary and decrease both the energy and

time needed for each measurement. A low-power human presence detection method

would also allow us to sense only when a wearer is detected.

3.12 Summary

We present a method for continuous identity verification of a bracelet’s wearer, using

bioimpedance as a biometric. We constructed a prototype device with electrodes em-

bedded on the inside of the wristband, connected to a custom impedance-measuring

device built into a Shimmer research platform. We evaluated the ability of this

device to correctly identify its wearer, within a cohort of 8 subjects. We evaluated

the stability of this biometric under various environmental conditions, and over an

average of 10 hours per subject. We found that, depending upon the amount of

training data, the device was successful in recognizing its wearer with 98 % BAC in

a cross-validation study. In a hold-out study, the device was successful at recognizing

its wearer with 81 % BAC when trained with at least 10 bioimpedance samples. In a

verification study with data collected from subjects more than 4 months later, we

achieved an EER of 13.3 %. For small cohorts of subjects, we believe bioimpedance

can be used as a passive biometric, but it remains to be seen how well bioimpedance

performs for larger cohorts. Likewise, there are significant barriers to overcome in

compensating for environmental and longitudinal physiological changes.
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4
Verifying whether sensors are on the

same body

In WBANs there are typically many SNs transmitting sensed data to a specific MN.

It’s easy to imagine a cryptographic scheme that would ensure the confidentiality

and integrity of all communications. But even with such a security mechanism, the

assumption that the SNs are all attached to the same human body as the MN remains.

This chapter focuses on this problem.

This problem matters for at least one important reason. If we expect physicians

to make decisions about health data collected from WBANs, then they will need
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some confidence that all the data they are examining has come, at the very least,

from the same body. It is risky to make medical decisions without said confidence,

and until such measures are in place, we should be wary of using data from WBANs.

4.1 Introduction

In this chapter, we focus on the weak version of the one-body verification problem.

The weak version, unlike the strong version, requires determining whether the

sensors are on the same body. This might seem like an easier problem than the

strong version, but it is more difficult. Rather than finding a unique characteristic

of a specific individual (as in a biometric), we need to find something that is not

subject specific yet distinguishes sensors on one body from those on another body.

For example, we could compute the distance between the MN and each SN using

time-of-flight algorithm. However, for the distances we are interested in (less than a

meter), the accuracy of these kind of localization methods is just not good enough

(error rates of 0.5 m according Hamida et al. [65]). But there are at least two others

ways to solve this problem: using biometrics or using statistics.

Our method described in Chapter 3 trivially solves this problem. However,

not all types of SNs will produce data that is suitable for biometric recognition. It

is unclear, for example, how an SN could recognize its wearer when it only has a

temperature sensor. Even supposing that an SN did have a suitable biometric sensor

(like the one discussed in Chapter 3), its not clear that biometric could work for most

locations on a person’s body. It is unknown, for example, whether bioimpedance is

a suitable biometric when measured at a person’s waist. More so, an SN designed

to be carried in a person’s pocket might never come in contact with the wearer’s

skin, a requirement for the use of bioimpedance. Other biometrics have similar

limitations. Finally, the use of a biometric requires non-trivial hardware and software
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requirements that might not fit the form-factor of the SN or even make economic

sense. Bioimpedance, for example, requires an impedance analyzer and electrodes.

Thus, using a biometric-based solution to determine whether an SN is on the same

body as an MN will not work for all use cases.

We offer a statistics-based solution. The idea is that if the MN and SN can

measure some quantity at the same time, then we can use statistics to determine

whether there is a relationship between these two quantities, that is, some corre-

lation between these two measured quantities over time. Others have shown how

to accomplish this goal using physiological-based quantities via photoplethysmo-

graph [144] and electrocardiography [146]. This kind of solution does not work in

all cases because they typically require skin contact to measure the physiological

values.1

Instead, we take a biomechanical approach and measure the acceleration and

orientation of the subject while they are walking. In the ideal circumstance, we would

find some way of measuring acceleration and orientation using the existing sensors

of the SN. Depending upon the sensors present on the SN, this may not be possible.

Thus, we propose the following compromise: every sensor device will include an

accelerometer and gyroscope in addition to its primary sensor (ECG, blood pressure,

etc.). Since accelerometers and gyroscope are tiny, cheap, and require little energy

to operate, this is a reasonable assumption. Thus, rather than taking advantage of

different relationships for each kind of sensor data, placement, and usage conditions,

we only need to find a relationship for the acceleration and orientation data that

answers the question: are these devices attached to the same body?

1 There are non-contact methods of measuring some physiological values [120, 118, 119, 157,
148, 56, 49], however they require a camera (visible or infrared) pointed at a non-moving subject.
Such a requirement is both resource intensive and unrealistic for our use cases.
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4.2 Sensors

To maximize the generality of our solution, we require each SN to have an ac-

companying accelerometer and gyroscope. Today, many SNs already include an

accelerometer because it is often useful to know how a device is oriented relative to

gravity.

4.2.1 Accelerometers

Accelerometers measure acceleration using the principle that any mass m will ex-

perience a force F proportional to the amount of acceleration a is it experiencing

according to Newton’s second law of motion (under the assumption of non-relativistic

accelerations, which humans will probably never experience):

F = ma

Instead of measuring the conventional rate of change of velocity, accelerometers mea-

sure force per mass, also known as specific weight when the mass is constant. That

is, they measure how much force is applied to a known mass. Although acceleration

is typically measured in meters per second (m/s2), we deviate from the International

System (SI) of units to distinguish what is being measured. Since the typical force we

experience is gravity, we measure acceleration in gravities, or g-force.2 All stationary

masses on the earth experience 1 g-force, while a mass in free-fall would experience

no g-force (until terminal velocity is reached).

2 The use of g should not be confused with the SI unit g for grams. The use of grams to describe
mass makes no appearance in this thesis.

91



Hardware

The most common type of accelerometer today is the capacitive, micro-machined

accelerometer. In our experiments we used two of these types of accelerometers:

the Freescale MMA7260Q [52] and MMA7361L [53]. This type of accelerometer

operates by detecting the deflection of a small proof mass located between two fixed

beams. Since the proof mass is attached to a small spring, we can equate Hooke’s law,

F = −kx (where k is a constant factor related to the spring and x is the displacement

of the spring), to Newton’s second law, F = ma. When the proof mass experiences

an acceleration, a proportional force causes it to deflect in the direction opposite of

the direction of the acceleration. To measure this deflection, a simple circuit is used.

By design, each beam forms a capacitor with the proof mass, and when the proof

mass moves it induces a change in capacitance:

C = ε
A

d

Since the dielectric constant ε and area A are a constant quantities, capacitance is

inversely proportional to distance d between the proof mass and the fixed beam.

Thus, this change in capacitance results in a change in voltage which is related

to the amount of displacement of the proof mass experiencing a force. Such an

accelerometer is limited to operation in the axis it is oriented. To allow sensing in

all 3 dimensions, three such accelerometers must be machined orthogonal to each

other.

Calibration

Since these accelerometers output a voltage change corresponding to acceleration, it

is necessary to calibrate the output. Even if we used only one kind of accelerometer,

it would still be necessary to calibrate each accelerometer due to variances in
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manufacturing. Additionally, calibration also allows us to compare accelerations

from both types of accelerometers.

To calibrate a specific axis x, the accelerometer is placed such that the axis

aligns with direction of gravity and allowed to remain stationary (i.e., the proof

mass is allowed to experience 1 g-force). The voltage output is then recorded. The

accelerometer is then flipped 180◦ along that axis, allowed to remain stationary

again, and the voltage is recorded. These voltages correspond to a minimum Vmin

and maximum Vmax voltage experienced under gravity alone. Because these kind

of accelerometers exhibit linear voltage change per g-force, we therefore have a

system of linear equations that equates voltages Vmin and Vmax to g-forces −1 and 1,

respectively:

1 = mxVmax + bx

−1 = mxVmin + bx

Solving this system of linear equations for coefficients mx and bx yields:

mx =
2

Vmax − Vmin

bx =
−Vmax − Vmin
Vmax − Vmin

After calibration, the corresponding g-force ax for some new voltage Vx can be

computed as:

ax = Vxmx + bx

This procedure is repeated for each axis of the accelerometer.
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Cost

The selection of these specific accelerometers was driven more by availability

and ease of use than unit cost. For example, it possible to purchase a Freescale

MMA845xQ 3-axis accelerometer for $0.56 (in quantities of 1000) [44]. This partic-

ular model consumes 1.4 µA in standby mode, as low as 6.6 µA in low power mode,

and 27 µA in normal mode [54]. So while our choice in accelerometers was not

optimized for energy-usage profile or cost, it is certainly possible to do so.

4.2.2 Gyroscopes

Vibrating structure gyroscopes measure angular velocity using the principle that

a mass m moving at velocity v will experience an orthogonal inertial force FC

proportional to the amount of angular velocity ω it is experiencing according to the

Coriolis effect:

FC = −2mω × v

By vibrating the proof mass m at a fixed velocity v, the gyroscope can measure this

force FC using the same principle an accelerometer uses. The SI unit for angular

velocity is radians per second (rad/s).

Hardware

In our experiments we used two gyroscope: the InvenSense ISZ-500 [76] and IDG-

500 [75]. The ISZ-500 is a single gyroscope oriented along the z axis, while the

IDG-500 is a dual gyroscope oriented along the x and y axes. Thus, when combined

they allow us to capture orientation in all 3 dimensions. Like the accelerometer,

angular velocity induces a change in capacitance which results in a change in voltage.
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Calibration

Since these gyroscopes output a voltage change corresponding to angular velocity,

it is necessary to calibrate the output. Even if we used only one 3-axis gyroscope,

we would still need to calibrate each axis of the gyroscope due to variances in

manufacturing. Additionally, calibration allows us to compare angular velocities

from any other kind of gyroscope.

To calibrate a specific axis x, the gyroscope is placed such that the axis is

allowed to remain stationary (i.e., the proof mass is allowed to experience no

angular velocity). Then, the output voltage V (t) is continuously recorded for all

times 0 < t < T while the gyroscope is manually rotated φ radians about the axis.

The integral of the output voltage is then proportionally related to rotation angle φ

via:

mx =
1

T

T∑
0

V (t)

φ = sx

∫ T

0

(V (t)−mx) dt

Solving for the scaling factor sx is simple:

sx =
φ∫ T

0
(V (t)−mx) dt

We approximate this definite integral using the trapezoidal rule. In our calibration

routines, we rotated the device exactly 360◦. Thus, given the calculated coefficients

mx and sx and a new voltage Vx from the gyroscope, the corresponding angular

velocity ωx is computed as:

ωx = sx(Vx −mx)

This procedure is repeated for each axis of the gyroscope.
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Cost

Again, the selection of these specific gyroscopes was driven more by availability and

ease of use than unit cost. However, one can purchase an ST L3GD20 3-axis gyroscope

for $2.99 (in quantities of 15000) [43]. It consumes 2 mA in sleep mode, and 6.1 mA

in normal mode [138]. It is also possible to purchase a combined Bosch BMI055

6 degree-of-freedom inertial measurement unit that contains a 3-axis accelerometer

and 3-axis gyroscope that costs $3.04 (in quantities of 10000) [42] and consumes

25 µA in suspended mode, and 5 mA in normal mode [25].

4.2.3 Usage

To verify whether SNs are on the same body as the MN, our approach is to find a

relationship in the acceleration and orientations that the MN and SN experience

for a given time period. Our intuition is that if an SN is on the same body as the

MN, then (at a coarse level) the accelerometers and gyroscopes on both the SN and

MN must experience similar accelerations and changes in orientation. If a person

is motionless (and hence no acceleration except gravity or change in orientation),

then there is no information we can extract from the accelerometer or gyroscope to

determine whether those SNs are on the same body.3 Thus, we must require that the

person do some kind of activity.4 Luckily, there are a several of activities a person

can perform that cause changes in acceleration and orientation.

