
Kennesaw State University
DigitalCommons@Kennesaw State University
Master of Science in Information Technology
Theses Department of Information Technology

Fall 10-18-2016

A Framework for Hybrid Intrusion Detection
Systems
Robert N. Bronte
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/msit_etd

Part of the Information Security Commons, and the Theory and Algorithms Commons

This Thesis is brought to you for free and open access by the Department of Information Technology at DigitalCommons@Kennesaw State University.
It has been accepted for inclusion in Master of Science in Information Technology Theses by an authorized administrator of
DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Bronte, Robert N., "A Framework for Hybrid Intrusion Detection Systems" (2016). Master of Science in Information Technology Theses.
Paper 2.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231826488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/msit_etd?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/msit_etd?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/it?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/msit_etd?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/msit_etd/2?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

A Framework for Hybrid Intrusion Detection Systems

Master's Thesis

by

Robert Bronte

MSIT Student

Department of Information Technology

Kennesaw State University, USA

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Information Technology

October 18, 2016

DEDICATION

This thesis is dedicated to my wife and family,

I love you and thank you for always being there for me.

ACKNOWLEDGEMENTS

I would like to thank Dr. Hisham M. Haddad and Dr. Hossain Shahriar

for their support and encouragement throughout this entire process.

I am extremely thankful for this opportunity to work with each of them.

I would also like to thank my entire thesis committee

for their feedback, comments and suggestions. I would not have made it this far

without my mentors behind me.

This research work is made possible through the assistance and support from

everyone, including my professors, mentors, my wife, family and friends.

LIST OF TABLES

Table 1: Example of Attacks in URLs .. 14

Table 2: Related Works on Anomaly-based IDS .. 19

Table 3: Detecting Anomalies through Information Theoretic Metrics 21

Table 4: Signature-based Attack Detection .. 22

Table 5: Related Work on Signature-based Attack Detection Approaches 23

Table 6: Comparison of Related Work on Genetic Algorithms ... 26

Table 7: Summary of Related Literature on Benchmarking ... 30

Table 8: Measured Data Attributes for Benchmarking ... 32

Table 9: Good Dataset Characteristics .. 39

Table 10: Distribution of Attack Inputs .. 39

Table 11: FPR and TPR for the Proposed Measures .. 40

Table 12: Distribution of Attack Input Data ... 45

LIST OF FIGURES

Figure 1: Information-theoretic IDS Framework (learning phase) ... 36

Figure 2: Example of Log Data .. 36

Figure 3: ROC Curve of various Cross Entropy Metrics .. 40

Figure 4: Comparison between CEP, length and MD measures ... 41

Figure 5: Comparison between CEV, length and MD measures .. 42

Figure 6: Comparison between CET, length and MD measures .. 42

Figure 7: Steps of Genetic Algorithm ... 44

Figure 8: Example Log Data for SQL Injection Attack .. 45

Figure 9: Example Log Data for XSS Attack ... 45

Figure 10: Example Log Data for RFI Attack .. 45

Figure 11: Example of a Chromosome (C1) for SQL Injection ... 46

Figure 12: Example of a Chromosome (C2) for XSS Attack ... 46

Figure 13: Example of a Chromosome (C3) for RFI Attack .. 46

Figure 14: GA-Based IDS Framework ... 47

Figure 15: Screenshot of Results from GA-Based IDS .. 48

Figure 16: Attack Detection Accuracy vs. Population Size (FF2, mutation rate=0.5) 49

Figure 17: Attack Detection Accuracy vs. Population Size (FF3, mutation rate=0.7) 49

Figure 18: Attack Detection Accuracy vs. Mutation Rate (FF2, selection rate=10%) 50

Figure 19: Attack Detection Accuracy vs. Mutation Rate (FF3, selection rate=20%) 50

Figure 20: Regular Expression for Cross-Site Scripting... 50

Figure 21: Regular Expression for SQL Injection .. 51

Figure 22: Remote File Inclusion Example .. 51

Figure 23: Performance of PHPIDS for GA Generated Signatures (cross over 10%, mutation

0.5) .. 51

Figure 24: Performance of PHPIDS for GA Generated Signatures (cross over 20%, mutation

