2,153 research outputs found

    APHRODITE: an Anomaly-based Architecture for False Positive Reduction

    Get PDF
    We present APHRODITE, an architecture designed to reduce false positives in network intrusion detection systems. APHRODITE works by detecting anomalies in the output traffic, and by correlating them with the alerts raised by the NIDS working on the input traffic. Benchmarks show a substantial reduction of false positives and that APHRODITE is effective also after a "quick setup", i.e. in the realistic case in which it has not been "trained" and set up optimall

    A Framework for Hybrid Intrusion Detection Systems

    Get PDF
    Web application security is a definite threat to the world’s information technology infrastructure. The Open Web Application Security Project (OWASP), generally defines web application security violations as unauthorized or unintentional exposure, disclosure, or loss of personal information. These breaches occur without the company’s knowledge and it often takes a while before the web application attack is revealed to the public, specifically because the security violations are fixed. Due to the need to protect their reputation, organizations have begun researching solutions to these problems. The most widely accepted solution is the use of an Intrusion Detection System (IDS). Such systems currently rely on either signatures of the attack used for the data breach or changes in the behavior patterns of the system to identify an intruder. These systems, either signature-based or anomaly-based, are readily understood by attackers. Issues arise when attacks are not noticed by an existing IDS because the attack does not fit the pre-defined attack signatures the IDS is implemented to discover. Despite current IDSs capabilities, little research has identified a method to detect all potential attacks on a system. This thesis intends to address this problem. A particular emphasis will be placed on detecting advanced attacks, such as those that take place at the application layer. These types of attacks are able to bypass existing IDSs, increase the potential for a web application security breach to occur and not be detected. In particular, the attacks under study are all web application layer attacks. Those included in this thesis are SQL injection, cross-site scripting, directory traversal and remote file inclusion. This work identifies common and existing data breach detection methods as well as the necessary improvements for IDS models. Ultimately, the proposed approach combines an anomaly detection technique measured by cross entropy and a signature-based attack detection framework utilizing genetic algorithm. The proposed hybrid model for data breach detection benefits organizations by increasing security measures and allowing attacks to be identified in less time and more efficiently

    Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches

    Get PDF
    Presently, we are living in a hyper-connected world where millions of heterogeneous devices are continuously sharing information in different application contexts for wellness, improving communications, digital businesses, etc. However, the bigger the number of devices and connections are, the higher the risk of security threats in this scenario. To counteract against malicious behaviours and preserve essential security services, Network Intrusion Detection Systems (NIDSs) are the most widely used defence line in communications networks. Nevertheless, there is no standard methodology to evaluate and fairly compare NIDSs. Most of the proposals elude mentioning crucial steps regarding NIDSs validation that make their comparison hard or even impossible. This work firstly includes a comprehensive study of recent NIDSs based on machine learning approaches, concluding that almost all of them do not accomplish with what authors of this paper consider mandatory steps for a reliable comparison and evaluation of NIDSs. Secondly, a structured methodology is proposed and assessed on the UGR'16 dataset to test its suitability for addressing network attack detection problems. The guideline and steps recommended will definitively help the research community to fairly assess NIDSs, although the definitive framework is not a trivial task and, therefore, some extra effort should still be made to improve its understandability and usability further

    Adversarial Examples in Constrained Domains

    Full text link
    Machine learning algorithms have been shown to be vulnerable to adversarial manipulation through systematic modification of inputs (e.g., adversarial examples) in domains such as image recognition. Under the default threat model, the adversary exploits the unconstrained nature of images; each feature (pixel) is fully under control of the adversary. However, it is not clear how these attacks translate to constrained domains that limit which and how features can be modified by the adversary (e.g., network intrusion detection). In this paper, we explore whether constrained domains are less vulnerable than unconstrained domains to adversarial example generation algorithms. We create an algorithm for generating adversarial sketches: targeted universal perturbation vectors which encode feature saliency within the envelope of domain constraints. To assess how these algorithms perform, we evaluate them in constrained (e.g., network intrusion detection) and unconstrained (e.g., image recognition) domains. The results demonstrate that our approaches generate misclassification rates in constrained domains that were comparable to those of unconstrained domains (greater than 95%). Our investigation shows that the narrow attack surface exposed by constrained domains is still sufficiently large to craft successful adversarial examples; and thus, constraints do not appear to make a domain robust. Indeed, with as little as five randomly selected features, one can still generate adversarial examples.Comment: 17 pages, 5 figure

    Network Intrusion Datasets Used in Network Security Education

    Get PDF
    ABSTRACT There is a gap between the network security graduate and the professional life. In this paper we discussed the different types of network intrusion dataset and then we highlighted the fact that any student can easily create a network intrusion dataset that is representative of the network they are in. Intrusions can be in form of anomaly or network signature; the students cannot grasp all types but they have to have the ability to detect malicious packets within his network. Original Source URL : http://aircconline.com/ijite/V7N3/7318ijite04.pdf For more details : http://airccse.org/journal/ijite/current.htm

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism
    corecore