Not all activities are permissible for our approach. First, it must be something

that humans are capable of doing with their body. This rules out activities like flying

3 This is not theoretically true. A person on top of a mountain above sea level experiences less
gravitational acceleration than a person at sea level. This relationship is the well known physical
quantity F = Gm1m2

r2 where G is the universal gravitational constant, m1 is the mass of the earth, m2

is the proof mass in the accelerometer, and r is the distance between them. So one could, in theory,
distinguish between sensors on bodies at different elevations using an accelerometer.

4 This might be a limiting factor of our method for some kinds of subjects. For example, an elderly
patient confined to a bed would experience few accelerations or changes in orientation.
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for obvious reasons. First, the person’s whole body must experience the acceleration

and change in orientation. This rules out activities like using a computer because

typically only the upper body is moving. Second, the activity must be something a

person does periodically throughout their day. This rules out activities like jumping

or running. Third, it must be something that is suitably unique to any individual. This

rules out activities like driving a car, since any person in that car will be experiencing

the same acceleration and change in orientation. Finally, it must be an activity that is

computationally fast and easy to detect using an accelerometer and gyroscope. The

reason for this constraint will become obvious soon.

The obvious type of activity that fulfills these constraints is walking. When

walking, a human body is largely rigid in the vertical direction. Although our limbs do

bend, we hypothesize that the vertical acceleration (i.e., the acceleration relative to

gravity) experienced by sensors placed anywhere on a walking body should correlate

well. As one foot falls, that side of the body experiences a downward acceleration

due to gravity, followed by an abrupt deceleration when the foot contacts the ground.

Sensors on one side of the body should experience a similar vertical acceleration,

while sensors on the other side of the body will experience the opposite. We should

expect positive correlation for one side of the body, and an inverse correlation on the

other side. This observation is complicated by the fact that it is difficult to extract

the vertical acceleration component without knowing the orientation of the sensor.

Furthermore, although the signal can be very noisy, the accelerations due to walking

are likely to dominate the accelerations due to intra-body motion (such as arm

swings or head turns) and we should be able to reliably make a determination that

the supposed suite of sensors are on the same body. Finally, there is an existing

body of literature that shows how to do activity recognition given user-annotated

data [16], and even on a mobile-phone-class device [28]; these techniques are

particularly good at detecting when a user is walking. Our approach, therefore, is to
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detect periods when a user is walking by monitoring the MN’s accelerometer data

periodically; when the data indicates the user is walking, we then use our method.

4.3 Method

As stated previously, we assume each SN has an accompanying accelerometer and

gyroscope, which we will use in our method. In this section we describe how our

method works for acceleration only, however the same procedure can be applied to

the gyroscope data as well. That is, one can substitute “gyroscope” wherever there is

a mention of “accelerometer” since the signal-processing techniques are agnostic to

the type of signal.

Consider a signal s sampled at some frequency such that:

s = {(x1, y1, z1), (x2, y2, z2), . . .}

where xi, yi, and zi are the three axes of the instantaneous acceleration, relative

to gravity, at time i. Because sensors might be mounted in different orientations,

or might be worn in different orientations each time they are worn, we discount

orientation by using the magnitude of the acceleration. Figure 4.3.1 shows that

the magnitude exposes the overall walking motion well. Thus, we compute the

magnitude of all three axes for all samples in s:

mi =
√
x2i + y2i + z2i

This measure gives us the rate of change of speed over time for that particular SN.
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Gyroscope
10s of walking data

Figure 4.3.1: Ten seconds of accelerometer and gyroscope magnitude data for each
position on the body for one subject. This subject took about 20 steps.

4.3.1 Feature extraction

We partition this orientation-agnostic signal {m1, . . . , } into feature window lengths

w with some desired step size s. The step size allows overlapping windows. For

each feature window j = 0, 1, . . . comprising {mjs+1, . . . ,mjs+w}, we extract seven

common features:

mean
∑w

k=0mjs+k

w

variance
∑w

k=0(mjs+k−mean)2

w

standard deviation
√∑w

k=0(mjs+k−mean)2

w

mean absolute deviation
∑w

k=0 |mjs+k−mean|
w

inter-quartile range P75({mjs+1, . . . ,mjs+w})−P25({mjs+1, . . . ,mjs+w}) where

Pn(S) is the nth percentile of S.

power
∑w

k=0m
2
js+k

w

energy
∑w

k=0m
2
js+k
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Collectively, these seven values form the feature vector Fj = (f 1
j , f

2
j , . . . , f

7
j ). We

chose these features primarily because others [103, 123] have used these features

successfully to detect physical activities, and we hypothesize they would similarly be

useful for our problem. We also explore subsets of these features. If they can capture

the physical activity of walking and we examine the correlation of these features, we

should expect them to correlate if and only if they are attached to the same body.

4.3.2 Coherence

Coherence is a measure of how well two signals correlate in the frequency domain.

More precisely, it is the cross-spectral density of two signals divided by the auto-

spectral density of each individual signal. Like Lester et al. [91], we approximate

coherence by using the magnitude-squared coherence:

Cxy(φ) =
|Sxy(φ)|2

Sxx(φ)Syy(φ)

In the equation, x and y are the signals, Sxy is the cross-spectral density between

signals x and y, Sxx is the auto-spectral density of signal x, and φ is the desired

frequency. Cross-spectral density is calculated by the Fourier transform of the cross-

correlation function. If x and y are well correlated at some frequency φ, then Cxy(φ)

should be close to 1.

Because we are interested in many frequencies, we compute the normalized

magnitude-squared coherence up to some frequency φmax:

N(x, y) =
1

φmax

∫ φmax

0

Cxy(φ)dφ

We chose φmax = 10 because, as Lester et al. notes, “human motion rests below the

10Hz range” [91].

In addition, to compute the cross-spectral density over different frequencies, it
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is necessary to window the signals x and y. We choose a window of length equal to

one-half of the feature window length with no overlap between adjacent windows.

4.3.3 Feature coherence

Given two sets of feature matrices A = (F1, F2, . . .) and B = (F1, F2, . . .) with entries

Fj as described above, we want to determine how well A and B are correlated. Here,

A and B represent the feature matrices extracted from the accelerometer data of the

MN and SN.

We apply coherence to the feature matrices in the following manner. For some

window length c (the feature coherence window) with some step size to allow

overlap, we compute the normalized coherence of A and B as such:

NAB
k =

{
N(A1

k...k+c, B
1
k...k+c), N(A2

k...k+c, B
2
k...k+c), . . . , N(A7

k...k+c, B
7
k...k+c)

}
where A1

k...k+c = {f 1
n ∈ A : k ≤ n < k + c} is the window of c samples from the first

feature of A. That is, we take each feature (i.e., a column of the matrix) of A and the

corresponding feature of B, and compute the normalized coherence using c samples

(i.e., the rows of the matrix). At this stage, we are left with a matrix of normalized

coherences for each feature and window k.

Because we want to capture how the two signals are related over time, the

coherence window c should be sufficiently large to capture periodicity in the features.

Because the typical walk cycle is on the order of seconds, it is advisable to chose a

coherence window on the order of several seconds.

As mentioned, we can also apply this same method to the data from the

gyroscope. Rather than having one feature coherence matrix, we would have two

such matrices: one computed from the accelerometer data and the other computed

from the gyroscope data. These two matrices can then be combined together.
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4.3.4 Verification

To account for the many positions an SN might be placed on the body, we collect

data from several locations. In our method, we compare the MN’s accelerometer

data to each other SN’s accelerometer data. That is, the MN acts as a reference

accelerometer, to which every other SN must correlate using the method described

above. For a given set of locations and one reference location, we compute the

feature coherence of each location A relative to the reference location B. In our

experiments, we compute the coherence of the HR and WR; HL and WR; AL and

WR; and AR and WR as shown Figure 2.1.2. When we compute the coherence for

one user, this method yields feature coherences of the sensor on the same body, and

we can label them as such. To yield feature coherences of sensors on different bodies,

we take pairs of users and mix their locations. For example, at the waist and left

hand there are two possible ways to mix up the sensors: Alice’s waist and Fred’s left

hand, Fred’s waist and Alice’s left hand. By mixing locations for any pair of users,

we can compute an equal number of feature coherences that are and are not on the

same body, labeling them as such.

Given a set of feature coherences and their respective labels, we can train a

classifier to learn a model that maps a feature coherence to a label. We examine

several classifiers and many different parameters in our evaluations.

4.3.5 Smoothing

The classification method described above makes an instantaneous classification of a

feature coherence for that particular coherence window. It is, however, possible to

boost the classification rates by examining a series of classifications over time. For

example, if over the course of three classifications, two classifications are positive and

the third one is negative, we can use a simple voting scheme to smooth over these
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mis-classifications. In the example, because most of the classifications are classified

as on the same body, we assume the SN is on the same body for that classification

window. We can empirically determine the best smoothing window size by varying

the it and choosing the one that yields the best classification rates.

4.4 Exploratory evaluation

In this exploratory study, we sought to understand how well the accelerometer and

gyroscope performed when used independently and together. This study is useful

for several reasons. First, it tells us which sensor performs the best at determining

whether two SNs are on the same body. If, for example, one of the sensors does

not help determine this fact, then we could ignore that sensor completely. Doing so

would allow us to reduce the total physical size of the required components, thereby

reducing energy use, component cost, and code footprint.

4.4.1 Dataset

For our exploratory study, we collected data from two subjects at the five highlighted

locations shown in Figure 2.1.2. We instructed each subject to walk a flat course

of length approximately 200 m. The course consisted of three straight segements

connected at right angles as shown in Figure 4.4.1a. We used the Shimmer plat-

form [132] with an attached 9 Degree of Freedom sensing module capable of sensing

acceleration (using the Freescale MMA7361L [53]), angular velocity (using the In-

venSense ISZ-500 [76] and IDG-500 [75]), and magnetic field (using the Honeywell

HMC5843 [72]), each in three dimensions. We did not use the magnetometer in our

experiments, however. We wrote custom software to synchronize the Shimmers to a

global clock with millisecond precision (see Chapter 5 for details) and collect data

from the accelerometer and gyroscope at 250 Hz. Our device and data-collection
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(a) Exploratory study
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(b) Dual user study

Figure 4.4.1: Abstract and idealized top-down view of the courses we asked subjects to
walk. These are not to any scale.

protocols were approved by our Institutional Review Board. On average, it took the

user about 2 minutes to walk the full course. While this time is short, this study was

intended to be a controlled study on one aspect our of method.

Recall that our method works by comparing the accelerometer and gyroscope

data from the SN with the MN’s own accelerometer and gyroscope data. That is,

we compare Subject 1’s WR with their own AL, AR, HL and HR. Since we know

these SNs are all on Subject 1’s body, we label them positively. We collected data

from a single user at a time in this exploratory study, thus we only have positive

examples. However, we can create negative examples by mixing the two subjects’

data together. That is, we can compare Subject 2’s WR with Subject 1’s AL, AR, HL

and HR, and vice-versa. Such a scheme yields exactly 4 sets of positively labeled

samples and 4 sets of negatively labeled samples per subject. Thus, this particular

dataset is balanced.

4.4.2 Parameters

Our method requires us to choose a feature window length and step, feature co-

herence window length and step, a smoothing window length, and a classifier. For
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simplicity, we represent these parameters as a tuple in the form (feature window

length, step; coherence feature window length, step; smoothing

window length). For some figures, the smoothing window length is left out of

the tuple. The meaning of these parameters is described below.