0.7) .. 51

Figure 25: An Apahce2 Attack Illustration ... 55

Figure 26: User-to-Root Attack Diagram ... 56

Figure 27: The Environment for Data Generation .. 58

Figure 28: Web Applications Deployed in Apache and Stored in MySQL 60

Figure 29: Content Management System Log Entries .. 61

Figure 30: Blogging Platform Log Entries ... 61

Figure 31: Bulletin Board System Log Entries ... 62

Figure 32: Classifieds Marketplace Log Entries ... 62

Figure 33: E-commerce Platform Log Entries .. 63

Figure 34: Malicious Data Composed of SQL Injections ... 63

 ABSTRACT

Web application security is a definite threat to the world’s information technology

infrastructure. The Open Web Application Security Project (OWASP), generally defines web

application security violations as unauthorized or unintentional exposure, disclosure, or loss of

personal information. These breaches occur without the company’s knowledge and it often

takes a while before the web application attack is revealed to the public, specifically because

the security violations are fixed. Due to the need to protect their reputation, organizations have

begun researching solutions to these problems. The most widely accepted solution is the use

of an Intrusion Detection System (IDS). Such systems currently rely on either signatures of the

attack used for the data breach or changes in the behavior patterns of the system to identify an

intruder. These systems, either signature-based or anomaly-based, are readily understood by

attackers. Issues arise when attacks are not noticed by an existing IDS because the attack does

not fit the pre-defined attack signatures the IDS is implemented to discover. Despite current

IDSs capabilities, little research has identified a method to detect all potential attacks on a

system.

This thesis intends to address this problem. A particular emphasis will be placed on detecting

advanced attacks, such as those that take place at the application layer. These types of attacks

are able to bypass existing IDSs, increase the potential for a web application security breach

to occur and not be detected. In particular, the attacks under study are all web application layer

attacks. Those included in this thesis are SQL injection, cross-site scripting, directory traversal

and remote file inclusion. This work identifies common and existing data breach detection

methods as well as the necessary improvements for IDS models. Ultimately, the proposed

approach combines an anomaly detection technique measured by cross entropy and a

signature-based attack detection framework utilizing genetic algorithm. The proposed hybrid

model for data breach detection benefits organizations by increasing security measures and

allowing attacks to be identified in less time and more efficiently.

TABLE OF CONTENTS

Chapter 1: Motivation, Problem Statement and Contribution .. 12

1.1 Background ... 12

1.2 Motivation ... 13

1.3 Problem Statement .. 14

1.4 Research Methodology ... 15

1.5 Overview of Research Tasks .. 15

Chapter 2: Literature Review .. 17

2.1 Overview ... 17

2.2 Anomaly-based Intrusion Detection ... 17

2.3 Related Works: Information Theoretic Metrics .. 20

2.4 Signature-based Intrusion Detection ... 21

2.5 Genetic Algorithm .. 25

2.6 Benchmarking and Evaluation .. 27

Chapter 3: Anomaly-based Intrusion Detection System Development 34

3.1 Overview ... 34

3.2 Related Explanation of Anomaly IDS Development .. 34

3.3 Detection of Web Application Attacks with Cross-Entropy 35

3.4 Case Study and Evaluation ... 37

3.5 Comparison of Related Metrics .. 41

Chapter 4: Signature-based Intrusion Detection System Development 43

4.1 Overview ... 43

4.2 Creation of a Genetic Algorithm... 43

4.3 Dataset Generation for GA-based IDS Development and Application 44

4.4 Case Study and Evaluation ... 47

Chapter 5: A Benchmark for Evaluation .. 53

5.1 Overview ... 53

5.2 Description of a Benchmark ... 53

5.3 Motivations for an Application Layer Benchmark ... 54

5.4 Generating Data and Setting up a Test Environment.. 57

5.5 Evaluating the Benchmark .. 59

Chapter 6: Implementation and Testing .. 61

6.1 Anomaly Detection ... 61

6.2 Signature Detection ... 62

Chapter 7: Dissemination of Research Results ... 64

7.1 Information Theoretic Anomaly Detection Framework for Web Applications 64

7.2 A Signature-Based Intrusion Detection System for Web Applications-based on

Genetic Algorithms ... 64

7.3 Benchmark for Empirical Evaluation of Web Application Anomaly Detectors 65

Chapter 8: Conclusions and Future Work ... 66

8.1 Conclusions ... 66

8.2 Future Work .. 67

References .. 68

12

Chapter 1: Motivation, Problem Statement and Contribution

1.1 Background

Even the novice user comprehends that data security breaches are not unfamiliar occurrences in

this fast-paced, ever-advancing technological world. To understand what a data security breach is,

the definition must be unambiguous. A data breach, specifically in relation to privacy, occurs when

an unauthorized person, such as a skilled hacker [1], obtains the personal information of others. In

a more general sense, a data security breach can be defined as an organization’s unauthorized or

unintentional exposure, disclosure, or loss of personal information [2]. Another way to present this

is to say that a data breach can be simply defined as the accidental or unintentional loss of sensitive

data [3]. Given that such threats exist and are of high concern, it is more than important to have

some type of intrusion detection system. An Intrusion Detection System (IDS), is a system that

protects computer networks against attacks. These systems work with the network’s existing

firewalls and anti-virus systems [4].