Feature window length and step

The length of the feature windows is specified as the number of samples. Ideally this

length should be smaller than the sampling rate to capture features of a person’s

gait, but not so small as to miss these features. Anywhere from 100 ms to 500 ms is

ideal since humans tend to take about 1 to 2 steps per second [156].

Because we sampled at 250 Hz, we chose feature window lengths of 25, 50 and

125. These were specifically chosen because they fall within the 100 ms to 500 ms

range (i.e., they correspond to 100 ms, 200 ms, 500 ms), and they evenly divide the

sample rate.

The feature window step is specified as a percentage of the feature window

length. For simplicity, we examined steps of 50 % (i.e., half overlap) and 100 % (i.e.,

no overlap).

Feature coherence window length and step

The length of the feature coherence window is specified in seconds. This length

should be chosen such that periodicity in a person’s gait will be captured by the

feature coherence. Since humans tend to take about 1 to 2 steps per second, this

value should be on the order of several seconds. Since our sampling rate was 250 Hz,

we chose feature coherence window lengths of 4 s, 8 s and 16 s. Again, for simplicity’s

sake, we chose feature coherence window steps of 50 % (i.e., half overlap) and 100 %

(i.e., no overlap).
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Smoothing window length

The smoothing window length is specified as a number of classifications. Ide-

ally a classifier would make the correct classification each time. However, this

is not always possible in practice. Depending upon how mis-classifications are dis-

tributed, a smoothing window can improve classification rates by smoothing over

mis-classifications. We examined lengths of 1, 3, 5, 7 and 9. Because our smoothing

procedure employs majority voting, we chose odd lengths to avoid ties.

Classifiers

Finally, we examined three different classifiers – SVM, NB, FOREST – as described

in Section 2.4. We did not specifically tune any of these algorithms. In addition to

these three classifiers we also present results for the RAND classifier as a baseline

classification rate. The RAND classifier should perform around 50 % BAC on average.

4.4.3 Accelerometer-only validation

Recall that we collected both accelerometer and gyroscope data. For this first val-

idation, we only examined the accelerometer data. That is, we fed the method

described in Section 4.3 acceleration data only. Figure 4.4.2 shows results of a

10-fold cross-validation for a selected subset of the parameters using the described

dataset. Each graph represents one classifier, while each line in the graph represents

one particular setting of the feature window length and step, and the coherence

feature window length and step. We varied the smoothing window and computed

the BAC for each window. For all classifiers but the RAND classifier, as the smoothing

window increased so does the BAC until it decreases once again due to over-fitting.

Some parameter settings yielded poorer performance than other settings.
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Figure 4.4.2: Ten-fold cross-validation using accelerometer data for different feature
coherence parameters, classifiers, and smoothing windows. The NB classifier performs
the best with a smoothing window of three and small windows and steps.
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Figure 4.4.3: Ten-fold cross-validation using gyroscope data for different feature coher-
ence parameters, classifiers, and smoothing windows. The gyroscope data alone per-
forms worse than accelerometer data alone.

4.4.4 Gyroscope-only validation

For this next validation, we used only gyroscope data. Figure 4.4.3 shows the results

of a 10-fold cross-validation for the same parameters chosen in Figure 4.4.2. Overall,

using gyroscope data alone performed much worse than just accelerometer data.

Since gyroscopes measure angular velocity, as a person walks, their limbs are most

likely experiencing much different angular velocities as compared to accelerations.

Additionally, the preliminary course subjects walked did not include many turns and

hence no significant full-body angular velocities; it was primarily straight with a few

ninety-degree turns. The lack of such turns made the gyroscope data not very useful.
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4.4.5 Combined accelerometer and gyroscope validation

Finally, we examine the use of the combined accelerometer and gyroscope data.

Figure 4.4.4 shows the results of a 10-fold cross-validation for the same parameters

used previously. Overall, these results are similar to the results in Figure 4.4.2. This

is expected since each classifier should perform at least as well as the accelerometer-

only validation since they have the same information. This suggests that the overhead

of a gyroscope does not improve classification rates enough to warrant inclusion.

4.5 Single-subject evaluation

The purpose of this study was to understand how our method performs over a

larger subject pool and longer walking times. This study should confirm whether our

method generalizes to many subjects and does not require training from any specific

subject.

4.5.1 Dataset

We collected data from 7 subjects with accelerometers attached to each subject at

the five highlighted locations specified in Figure 2.1.2. The accelerometer we used in
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Location

Subject AL AR HL HR WR Total Average

1 18:49.5 18:49.5 18:49.5 18:49.5 18:49.5 01:34:07.4 18:49.5

2 30:14.4 30:04.0 29:58.2 30:05.7 30:04.1 02:30:26.3 30:05.3

3 21:06.5 21:06.5 21:06.5 21:06.5 21:06.5 01:45:32.6 21:06.5

4 19:31.5 19:30.7 19:17.7 19:17.9 19:34.7 01:37:12.5 19:26.5

5 20:34.8 20:33.2 20:25.0 20:18.2 20:28.3 01:42:19.5 20:27.9

6 28:46.8 28:49.6 28:39.6 28:36.7 28:39.5 02:23:32.2 28:42.4

7 19:10.2 19:07.3 18:58.8 18:57.9 19:05.0 01:35:19.1 19:03.8

Average 22:36.2 22:34.4 22:27.9 22:27.5 22:32.5 01:52:38.5 22:31.7

Table 4.5.1: Statistics of our 7 subject single-subject dataset. The average subject walked
for 22 min along a course of their choosing.

this experiment was the WiTilt [135], which contains the Freescale MMA7260Q [52]

3-axis accelerometer. The WiTilt allowed us to collect data wirelessly via Bluetooth

to a computer that we carried with the subject as they walked. The WiTilt sampled

the accelerometer at 255 Hz. Table 4.5.1 provides some summary statistics for each

subject. On average, each subject walked for approximately 22 minutes. Subjects

were not instructed to walk any particular course; rather, we required that they walk

for roughly 20 minutes while we followed them. Our device and data-collection

protocols were approved by our Institutional Review Board.

Again, we only have positive examples of SNs on the same person, so we used

the same strategy described in Section 4.4 to create negative examples. However,

for this dataset, this approach creates many more negative examples than positive

examples since there are six other subjects to compare against for each subject. As

such, this dataset is unbalanced and heavily skewed towards negative examples.
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4.5.2 Parameters

We explored most of the same parameters as specified in Section 4.4. However,

because the sample rate of the accelerometer used in this study differed from the

previous study (255 Hz versus 250 Hz), we choose different feature window lengths

that were a factor of 255 Hz. The feature window lengths we examined in this study

were 17, 51 and 85. The other parameters remained the same.

4.5.3 Feasibility

The purpose of this section is to understand the feasibility of our method. That is, we

first make some assumptions about the location of the SN and subject wearing the

SN. Then, we progressively relax these assumptions until we make no assumptions

about the location of the SN or who is wearing it.

For the studies in this section, we only present results from the best choice of

parameters for each classifier, based on our preliminary experiments, which were a

feature window length of 17 with a 100 % step, a feature coherence window length

of 16 with a 50 % step, and a smoothing window of 3. This combination corresponds

to 32 seconds of walking data.

Given known subject and location

Our first experiment aimed to determine how well our method works when we know

who the subject is and where the subject was wearing the SN. That is, how well does

our method perform when we train a classifier using only a specific subject’s data at

a specific location? This assumption might be appropriate for devices designed to be

worn only at a certain location, such as a wristband. We simulate these assumptions

by training a classifier for each subject-location combination. This method is feasible

because we could use the bioimpedance sensor described in Section 3 to identify the

110



0

20

40

60

80

100
B

A
C

 (
%

)

99% 99%100%99% 99% 99% 99%

AL

Subject

1 2 3 4 5 6 7

99% 99% 99% 99% 99% 99% 99%

AR

99% 99% 99% 99% 99%100%99%

HL

49%

99% 99% 99% 99% 99% 99%

HR

10-fold cross-validation using per-subject-and-location NB classifier and parameters (17, 100%; 16, 50%; 3)

Figure 4.5.1: BAC of a 10-fold cross-validation for each location and subject using the
NB classifier. It performed perfectly except for Subject 1’s right hand.

subject and leverage work that describes a method to determine where on the body

a sensor is located [89, 9]. However, the drawback is that this method would require

subject-specific training data.

Figure 4.5.1 shows the results for this experiment for the NB classifier. As

one would expect, our method performed nearly perfectly, except for Subject 1’s

right hand. (We are uncertain why that one case failed.) This experiment tells us

that there are some unique characteristics about each location and subject that can

easily be discriminated. Indeed, much of the gait recognition literature backs up this

claim [77, 117].

Given known location but unknown subjects

In the next experiment we removed the assumption that we know which subject is

wearing the SN. That is, we do not know who the subject is, but we do know where

on the body the subject is wearing the SN. We simulate this assumption by training

a classifier for each location, across all subjects’ data. Figure 4.5.2 shows the results

for this experiment for each type of classifier. As expected, our method performed

worse than the case when we know which subject is wearing the SN. Using the NB

classifier, our method could tell with 89 % BAC on average whether the SN and MN
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Figure 4.5.2: BAC of a 10-fold cross-validation for each location (but subject unknown)
using different classifiers. The NB classifier performed the best overall.

are on the same body under the assumption that we know the location of the SN a

priori.

Given known subject but unknown locations

In this experiment, we remove the assumption that we know the location of the SN

on the subject’s body. That is, we know who the subject is, but we do not know where

on their body they are wearing the SN. We simulate this assumption by training a

classifier for each subject, across all locations’ data. Figure 4.5.3 shows the results of

this study for each type of classifier. The NB classifier achieved a 89 % per-subject

average BAC, which is on par with the previous experiment. As expected, our method

performed worse than the case when we know the identity of the subject and the

location of the SN.

Given unknown subjects and locations

Finally, in this experiment we make no assumptions about the subject or the location

of the SN on their body. This is the ideal circumstance since having a global classifier,

as opposed to a per-subject or per-location classifier, means fewer models to train and

test. In this case, we train one classifier across data from all subjects and locations.
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Figure 4.5.3: BAC of a 10-fold cross-validation for each subject (but location unknown)
using different classifiers. Again, the NB classifier performed best overall.

Figure 4.5.4 shows the results of this experiment for each type of classifier.

In addition to BAC, we also show the precision and recall of each classifier. The

NB classifier performed the best over all the statistical measures. Notice that the

precision is near perfect, meaning that the number of false positives was very low

compared to the number of true positives. However, recall is not so good. For a

security-related application this situation is optimal, since false positives are more

detrimental to the system than false negatives. More false negatives just means

we need more time to verify whether these sensors are on the same body. It is

possible, for example, to tune a classifier to produce more false positives or more

false negatives depending upon the application. For our purposes, these classifiers

work fine without much tuning. Thus we conclude that using a NB classifier we can

achieve 86 % BAC with few false-positives when given 32 s of acceleration data from

a subject who is walking.

4.5.4 Generalizability

The purpose of these experiments was to understand the generality of our method.

Ideally our method would require neither subject-specific nor location-specific train-

ing to achieve good performance. To test this goal further, we ran a leave-one-subject-
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Figure 4.5.4: BAC, precision, and recall for a 10-fold cross-validation for different classi-
fiers when both subject and location are unknown. The NB classifier performed best for
this case.

out and leave-one-location-out cross-validation. Recall that a leave-one-subject-out

cross-validation means that we take one subject’s data and set it aside as the test

dataset. We then use the remaining subjects’ data to train a classifier. Finally, we use

that left-out subject’s data to test how well the model performs. Because a subject’s

data is left out in the training phase, then the classifier will have no knowledge about

the distribution of that particular subject’s data.

Location left out

Ideally, our method would not be sensitive to any particular location. Figure 4.5.5

shows that this is the case, because the average location BAC for this validation is

nearly identical to the BAC in Figure 4.5.4. Notice how the ankle locations performed

better than the hand locations in all classifiers. We believe this is the case because

a person’s hands tend to move more sporadically while walking than do a person’s

feet. A person’s feet need to keep them moving forward while their arms do not.

Additionally, the right ankle tended to perform the best because it was on the same

side of the body as the MN in our experiments. Likewise, the right hand tended to

perform the worst because, while it is on the same side of the body as the MN, a

person’s hand tends to swing opposite of their forward leg while they are walking.
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Figure 4.5.5: A leave-one-location-out cross-validation for different classifiers when both
subject and location are unknown. The similarity of the average location BAC in this figure
to Figure 4.5.4 means that our method is not sensitive to any particular location for these
parameters.

That is, a person’s right hand moves similarly to their left ankle. Because our method

performed just as well on average as the feasibility experiment, we do not need to

train a per-location classifier.

Subject left out

Ideally, our method would not be sensitive to any particular subject. Figure 4.5.6

shows that this is the case, because the average subject BAC for this validation

is similar to the BAC in Figure 4.5.4. Notice how the BAC for each subject had

more variability in the NB classifier as compared to the SVM classifier. Thus, the

SVM classifier generalized better while the NB classifier was more sensitive to

subject-specific data. However, the NB classifier performed better than the SVM

classifier. Because the SVM and NB classifiers exhibit similar performance to our

cross-validation, our method must not be sensitive to any subject.
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Figure 4.5.6: A leave-one-subject-out cross-validation for different classifiers when both
subject and location are unknown. The similarity of the average subject BAC in this figure
with Figure 4.5.4 means that our method is not sensitive to any particular subject for
these parameters.

4.5.5 Feature Analysis

Although the features are not necessarily expensive to compute, minimizing the

amount of data that needs to be communicated reduces energy. On typical sensor

platforms, wireless communication can be an order of magnitude more expensive

than computation on the same number of bits. Thus we can select a subset of features

that provide the highest classification rates and ignore those features that contribute

little to the classification performance. For example, we compute both the standard

deviation and variance, but because standard deviation is the square root of the

variance we would expect one of these computed features should be eliminated.

To accomplish this feature selection, we employed a standard correlation-based

feature selection with a greedy hill-climbing algorithm to select candidate subsets. We

evaluated each subset using a 10-fold cross-validation over all locations and subjects

for the best selection of parameters. The feature selection algorithm indicated

that standard deviation, power and energy provide the bulk of the classification

performance. The other features contribute little or nothing to the classification

performance. Figure 4.5.7 shows the same experiment in Figure 4.5.4 but with the
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Figure 4.5.7: Verification performance for a truncated set of features. We only used the
coherence of standard deviation, power and energy.

truncated set of features. The SVM and FOREST classifier performed just as well,

while the recall of the NB classifiers suffers slightly.

4.6 Dual-subject evaluation

In this evaluation, we sought to understand how well our method works when two

subjects wore accelerometers at the same time. That is, we gave accelerometers to

two subjects and had them walk together in-step. The goal is to determine whether

our method can successfully distinguish which SN was on which body, even when

both SNs stayed in radio range of both bodies’ MNs, and both subjects were walking

in stride.

4.6.1 Dataset

To collect this data, we instrumented the Shimmer platforms to collect acceleration

data at 250 Hz. To keep the individual Shimmers synchronized in time, we developed

an application that uses the Flooding Time Synchronization Protocol [97] to provide

µs precision time synchronization. One Shimmer was designated as the root node

that was separate from the Shimmers collecting data. The acceleration data is stored

117



to the SD card on each Shimmer for later retrieval.

Due to our limited supply of Shimmers, each subject could only wear 4 Shim-

mers at a time. For the first trial, both subjects carried a Shimmer at their WR, AR,

AL, and HL, and on the second trial they switched the Shimmer at HL to the HR.

4.6.2 Walking in step

For this experiment, both subjects were instructed to walk in-step around the course

in Figure 4.4.1b. That is, both their legs and arms followed the same motions to the

best of the subjects’ abilities. The purpose of this study was to understand how well

our method performs even when two people try to fool our method. Figure 4.6.1

shows the performance of our method for this dataset. The BAC of our method

dropped significantly due to a decrease in recall. The precision, however, remained

the same. This result tells us that for people purposely walking in-step our method is

more likely to determine that an MN and SN are not on the same body when they

actually are. The consequence of this is that it will take longer to verify whether two

devices are on the same body. However, because the precision remains the same, it

is difficult to fool our method.

4.7 Related work

There are other methods of determining whether sensors are on the same body. One

could localize the wireless sensors to ensure they are within some bodily distance of

each other. This trivially fails when users are close together because of the limited

granularity of wireless localization [65]. Likewise, depending upon the frequency

at which the wireless sensors communicate, the body may block all or some of the

wireless signal necessary for the localization scheme.

A simple solution is to put labels on the wireless sensors to indicate with which
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Figure 4.6.1: The performance of our same-body verification method when two people
deliberately walk in step for two different trials. The top plot includes locations AL, AR,
and HL while the bottom plot includes locations AL, AR, and HR. For both trials, the recall
drops while precision remains the same. This result means that our method is producing
more false negatives.
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user they are logically paired. While this does provide some confidence to the user

that they are wearing the correct wireless sensors, it does not provide a third party,

like a physician, with the same confidence. It also does not take into account that

some sensors might be intentionally shared. Thus, we require a kind of proof that

confirms the wireless sensors were attached to the same body.

Lester et al. [91] provide a solution for the one-body verification problem, but

only for sensors that are carried in the same location on each body. They also propose

using accelerometers attached to each sensor and measure the coherence of the

accelerometer data. “Coherence measures the extent to which two signals are linearly

related at each frequency, with 1 indicating that two signals are highly correlated

at a given frequency and 0 indicating that two signals are uncorrelated at that

frequency” [91]. By looking at the coherence at the 1 Hz to 10 Hz frequencies (the

frequency range of human motion), they can experimentally determine a threshold

(e.g., coherence > 0.9) at which it is appropriate to deem two sensors as located on

the same body.

We extend Lester et al. [91] to sensors carried at different locations on the

body – wrist, ankle, and waist – by using features often used for activity recognition.

We then extract the pairwise coherence of features for the sensors on the same body.

Given these coherences, we can train a classifier and use it to determine whether the

alleged set of sensors are on the same body. We train our classifier to be as general as

possible by using data collected from several individuals; the same model can then

be used by all users for all sensor devices. Lester et al. used a predefined threshold.

Prior work has explored the use of body-coupled communication [102, 109,

18, 14, 116, 162, 130, 48], which is a means of transmitting data by way of the

physical human body. Although this is a promising solution, the security of these

types of communications is wholly unexplored. What happens, for example, when

two users touch each other? The security properties of these kinds of communication
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channels are not well understood, and until then we should be wary of their use.

Most compelling, many sensors will not have direct contact with the body, and in

any case such a scheme would require additional hardware.

Mayrhofer et al. [106] describe a solution to exchange a cryptographic key

between two devices by manually shaking the two devices together. They use the

method described in Lester et al. [91] to determine whether two devices are being

shaken together. But, as they notice, coherence “does not lend itself to directly

creating cryptographic key material out of its results” [106]. To extract key material

they extract quantized Fast Fourier Transform (FFT) coefficients from the accelerom-

eter data to use as entropy for generating a key. One could imagine applying this

technique to our acceleration data, but it is unclear whether it would still work. Our

problem is made difficult by the fact that the accelerometers are not being shaken

together but are attached to a body and will therefore experience less-correlated

accelerations. These methods run over our datasets did not work.

Kunze et al. [89] describe a method for using accelerometers to determine

where on a body a particular sensor is located. They detect when a user is walking

regardless of the location of a sensor, and by training classifiers on a variety of

features (RMS, frequency range power, frequency entropy, and the sum of the power

of the discrete wavelet transform at different levels) on different positions on the

body they can use the classifier to determine where on the body the sensor is located.

We seek to provide a method that determines whether a suite of sensors is located on

the same body without having to use multiple classifiers for different body locations.

Although, we could use their method to boost our own results, this approach would

require per-location classifiers.

Kunze et al. [88] also describe a similar method to account for sensor dis-

placement on a particular body part. This problem is difficult primarily because

“acceleration due to rotation is sensitive to sensor displacement within a single body
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part” [88]. To alleviate this problem, the authors observe that “combining a gyro-

scope with an accelerometer and having the accelerometer ignore all signal frames

dominated by rotation can remove placement sensitivity while retaining most of the

relevant information” [88]. This solution could be used to extend our work to many

other positions on the limbs we examined.

Finally, others have examined a similar problem, determining where people are

seated a car. Wang et al. [151] describe a method for determining whether a mobile

phone is on the driver side or passenger side of the vehicle. We could, in theory, use

this work to extend our method to include times when two people are in a car; SNs

on one side of the car will experience different centripetal accelerations than SNs on

the other side. If we could factor this knowledge into our model, we may be able to

use our method even though the person is not walking.

4.8 Limitations

Our method relies on the assumption that a user is capable of walking, which may

not be true for some users. It remains as future work to determine whether we can

extend the method for a person who is confined to a wheelchair, for example. Even

for a user who is able to walk, there may be an extended period of time after binding

an SN and before the user walks. The MN could alert the user that they should

walk around so that verification can be performed. As future work, we may explore

other acceleration and orientation-changing events; for example, to ask the user for

clap their hands, shake the devices together, or perform some unique movement.

Likewise, we could extend our method to other activities such as driving a car or

riding a bicycle.

Ideally the algorithm should be tuned to produce more false negatives (i.e., the

algorithm determined the SNs to be on different bodies when they really were on
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the same body) than false positives (i.e., the algorithm determined the SNs to be on

the same body when they were not) because the consequences of a false positive

(recording the wrong person’s data in someone’s health record) are more severe than

the consequences of a false negative (losing data). It is possible to ‘bias’ the classifier

toward false negatives, if desired. For example, in an SVM classifier, one can weight

the classes such that the model will output more false negatives than false positives.

Although we do not discuss encryption mechanisms, ensuring data confiden-

tiality is paramount in any health-related scenario. If one were to optimize the

verification phase by simultaneously verifying all bound SNs, it might be necessary to

encrypt the acceleration data to avoid replay attacks (in which the adversary replays

one SN’s acceleration data in hopes that its rogue SN will be verified as being on the

same body as the victim). Even if such an attack is discounted, the accelerometer

data itself might be privacy sensitive because accelerometer data may be used to

recognize a victim’s activity. Some activities are clearly privacy sensitive, and some

of those sensitive activities might be detected from accelerometer data alone.

One could also imagine using motion-capture technology to determine the

acceleration an SN would be experiencing, and feed the MN this data to verify an SN

that is not on a body. This technology typically requires special hardware that would

make it infeasible today, but it might be feasible with new technology in the future.

In a practical system, one must consider energy and computational costs. In

our model, the SN sends raw acceleration data to the MN. If this proves to be

too expensive, then the SN could compute features from a window of acceleration

and communicate those features instead. We leave exploring this delicate balance

between extendability (allowing use of other features in the future), computability

(due to limited computational capabilities on an SN), and energy requirements

(with trade-offs specific to the technology in an SN) as future work. We assume the

processor on the MN will be more than capable of computing correlations, but the
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energy cost of these functions is unknown and requires more careful analysis. Should

the computation prove to be too expensive or time consuming, then one may need

to explore optimizations or approximations, or the assistance of a back-end server,

with due consideration to the trade-off of computational overhead, performance,

and privacy. Indeed, many of these features need to be empirically determined by a

manufacturer.

In addition, a practical system must be aware of the locations a sensor might

be used. Although we only explore the wrist and ankles for our experiments, we

expect our method to work for other locations since these are the extremes of

the body. However, this remains unverified and left for future work. Adding more

locations would increase the time it takes to train the classifiers, but training can be

accomplished offline. We also expect sensor manufacturers would know the general

location where the sensor would be placed on the body and thus could train an SVM

for that particular location.

4.9 Summary

In this chapter we described a method for determining whether two sensors are

on the same body. We exploit the fact that the human body experiences similar

accelerations and orientation changes as a person walks. Sensors on other people

will experience much different accelerations, a fact we can exploit to determine

whether two sensors are on the same body. In essence, our method generically

verifies that all the SNs bound to an MN are the same body. We show that our

method can achieve a balanced accuracy of 86 % with few false positives using

32 seconds of accelerometer data from different locations on the body. Our method

can be generically applied regardless of the sensor type and without subject-specific

or location-specific training data. In summary, we make the following contributions:
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• We provide a solution to the weak version of the one-body verification problem,

complementing our bioimpedance-based biometric described in Chapter 3 to

address the strong version of the problem.

• We extend Lester et al. [91] to sensors carried at different locations on the

body – wrist, ankle, and waist – by extracting features used for activity recog-

nition.

• We provide empirical results to show that our method works using a dataset of

seven users walking for 22 minutes.
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5
Putting it all together

Now we come to the point where the two methods we previously described come

together. In this chapter, we describe how our method for recognizing wearers and

our method for verifying whether sensors are on the same body can be used together

in a system. Although these methods can be used independently of each other, they

were designed to be complementary. The power of these methods is really shown

when a WBAN can use them to determine which person is wearing its MN and SNs.

We imagine a world where personal health sensors are ubiquitous and wire-

lessly communicate with a person’s Amulet [134] or smart phone. More generally,

these WBAN systems have many potential uses. Recall there are two components in
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Figure 5.1.1: The protocol SNs follow. Notice that in any given state, the SN is always
detecting whether it is attached to a person, because it can be removed at any time.

such a system: an MN and many SNs. Because these two components communicate

wirelessly, without our methods they would not know whether they are sensing the

same person, let alone which person.

5.1 Implementation

The goal of our implementation is to show how our methods could be used in a

personal health sensing system. To show how this is possible, we outline the protocols

the MN and SNs follow, and the methods that are necessary to realize this protocol.

5.1.1 Protocol

The purpose of each SN is to communicate its sensed data to the MN. However, in

addition to the data it is sensing, it also needs to communicate data about the data

(i.e., meta-data) it is sensing. This includes things like the time of the sensed data as

well as who it is sensing. To accomplish this, each SN follows the protocol outlined

in Figure 5.1.1.
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When a user wishes to use an SN the following happens:

1. The user attaches an SN to their body.

2. The SN detects that someone is wearing it, turns on and begins broadcasting

its presence.

3. An MN hears this broadcast and initiates same-body verification with the SN.

4. Once verified, the MN can request bioimpedance samples (if the SN supports

bioimpedance recognition) or other sensor data.

At any step in the process, the SN might detect it is no longer being worn by a person

and therefore return to the state of detecting whether somebody is wearing it. In the

following sections, we describe, in detail, the purpose of each state in Figure 5.1.1.

Device authentication

To establish an authentic channel, the MN and SN need to have some existing

information about each other. For example, each SN could be verified by some

entity (e.g., the Food and Drug Administration (FDA)) and given a certificate along

with a public and private key. An MN could store the SN’s public key and use it to

authenticate any communication from an SN using a digital signature scheme [125,

79, 46]. That is, each message sent over the channel would have an accompanying

signature according to the chosen digital signature scheme. It is feasible for SN-class

devices to conduct public-key cryptography [20]; it would only be needed once

during a pairing operation.

Detecting wearers

Although each an SN could have a switch that would turn on and off power to the

device, it is useful to know when the SN is attached to a person. Since SNs have
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limited energy reserves, we can save energy by putting the an SN into a low-power

state until it is worn by a person.

As seen in Figure 2.1.2, there are many locations on a person’s body where they

might wear an SN. More so, different locations might afford different types of ways

an SN can be attached to a person’s body. For example, a waist-worn SN might only

slip into person’s pocket, while a wrist-worn SN might contain a clasping mechanism.

There are at least five such ways an SN could be worn: clipped on, strapped on,

stuck on, or slipped into a pocket, or even implanted or ingested.

For devices that require skin contact, an SN could use bioimpedance since

skin contact is easy to detect given a bioimpedance measurement. As shown in

Figure 3.4.2, it is easy to detect when there is no contact with the wrist (or more

generally, the skin) by measuring the impedance. When there is no contact, the

magnitude of the impedance for such a measurement is effectively infinite across

all frequencies. Thus, an SN could use a simple threshold to detect presence. This

presence-detection scheme, however, requires a non-trivial amount of energy to

execute. In the worst case, an application might require near-instant detection of

wristband removal. Given that an impedance measurement takes about 98 mW of

power to measure, this presence-detection method is not realistically feasible for

continuous use. It might be feasible to look at an individual electrode configuration

and single frequency, but we leave such methods for future work.

For devices that are clipped or strapped on to a person’s body without contacting

the person’s skin, the easiest detection mechanism is a simple circuit. That is, when

the device is strapped on to a person, the two ends could complete a circuit that

would wake up the device. For a clip-on device, a magnet and Hall-effect sensor

could be used to detect when the clipping mechanism is clipped. Note that neither

of these mechanisms determine whether a person is wearing the SN. Rather, they

are a proxy for whether the SN is being worn. A person could, for example, strap the
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device to itself and set it on the bedside table.

Broadcasting presence

Given a method for detecting when it is worn, an SN would begin broadcasting

its presence once it detects someone is wearing it. An MN would overhear this

broadcast and bind with the SN. Binding establishes a communication channel that

is confidential. This is accomplished by using a key exchange protocol. For example,

an MN and SN would participate in a Diffie-Hellman key exchange [41] over the

authenticated channel. Such a scheme is called Ephemeral Diffie-Hellman and gives

us the forward secrecy property. Such an exchange allows the MN and SN to establish

a key that can then be used to encrypt any further communications, ensuring the

confidentiality and integrity of the channel. For better energy efficiency, we could

employ Hide-n-Sense which is a “mHealth sensing protocol that provides strong

security and privacy properties at the link layer, with low energy overhead, suitable

for low-power sensors.” [96].

Same-body verification

Once the MN and SN establish a confidential channel, the MN can then initiate

verification. Verification is the process of determining whether the MN and SN are on

the same body. Until an SN is verified, any sensor data from the SN is ignored by the

MN. (As it may take some time for verification to succeed, in some implementations

the MN may buffer the incoming data received between the moment of binding

and the moment of verification, recording the data only once verification is assured.

This “retroactive verification” of the early data is feasible because of our assumption

that an SN can detect its own attachment and removal; if an SN is moved from one

body to another before it was verified on the first body, the unbinding and rebinding

events will clear the buffer on the first body’s MN.) To achieve verification, our
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protocol requires an algorithm that is able to decide whether two SNs are on the

same body. We use the method described in Chapter 4.

Procedure 1 provides an overview of the process the MN uses to verify an SN.

Because our method depends on recognizable acceleration events, our algorithm

performs verification only when the user is walking. Thus, the MN must implement

a recognition algorithm UserIsWalking() capable of recognizing walking using

the accelerometer data.

To begin verification, the MN records acceleration data using its internal ac-

celerometer for t seconds. Simultaneously, it asks the other SN to send it acceleration

data for the same duration. The duration required depends on the level of confidence

desired; a shorter duration may lead to more incorrect results (false positives and

false negatives), but a longer duration makes the approach less responsive after

the person first puts on the sensor. It then runs our algorithm from Chapter 4,

AreCorrelated in Procedure 1, to determine whether its internal acceleration

data correlates with the SN’s acceleration data.

Sending data

Only when the accelerometer data correlates well does the MN begin to record

that SN’s other sensor data (e.g., electrocardiography data). Thus, the MN signals

to the SN that it should start sending its sensor data according to preference of

the application. For example, the MN could direct an SN that has a bioimpedance

sensor to send bioimpedance samples. Using the method described in Chapter 3,

the MN could use this data to establish the identity of the person wearing that SN.

Additionally, because the MN has verified that it is on the same body as the SN, then

it is must also be worn by that person wearing the SN. Thus, the MN can exploit

this transitive relationship to automatically label any sensor data from an SN on the

same body as it. It is not necessary for the MN nor all of the SNs to be able to identify
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Procedure 1 Binding with and verifying SNs, from the MN’s perspective
Notation:

B: set of bound SNs, initially empty

Ai: acceleration data from SN i, where i = 0 is the MN’s acceleration data, and
i > 0 re SNs.

Record(t): read MN’s accelerometer for t seconds

Recv(b, t): read SN b’s accelerometer for t seconds

AreCorrelated(x, y): determine whether acceleration data x and y

————————————————–

1: while { true } do

2: if b := NewSensorNodeDetected() then

3: B := B ∪ b
4: { Mark SN b as unverified }

5: end if

6: for b ∈ B do

7: if Disconnected(b) or Timeout(b) then

8: B := B \ b
9: else if d := RecvData(b) and IsVerified(b) then

10: RecordData(b, d) { Save b’s data d in our health record }

11: end if

12: end for

13: if UserIsWalking() then

14: for b | b ∈ B and not IsVerified(b) do

15: { The next two lines are accomplished in parallel }

16: A0 := Record(t)

17: Ab := Recv(b, t)

18: if AreCorrelated(A0, Ab) = true then

19: { Mark SN b as verified }

20: { Tell SN b to send sensor data }

21: end if

22: end for

23: end if

24: end while
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their wearer, rather, it is sufficient that they implement our verification method. It

is the combinations of the methods described in Chapters 3 and 4 that gives our

system the power to automatically label sensor data with the identity of the person

that was wearing the SNs at the current time.

Unbinding

Unbinding occurs when a user removes an SN. In the ideal case, the following

happens:

1. The user unstraps the SN from their body.

2. The SN detects that it was removed and notifies the bound MN of this fact.

3. The MN acknowledges this notification, thereby unbinding it with the SN.

4. Upon receipt of this acknowledgment (or upon timeout), the SN turns off.

An SN may lose power or go out of range of the MN, during or prior to the

user unstrapping the SN. Thus, the MN periodically pings each SN (not shown

in Procedure 1); if the SN does not reply (after some timeout period), the SN is

likely not on the same body or not powered, and the MN treats it as unverified and

unbound.

5.1.2 Hardware and software

We implemented these protocols on a Shimmer [132] and Google/Samsung Nexus S

smart phone [153]. The Nexus S and Shimmer communicated wirelessly via Blue-

tooth 2.1 [23] using the Serial Port Profile. We relied on the underlying authentica-

tion and confidentiality mechanisms present in Bluetooth 2.1.

The Shimmer application is a 1570 line TinyC program capable of sensing the

on-board accelerometer at 250 Hz and sending it via Bluetooth. It optionally includes
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the capability to control an attached bioimpedance sensor board according to the

method described in Chapter 3.

The Nexus S application is a 932 line Java Android 4.1 application. We used the

OpenUAT toolkit [105] for some of the signal processing and the Weka toolkit [62]

for the machine-learning aspects of the application. We implemented the algorithms

described in Chapters 3 and 4. The models installed on the Nexus S were trained

offline using Weka.

For our experiments, we instrumented the Android application to output time

stamps related to when events were happening on the smart phone. This allowed us

to correlate known events with our energy measurements. We could not, however,

instrument the Shimmer because it require us either sending extra data via the radio

or writing logging data to the SD card. Such extra instrumentation would adversely

affect both the timing and energy profile of the application. To compensate, we

coded the Shimmer application in such a way that would allow us to know where

specific events took place based on known timing characteristics starting from the

booting of the Shimmer.

5.2 Evaluation

Given the implementation of these protocols and underlying methods, we sought

to evaluate system performance according to several factors. First, we evaluated

whether such a system is feasible given that we require subjects to be walking for a

period of time. Next, we study the energy requirements for such a system from the

perspective of both the MN and SN. Finally, we end with a security analysis of our

protocols under the security model described in Section 2.3.
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Subject Total (h) Walking (min) Count Min (s) Mean (s) Median (s) Max (s) Std (s)

1 49.8 62.0 37 10.0 100.5 47.5 475.0 106.1

2 69.9 61.0 46 15.0 79.6 58.8 360.0 69.9

3 24.6 63.2 40 10.0 94.8 46.2 297.5 91.1

4 49.8 133.0 93 7.5 85.8 47.5 477.5 93.2

5 67.8 77.5 115 7.5 40.4 27.5 292.5 40.9

6 65.1 31.5 29 7.5 65.1 55.0 227.5 52.3

7 84.4 48.2 53 17.5 54.6 30.0 172.5 44.5

Avg 58.8 68.1 59 10.7 74.4 44.6 328.9 71.1

All 411.5 476.4 413 7.5 69.2 40.0 477.5 75.0

Table 5.2.1: Statistics for each subject about their particular walking habits. The first col-
umn, Total, is the total time in hours the subject carried the device. The next column,
Walking, is the total time in minutes the subject spent walking according to our classi-
fier. Count represents the number of the times the classifier detected walking, while Min,
Mean, Median, and Max represent the length, in seconds, of the smallest, average, mid-
dle, and largest walking intervals. Std is the standard deviation of all walking intervals in
seconds. The Avg row represents the average over the columns above, while the All row
represents the concatenation (i.e., aggregation) of all subjects together as one.

5.2.1 Same-body verification intervals

Since we require about 40 seconds of acceleration data when a user is walking to

verify whether sensors are on the same body according to Chapter 4, we would like

to know how many times a day our system could perform same-body verification,

on average. To find out, we continuously collected acceleration data from several

subjects using an accelerometer placed in their pocket. Each subject was given a

Shimmer [132], which continuously collected acceleration data, and was asked to

carry the device at all times except when they were sleeping or performing an activity

that could harm the device (e.g., showering, swimming, or working out).

We collected a total of 411 hours of acceleration data from seven students who

each carried a single accelerometer that sampled at 100Hz. On average, a subject
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carried the accelerometer for 58 hours. Table 5.2.1 shows statistics for each subject.

In addition to this dataset, we also collected a one-hour training dataset consisting

of mixed activities.

To classify walking intervals, we use the features described by He et al. [68].

They observe that there is a period of weightlessness a person experiences while

performing activities like running or walking. They show how 6 features (mean

peak height, mean weightless length, mean peak interval, mean weightless inter-

val, ratio of peak number to weightless number, and ratio of weightless length to

window length) can be used to achieve 98.54 % walking classification accuracy for

an accelerometer placed in a subject’s trouser pocket. They suggest extracting these

features for every 5.12 seconds of data (with 50 % overlap between windows), so

we extracted the described features for each 5 second window of acceleration data

with 50 % overlap. Using the training dataset, we computed the features of that

dataset, and trained a NB classifier. We then used the classifier to classify a window

of features for each subject, drawing test cases from the test dataset. To improve

results, we smoothed over classification results using a simple majority voting rule

for every 3 classifications.

Figure 5.2.1 shows the acceleration intervals that were classified as walking

for each subject. On average, a subject walked for 74 seconds per interval however

the median walking interval length was 44 seconds. This means more than half of

all classified walking intervals were at least 40 seconds long. It seems to me that

what matters is the “time between walking intervals of at least 40 seconds.” What

we really want is mean-time-to-verification.

Figure 5.2.2 shows the distribution of walking interval lengths for all subjects.

The distribution of walking interval lengths tends to cluster towards shorter lengths

of 60 seconds or less. However, there do exist enough walking intervals greater

than 40 seconds for each subject. Thus we would be able to perform same-body
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Figure 5.2.1: Walking classification for each subject for the whole time that they carried
the sensor. According to the classification method, subjects walked for 74 seconds on
average and in total walked an average of 2.3 % (1.9 % aggregated) of the collection
period.
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verification with smoothing for the given population.

5.2.2 Energy measurements

To capture energy measurements, we used the Monsoon Power Monitor [112]

connected to a Windows laptop. The Power Monitor acts like a battery and samples

the current drawn every 200 µs. In the graphs shown, we down-sampled the current

drawn to 100 ms via averaging. We show energy measurements for the MN and SN

for both same-body verification and bioimpedance recognition.

Same-body verification

Figure 5.2.3 shows how much current an SN draws when engaging in same-body

verification with an MN. There are five distinct phases in the energy measurement.

First is the idle sequence. The SN consumed 6.45 mA on average when idle. In

the next phase, the SN turned on its Bluetooth radio at the 3.0 s dashed line. This

radio consumed 10.0 mA while idle: the spikes present in this phase of the energy

measurement correspond to times when the Bluetooth radio was attempting to

discover the MN. Next, the SN and MN established a connection at the 11.5 s dashed

line. On average, this phase consumed 27.0 mA. The MN instructed the SN to begin

sampling the accelerometer and sending the data via Bluetooth at the 11.5 s dashed

line. This phase consumed 25.8 mA on average. Next, the sampling and sending

phase ended at the 53.2 s dashed line. Sampling and sending consumed 37.9 mA

on average. Sampling the accelerometer accounted for less than 3 % of the current

consumed. Finally, the Bluetooth radio was turned off at the 55.3 s dashed line.

On average, this phase consumed 26.2 mA. The dominating factor in this energy

measurement was the Bluetooth radio. Thus, it would make the most sense to

limit the use of the radio or find lower-power ways of transmitting data. An SN
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Figure 5.2.2: The distribution of walking interval lengths for all subjects and the aggre-
gation of all subjects. Features were extracted every 5 seconds with 50 % overlap. The
aggregated distribution tends to skew heavily towards shorter walking intervals for this
particular set of subjects.
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Figure 5.2.3: Energy measurement of an SN when collecting accelerometer data for
verification. The dashed line at 3.0 s is when the SN turned on its Bluetooth radio. The
dashed line at 11.5 s is when the MN connected to the SN. The dashed line at 13.5 s is
when the MN told the SN to start sensing acceleration. The dashed line at 53.2 s is when
the MN told the SN to stop sensing acceleration. The dashed line at 55.3 s is when the
MN disconnected from the SN.

with a 450 mA h battery could last more than one day with the Bluetooth radio on

continuously and with an hourly same-body verification.

Figure 5.2.4 shows how much current the MN consumed when engaging in

the same-body verification protocol with an SN. This figure is not aligned in time

with Figure 5.2.3 because we could only measure energy from one device at a time.

There are four distinct phases in the energy measurement. The first phase shows

the energy the MN consumed when idly waiting. On average, the MN consumed

57.1 mA. In the next phase, the MN turned on its Bluetooth radio at the 5.0 s dashed

line and began connecting to the SN. This phase consumed 94.8 mA on average. The

MN connected to the SN at the 7.3 s dashed line and immediately asked the SN to

start sending data. In this phase, the application was both receiving acceleration

data from the SN over Bluetooth and sensing the MN’s internal accelerometer.

Furthermore, it was also processing this data in real time according to the method

described in Chapter 4. The dashed lines at 20.1 s, 26.4 s and 32.8 s in this phase

of the energy measurement correspond to computation of feature coherences and
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Figure 5.2.4: An energy measurement of an MN when running same-body verification.
The dashed line at 5.0 s is when the MN turned on its Bluetooth radio. The dashed line at
7.3 s is when the MN connected to the SN. The dashed lines at 20.1 s, 26.4 s and 32.8 s
are when the MN computed a feature coherence and classified them resulting in an cur-
rent spike. The dashed line at 33.2 s is when the MN disconnected. The dashed line at
36.4 s is when the MN turned off the Bluetooth radio.

the classification of them. On average, this phase consumed 71.2 mA. At the 33.2 s

dashed line, the MN disconnected from the SN and begun turning off its Bluetooth

radio. This phase consumed 86.4 mA on average. Running our protocol does not

incur significant overhead compared to how much overhead was required to run the

Android operating system.

Bioimpedance recognition

Figure 5.2.5 shows the energy measurement of an SN sampling bioimpedance and

sending these values to an MN. Here, we assume the MN has already verified

that the SN is on the same body. Thus, this figure shows how much energy an SN

consumed for just bioimpedance recognition. There are five distinct phases in the

energy measurement. In the first phase, the SN was idle. This consumed 6.42 mA

on average. Next, the SN turned on its Bluetooth radio at the 3.0 s dashed line

and attempted to pair with the MN. On average, this phase consumed 9.33 mA.

Again, the spikes in this phase correspond to the times when the Bluetooth radio
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Figure 5.2.5: An energy measurement of an SN when collecting bioimpedance data for
recognition. The dashed line at 3.0 s is when the SN turned on its Bluetooth radio. The
dashed line at 13.8 s is when the MN connected to the SN. The dashed line at 16.3 s is
when the MN told the SN to start sensing bioimpedance. The dashed line at 35.0 s is
when the MN told the SN to stop sensing bioimpedance. The dashed line at 36.5 s is
when the MN disconnected from the SN.

was searching for the MN. At the 13.8 s dashed line, the SN and MN established a

connection. This phase consumed 27.0 mA on average. Next, the MN then instructed

the SN at the 16.3 s dashed line to collect 12 bioimpedance samples and send them

via Bluetooth. This phase consumed 52.5 mA on average. About 30 % of this current

was due to the actual bioimpedance sensor board, while about 60 % was a result

of the Bluetooth radio (the remaining 10 % was the overhead of just running the

device). Next, the MN told the SN to stop sampling and disconnected at the 35.0 s

and 36.5 s dashed lines, respectively. The phase between stopping sampling and

disconnecting consumed 26.8 mA on average. Once again, the dominating factor

was the Bluetooth radio, although the bioimpedance sensor board required more

energy than the accelerometer. An SN with a 450 mA h battery could last more than

a 1 day with the Bluetooth radio on continuously and with an hourly bioimpedance

recognition.

Figure 5.2.6 shows the energy measurement of an MN engaged in bioimpedance

recognition. This figure is not aligned in time with Figure 5.2.5 because we could only
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measure energy from one device at a time. Like the measurement in Figure 5.2.5, we

assume the MN has already verified that the SN is on the same body. There are four

phases in the energy measurement. This phase was a steady state energy measure-

ment of the MN. This phase consumed 54.5 mA on average. In the next phase, the

MN turned on its Bluetooth radio at the 5.0 s dashed line and began connecting to

the SN. On average, this phase consumed 87.8 mA. At the 13.8 s dashed line, the MN

was connected to the SN. In this phase, the MN collected bioimpedance samples from

the SN. The dashed lines at 10.5 s, 12.2 s, 13.9 s, 15.4 s, 17.0 s, 18.8 s, 20.2 s, 21.8 s,

23.5 s, 24.9 s, 26.3 s and 28.1 s correspond to the times when the SN started sensing

a new electrode configuration. This phase consumed 67.9 mA on average. At the

29.6 s dashed line, the MN ran the recognition algorithm, told the SN to stop sensing,

and began disconnecting from the SN. On average, this phase consumed 91.8 mA.

Compared to the overhead of the Bluetooth radio and Android operating system, our

bioimpedance recognition method did not significantly impact the current drawn.

In fact, bioimpedance recognition uses less energy than the same-body verification

method because less time was spent receiving samples and the feature computations

were simpler.

5.2.3 Security analysis

Recall that our security model outlined in Section 2.3 had four goals. In this section,

we argue that our system meets each of these goals.

G1: Confidentiality

Our system should preserve the confidentiality of the sensed data and meta-data.

That is, the sensed data and its meta-data should not be revealed to anyone but

the user and service provider. This goal is the met for the following reasons. First,
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Figure 5.2.6: Energy measurement of an MN when running bioimpedance recognition.
The dashed line at 5 s is when the MN turned on its Bluetooth radio. The dashed line
at 10.1 s is when the MN and SN established a connection. The dashed lines at 10.5 s,
12.2 s, 13.9 s, 15.4 s, 17.0 s, 18.8 s, 20.2 s, 21.8 s, 23.5 s, 24.9 s, 26.3 s and 28.1 s are when
the SN started sensing a new electrode configuration. The dashed line at 29.6 s is when
the MN classified the bioimpedance sampled and disconnected. The dashed line at 32.9 s
is when the MN turned off its Bluetooth radio.

the user trusts the SN to not reveal any of this sensed data or created meta-data to

anyone but the MN. This is met under the assumption that an attacker cannot tamper

with the hardware and software of the SN or MN. The SN confidentially reveals the

sensed data and meta-data to the MN by establishing an encrypted channel between

them to communicate any meta-data or sensed data. Before the establishment of

this confidential channel, the only information communicated between the MN and

SN is the presence of each device and our protocol does not rely on any identifying

information being present in this broadcast. Thus, an attacker can only learn that

there is an MN and SN present. While the MN and SN establish a confidential channel,

the attacker cannot learn anything about sensed data or meta-data because neither

device communicates any such data during this phase. Furthermore, the attacker

cannot break the key exchange protocol used to establish this confidential channel

because we assume the attacker is computationally bound. Once the encrypted

channel is established, the attacker is still unable to learn the contents of that

communication under the assumption that they are computationally bounded since
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we rely on the computational hardness of the underlying cryptographic primitives.

Once the data and meta-data has arrived at the MN from the SN, we rely upon our

trust assumption about the MN to not reveal the data and meta-data to anyone else

but the service provider.

G2: Integrity

Our system should preserve the integrity of the sensed data and meta-data, meaning

that the service provider and user should be able to trust that the sensed data or

meta-data has not been tampered with. This goal is the met for the following reasons.

First, an SN will not tamper with sensed data or fabricate meta-data because we

assume the integrity of the hardware and software on the SN. Because sensed data

and meta-data is always sent over an authenticated and confidential channel, an

attacker cannot tamper with either sensed data nor meta-data while it is in transit

between the SN and MN. The attacker cannot tamper with the data because we

assume it is computationally bounded and the underlying cryptographic primitives

are computationally hard. An attacker cannot disrupt the flow of sensed data from

the SN to the MN, because we assume an attacker will not engage in such denial-

of-service type attacks. Because our trust assumptions state that an MN will not be

tampered with, an MN will not modify or fabricate any sensed data or meta-data it

received from an SN and thus it will maintain the integrity of the data it provides to

the service provider.

G3: Authenticity

Our system should preserve the authenticity of the sensed data and meta-data. That

is, the service provider should be able to trust that the sensed data and meta-data

was acquired from the specified user and the specified SN. This goal is the central

goal of this thesis and is the met for the following reasons. First, any means of
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communicating the identity of the specified user to the service provider is met by

goals G1 and G2 above. Our system establishes this identity through the methods

described in Chapters 3 and 4. Because the MN verifies that it collects only from

SNs on the same body, using the method described in Chapter 4, a service provider

can be assured that all the sensed data and meta-data it receives from an MN has

been collected from a single user. Under the assumption that at least one SN in our

system implements bioimpedance recognition, as described in Chapter 3, the service

provider can be assured of the identity of the user across all SNs. This must be the

case due to the following transitive relationship: if all the SNs are on the same body

as the MN and at least one SN has identified the current user using bioimpedance

recognition and communicated this fact to the MN, then all SN must also be sensing

that same person. It must be noted, however, that because the methods described in

Chapters 3 and 4 are probabilistic, the MN is making a probabilistic statement about

the authenticity of the sensed data and meta-data. In fact, our results only hold for

small cohorts. We also do not take into account attacks against the subject (e.g.,

an attacker attempts to acquire a subject’s bioimpedance). Such an attack would

be more difficult to execute than with other biometrics like a fingerprint where a

fingerprint can be lifted from nearly any object. A bioimpedance attacker would

have to put electrodes on a person without the person knowing. Whether our system

meets some guarantee of authenticity is application specific. Indeed, our methods

can be tuned to provide different levels of confidence regarding of authenticity

according to the desires of the application.

G4: Obscurity

Our system should preserve the obscurity of the sensors, meaning that the type of

SN and MN the user is wearing should not be revealed to anyone but the service

provider. This goal is the met for the following reasons. First, according to goal G2
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our system preserves the confidentiality of any sensed data or meta-data between

the user and service provider. Thus, an attacker cannot learn the type of SN and MN

by inspecting the sensed data or meta-data. There is no other data communicated

between the MN and SN (assuming a protocol like Hide-n-Sense [96]), thus the only

avenue of attack is to do some traffic analysis on the data. For example, an attacker

might be able to know that an MN and SN are engaging in same-body verification

by inspecting the frequency of communication. However, an attacker already knows

each MN and SN have an accelerometer since we assume each MN and SN must

have an accelerometer. The same argument holds for bioimpedance recognition. For

other types of sensors (e.g., heart rate sensor), however, the same argument does

not hold since there is no a priori assumption about the presence of such a sensor.

Such sensors are application dependent, so we leave this problem for the application

to address.

5.3 Related work

The idea that WBANs ought to be simple to use is inspired from many other

works [15, 47]. Venkatasubramanian et al. best define the usability of WBANs

as needing to “activate on deployment, in a plug-n-play manner, with minimal (ide-

ally none) initialization procedures” [147]. We have adopted this same definition

of “usable” and have used it to guide our own usable security mechanisms in this

prototype.

We described some simple mechanisms for detecting the presence of a human

wearer. There are more complex technologies we could use. For example, we could

integrate capacitive sensing technologies into our device to detect presence. In

particular, the SemTech SX9300 [131] is an ultra low power, Specific Absorption

Rate (SAR) controller that can discriminate between the human body and inanimate
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objects. Intended for use in mobile phones to reduce transmitted power output when

it is next to a human body (to comply with federal SAR standards), the chip can also

be used as a general-purpose human-proximity detector. It distinguishes a human

body from inanimate objects by measuring the permittivity (a measure of how freely

charged particles can rotate and become polarized when subject to an electric field)

of the space near small capacitive sensors (essentially small areas on a printed circuit

board). Open air and inanimate objects have a low permittivity (e.g., the permittivity

of air is 1.0, of paper is 3.85, of concrete is 4.5, and of water is 80.1 [154]). Human

tissues have high permittivity (e.g., generally above 1000 F/m at frequencies from

10 Hz to 100 kHz [55]). The integrated circuit comes in a 3 mm× 3 mm× 0.6 mm

Quad-flat no-leads (QFN)-20 package and consumes only 459 µW in active mode.

It can generate an interrupt to awaken a host micro-controller unit upon a “body

close” or a “body far away” event, allowing the micro-controller unit to sleep until

a human presence is detected or to react to wristband removal at a low power

cost. To reduce power costs further it has a doze mode that can scan for capacitive

events at a programmable rate of 30 ms to 400 ms per scan while consuming just

48.6 µW. One could also integrate electric-field sensing technologies into an SN.

Cohn et al. describe such a low-power wake-up method using electric-field sensing

technology [34]. Their sensor requires contact with the skin, and using their low-

power wake-up method only requires 9.3 µW total, a three orders of magnitude

lower power than required to operate our bioimpedance sensor. It would be easy to

adopt this approach for use in our device.

5.4 Limitations

The central limitation of our energy measurements is that we did not implement

the presence detection method nor the walking recognition method on the SN. The
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implementation of the presence detection method would require new hardware to

integrate well with our prototype. Ideally such a method would boot the Shimmer

when it detects a wearer. As for the walking classifier, there is a large body of

literature on the efficient implementation of such activity recognition methods [68,

123, 103, 28, 16, 86, 93, 150, 94, 90, 31, 133]. In fact, the Android operating

system now implements such activity recognition primitives [58]. Like the presence

detection method, ideally such an activity recognition method would be intimately

integrated with the hardware such that it wakes up the Shimmer when it detects the

subject is walking.

Our energy measurements were also limited by the radios present in the

MN and SN prototypes. Although the Shimmer platform has a 802.15.4 radio, the

Samsung Nexus S does not, so we were forced to use the Bluetooth radio. Although

Bluetooth and 802.15.4 operate at the same frequencies (2.5 GHz), implementations

of 802.15.4 require less energy than Bluetooth. We could, however, use the new

Bluetooth Low Energy standard to further decrease energy. Indeed, changing the

wireless radio would be the most significant energy optimization step because the

current radios consume so much energy.

The next best optimization would be to use better hardware components for, in

particular, the bioimpedance sensor board. We did not design this sensor board with

any sort of hard energy constraints. It might be possible, for example, to optimize the

circuitry of the board for specific energy requirements. For example, the multiplexers

could be replaced or removed if only a few electrode configurations are necessary

to achieve the desired recognition rates. Additionally, the number of frequencies

required for bioimpedance recognition could be reduced.

Finally, our system relies upon the existence of a pre-authenticated wireless

medium. That is, we require the SNs to have a public/private key-pair and the MN to

have these public keys already installed on the device. For some settings this might be
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an unrealistic assumption. Ideally, we would not require a pre-authenticated wireless

medium. Rather, there would be some kind of mechanism that would authenticate

the wireless communication channel between the MN and SN. For example, by virtue

of the two devices experiencing the same acceleration signal they might be able

to authenticate each other by independently computing some shared key from this

acceleration signal. In our experience, however, there is not enough entropy in the

signal to establish such a shared key.

One promising way to pair is to use the data from the sensor to construct

a shared key (e.g., using Photoplethysmograph (PPG) [144], ECG [146], or au-

dio [61]). Mayrhofer et al. provide such a mechanism using accelerometers to

exchange a cryptographic key between two devices by manually shaking the two de-

vices together [106]. They use a method similar to the one described by Lester et al.,

which was used to determine whether two devices are being shaken together [91].

But, as they note, coherence “does not lend itself to directly creating cryptographic

key material out of its results” [106]. To extract key material they extract quantized

Discrete Fourier Transform (DCT) coefficients from the accelerometer data to use

as entropy for generating a key. Bichler et al. provide a similar method using time-

domain features quantized by a linear combination of pre-selected patterns that best

represent the features [22, 21]. In our own preliminary experiments, this method

did not work for accelerometers placed on the body (i.e., they were not deliberately

shaken together).

Because these methods are inherently noisy (i.e., the accelerations do not

match exactly), some protocol is necessary to resolve this problem. Mayrhofer et

al. describe such a protocol they call the “Candidate Key Protocol” [104]. As the

name implies, this protocol enables interactive generation of a candidate key by

choosing among multiple candidate key parts. Attackers are unable to reconstruct

this key since the communication of these candidate key parts are hashed with a
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random nonce. Kirovski et al. describe a similar protocol called the “Martini Sync”

that uses joint fuzzy hashing [85]. Their method quantizes the accelerometer stream

and each parity communicates the parity of their measurement. The assumption is

that if the parity matches, then their quantized values must also match. Because this

assumption can be invalid, they use a progressive error-correcting code so that they

can agree on a shared key. Venkatasubramanian et al. outline yet another protocol

called “Physiological Signal based Key Agreement” [145]. Their protocol uses the

fuzzy vault cryptographic primitive, which allows a user to lock a secret in a vault.

This vault can only be unlocked it if a key is used that is similar enough to the key

that was used to lock it [82]. The theoretical underpinnings of these cryptographic

primitives (fuzzy extracts, fuzzy vaults, fuzzy commitments) have been described

elsewhere [141]. There are many other protocols others have used [32, 17, 128].

A major alternative to all of these pairing methods is to use some characteristic

of the wireless radio [83, 143, 107, 100, 101]. These methods harness the fact that in

order for two devices to have knowledge of the radio environment they must be near

each other. While these methods are promising, they require low-level access to the

wireless radio, which may not be possible without assistance from the manufacturer.

5.5 Summary

In this chapter we described a prototype implementation that uses the methods

described in Chapters 3 and 4 to realize a usably secure WBAN. Our MN prototype

was a Samsung/Google Nexus S Android-based phone, while our SN prototype was

a Shimmer. These two devices communicated via Bluetooth, a common short-range

wireless network stack. We first described the protocols these two devices use to

realize our security goals outlined in Section 2.3. We then empirically showed that

our system can meet requirements of our methods via a study on the walking habits
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of seven subjects. Next, we showed that our methods can be implemented in these

phones in a way that does not incur significant overhead in terms of energy. Finally,

we showed our protocols meet our security goals according to the trust assumptions

and adversary model outlined in Section 2.3. When combined with an application,

our system can provide statistical assurance that the WBAN is sensing whom it thinks

it sensing.
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6
Future Work

Throughout this thesis, we have outlined the limitations of our work. This chapter

serves to summarize those limitations and provide direction for future work.

6.1 Bioimpedance recognition

The main limitation of our bioimpedance recognition method is its susceptibility to

both movement and environmental factors. There are at least two ways of dealing

with these problems. The first way is to augment our signal processing techniques to

extract a more discriminating signal using better hardware (e.g., different electrodes,

analog filters) or software (e.g., digital filters, more feature extraction). This is not
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uncommon as most research in biometrics tends to be spent on feature engineering.

The second approach is to rely on context and train a model for each context. For

example, one model could be trained when a subject is moving and another when the

subject is not moving. It might even possible to train a single model that incorporates

context as just another feature. Clearly the limitation to such an approach is that it

requires training for multiple contexts.

Although we do show bioimpedance recognition can work for long time scales,

our experiments could benefit from longer term and larger population studies. It

would be interesting to know whether bioimpedance recognition could be used in an

enterprise setting. Having a passive biometric that could automatically authenticate

and deauthenticate a user to a workstation has been the dream for many years. With

sufficiently larger population and longer term studies, we believe bioimpedance

in a wrist-worn form factor could be used to realize this dream. However, even if

bioimpedance is not the solution to this dream, there might be room to integrate

it with other passive biometrics. Vocal resonance, for example, uses a microphone

to identify people based on how a person’s chest cavity changes their voice [37]. It

might be the case that the fusion of many biometrics is the solution to this goal.

Our wearable bioimpedance sensor can only capture bi-polar bioimpedance

measurements. Although our results indicate that tetra-polar measurements provide

no additional recognition performance, they might help with certain environmental

factors. It might also be the case that the combinations of tetra-polar measurements

we did not examine provide better recognition performance. There are, however,

hardware challenges that must be overcome before tetra-polar measurements could

be realized in a wearable device.

There might be other uses for bioimpedance now that we have a device that can

continuously and unobtrusively measure it. We know, for example, that whole-body

bioimpedance can be used to estimate fat content and other measurements of body
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composition [51]. Others have shown how electro-dermal activity can be used to

measure emotional and physical responses by use of a wearable device [121]. Such

sensors passively measure the change in resistance of the skin, but there might be

applications that benefit from skin impedance measurements.

Finally, we did not explore any kind of sophisticated spoofing attacks on our

wearable bioimpedance device. A spoofing attack is an attack where the adversary

seeks to fool our bioimpedance recognition method into believing it is sensing some

target person. For example, an adversary could try to find a person with a similar

bioimpedance to an intended target and attach the device to that similar person.

Such an attack requires the adversary to put the device on many people until they

find a matching bioimpedance as their target. Estimating the “expected number

of subjects until success” remains future work and may be achieved with a larger

uniqueness study. Since bioimpedance requires skin contact, it may be more feasible

to attack the hardware and software of the device itself than put the device on a

unknown number of subjects. Securing the hardware and software from such attacks

remains future work. An adversary could also attempt to create a model of a target’s

wrist that mimics their bioimpedance. To do so, however, the adversary needs to

acquire a subject’s bioimpedance so that they can model it exactly. Again, it would

be easier to target the hardware and software of the device than attempt to measure

the target’s bioimpedance at their wrist. Exploring the feasibility of such anatomical

models for attack purposes remains future work.

6.2 Same-body verification

The central limitation of our same-body verification method is that we require the

subject to be walking. Not only is this requirement somewhat specific, it’s just not the

case that all subjects will be able to walk. A subject, for example, might be confined
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to a wheel chair. Ideally, the requirement would not specifically require walking but

to require some kind of movement. Clearly, some kind of acceleration is necessary

since a flat signal provides no information. However, it might be possible to use these

times when a subject is not moving to accomplish same-body verification. That is,

over long time scales, you might expect the accelerometers to experience periods

of no acceleration when the subject is remaining sufficiently still perhaps even at

specific frequencies. This a time-domain approach rather than the frequency-based

approach we take.

Our method could also benefit from prior knowledge about the orientation of

the sensor. Because of our desire to remain orientation-agnostic, we only examine the

magnitude of the 3-axis accelerometer. However, many activity recognition methods

examine all three axes independently since there might be information encoded in

a particular axis. Exploring techniques for extracting information that would help

to better discriminate same-body verification from each axis might improve the

accuracy of our method. Alternatively, exploring techniques for determining the

orientation of the sensor could also benefit our method.

Although our experiments indicate that the gyroscope is not as useful as an

accelerometer, it may be useful for certain applications or for capturing activities that

are not walking. It might also be the case that different features of the gyroscope data

would yield better verification rates. For example, if two devices can be accurately

tracked in space via an inertial measurement unit (i.e., a gyroscope and accelerometer

combined), then so long as those two devices remaining within some distance of

each other time we can say, with high probability, they are on the same body.

However, algorithms for dead reckoning using an inertial measurement unit suffer

from cumulative error. This problem might be overcome by assuming some model of

movement according to how the human body moves.

Finally, our method leverages a single statistical measure called coherence.

156



There are, however, many such statistical measures that one can use [33]. One av-

enue of exploration is to use many statistical measures that can capture the similarity

of two signals. Having many such measures allows each statistic to specialize on the

relationship between two particular kinds of signal (e.g., linear versus non-linear).

Combining these measures together might allow us to relax the walking assumption

to a more general motion assumption.

6.3 The system as a whole

The primary limitation of our system is the lack of a formal usability study. While

we claim our system is usable, our methods could benefit from a comparison with

competing systems. It’s important to validate claims about the effectiveness of such

systems [74]. While our system does not make any claims about the effectiveness

for a certain kind of application, it would be beneficial to try using these methods

in a real-world system. This would allow us to not only understand the usability of

such methods in comparison to other methods but also how they affect the usability

of a system as a whole. The future of WBANs are in their use in medical-related

applications. This work is an enabling technology.

The second limitation of our system is that it does not handle ephemeral

SNs. Recall that ephemeral SNs are those SNs that a subject does not interact with

very often and, when they do, only for a very short time. A good example of an

ephemeral SN is a weight scale. Because the interaction time is very short, same-

body verification will not work. Finding methods that allow usable interaction with

ephemeral SNs remains an open research problem.

The largest outstanding problem is the pairing problem. It would be beneficial

to integrate techniques that do not require the use of a public-key infrastructure. For

WBANs, there are some of existing methods (e.g., Yuan et al. [160]) that could be

157



integrated into our system. Finding a solution that is generally applicable to WBANs

remains an open research problem.

Finally, our system could benefit from integrated hardware. Our prototype is

mainly based around the Shimmer platform. Because the Shimmer platform is meant

to be used for a variety of applications, the energy usage is higher than a platform

that is optimized for specific applications. More so, our system could benefit from

a more wearable form factor that could enforce desirable properties like proper

orientation of the sensors. The bioimpedance sensor, for example, could benefit from

a bracelet that forces the subject to wear it a certain way (i.e., a subject’s wrist is

oval in shape and not perfectly circular). Tight integration with hardware might not

only improve the comfort of the wearable device, but also the accuracy and energy

profile of our methods. It might even be possible to integrate some form of kinetic

energy harvesting to power our methods since our methods do require the subject to

walk [59].
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7
Conclusion

A network of pervasive wireless devices is the future. These devices will allow us to

sense and collect an unprecedented amount of physiological data about ourselves.

From these physiological signals we will learn to extract our psychological state as

well. This era of “quantified self” will not be without its security and privacy problems

if we do not look ahead. In this thesis, we have described two complementary security

mechanisms for these networks of wireless sensors.

First, we showed how to identify who is wearing one of these devices using

bioimpedance. Bioimpedance is a physiological property of tissue related to its ability

to both store and a resist an electrical charge. We designed a wearable bracelet
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capable of sensing the bioimpedance of a person’s wrist using eight electrodes. We

showed how this device could be used to either identify a subject from a known

cohort or to verify an individual subject. In our experiments, our method achieved

identification rates of 98 % BAC in a cross-validation study and 81 % BAC in a hold-

out validation study. Our method also achieved verification rates of 12.9 % EER in a

hold-out validation study, and for 3 subjects, our method achieved verification rates

of 13.3 % EER even after more than four months had elapsed between the training

and testing bioimpedance samples.

Second, we showed how to verify whether two of these devices are on the

same body. To accomplish this verification, we make the reasonable assumption

that each device has an accelerometer. Using these accelerometers, our method uses

coherence, a frequency-based statistic, to determine whether these accelerometers,

and by extension the wireless sensors, are on the same body. We showed that our

method works when subjects are walking for at least 32 seconds and achieves a BAC

of 86 %. However, performance degrades when subjects are walking in stride, where

they experience increased false negatives and little increase in false positives.

Finally, we showed how to combine these two methods together to enable a

WBAN to identify who is wearing it. If SN A knows person P is wearing it (by using

bioimpedance recognition) and SN B knows it is on the same body as SN A (by

using same-body verification), then SN B must also be worn by person P according

to the transitive property. This relationship means only one SN needs to implement

a biometric rather than all of them. We outlined the protocol that combines these

two methods to achieve this relationship and show that this protocol achieves our

desired security goals under the given trust assumptions and a realistic adversary

model. We also showed that a prototype system implementing these methods and

protocols does not incur significant overhead compared to the underlying operating

system and wireless radio. Finally, we empirically showed that about half the time a
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subject is walking they are doing so for at least 40 seconds.

While our proposed usable security mechanisms do not solve all the outstanding

security problems in WBANs, we hope our contributions will be useful to the success

of WBANs becoming adopted and ubiquitous, especially in the mobile health arena.
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