Currently, there are two common types of IDS: signature-based intrusion detection systems and

anomaly-based intrusion detection systems. Signature-based IDS are commonly called misuse-

based intrusion detection systems. These systems rely on signatures to recognize the attacks.

Signature-based IDS would ideally identify 100% of the attacks with no false alarms as long as

signatures are specified ahead of time. However, each signature, even if it leads to the same attack,

has the potential to be unique from any other signatures. This is the most commonly implemented

IDS [5, 6, 7].

The above explanation can be contrasted with the other common type of IDS: an anomaly detection

system. This type of IDS focuses on the system’s normal behaviors instead of focusing on attack

behaviors, as seen with signature-based intrusion detection systems. To implement this type of

IDS, the approach is to use two phases. The first phase is the training phase where the system’s

behavior is observed in the absence of any type of attack. Normal behavior for the system is

identified into a profile. After this, the second phase or detection phase, begins. In this phase, the

stored profile is compared to the way the system is currently behaving and deviations from the

13

profiles are considered potential attacks on the system. This can lead to several false negative

alarms [8, 9, 10]. In an anomaly-based IDS, the system watches for changes from the expected

behavior of the system. Currently, entropy and/or KLD have shown promising results in the

literature surrounding mobile malware application detection [11].

1.2 Motivation

Each type of system has its own benefits and drawbacks. A hybrid model can optimize the benefits

and minimize the drawbacks of the two systems. Hybrid models are essentially the combination

of a signature-based detection approach and an anomaly-based detection system. To explain the

need for a hybrid model, the various attacks that can be used to create a data security breach must

be considered. Common attacks that are utilized to carry out data breaches are SQL Injection

(SQLI) [12], brute-force [13], buffer overflows [14], Cross-Site Scripting (XSS) [15], Remote File

Inclusion (RFI) [70], Directory Traversal (DT) [71] and Cross-Site Request Forgery (CSRF) [16]

to name a few. In addition, hybrid models have a central focus on the newest threat: polymorphic

attacks [17]. A limited amount of work has been done on hybrid models due to the nature of

aforementioned polymorphic attacks [18].

This research work identifies numerous types of attacks that can result in data breaches detected

by the proposed hybrid model. The model is based on analyses of logs that are generated by the

web server and database server, which is explained a bit later in this proposal. The results of this

study benefit and influence decisions of network and system administrators at companies who use

an existing IDS and those who may be looking for a more advanced IDS model. End users may

not see an exact benefit, but the security of their personal data may be exponentially increased.

In this work, we have replicated four specific web application attacks by using open source web

applications. For the study, we employed an Apache web server and a MySQL database server in

a virtual environment with a Windows operating system. Simultaneously, the study was run with

an identical set up and design, but through the use of a Linux operating system. Examples of what

the URLs may look like for the specified attacks under study are presented in the Table below.

14

Table 1: Examples of Attacks in URLs

Attack Example URL

SQLI http://www.xyz.com/login.php?uid=jonh&pwd=’ or 1=1 --

XSS http://www.xyz.com/index.php?uid=><body onload=alert('test1')>&pwd=test

RFI http://www.xyz.com/test.php?uid=www.badsite.com/a.php

DT http://www.xyz.com/index.php?uid=../../../../ dir/pwd.txt

1.3 Problem Statement

Log data analysis is a common practice used for the detection of data security breaches. This

practice, however, can pose challenges for companies and organizations due to the vast number of

data security breaches that are not detected. Several issues concerning log data analyses currently

exist. One main problem is the creation of logs from multiple sources. The logs from all of the

different sources do not necessarily contain the same information, creating the need for a universal

log collector and analyzer. For instance, when a user has access to a company website, the

company’s web application server and database server both create separate logs. If a universal log

analyzer were in place, any potential data security breaches would be easier to identify. Another

problem with logs on different servers is that they may be located in different geographical regions

or time zones. The timestamp that servers automatically place on the log may not match thus

making the detection of a data security breach that much more strenuous.

Current literature shows little effort on combining anomaly-based and signature-based methods of

identifying data security breaches and new types of attacks at the application layer. The reason for

combining both methods is to detect even more attacks than either approach could detect alone.

By compiling each of the approaches, additional false positive and false negative attacks can be

discovered as well. In this thesis, the priority is to understand if current anomaly-based and

signature-based approaches are sufficient to detect application layer attacks and how to improve

upon these techniques.

We are applying genetic algorithm to pre-existing signatures to generate mutant signatures to

detect attack violations. Similarly, since information theoretic metrics have not appeared much in

the literature, this thesis is aimed at incorporating information theory as a computational approach

to develop a new anomaly-based approach. There are two key research questions we plan to answer

in this thesis:

15

 Could we develop an anomaly-based IDS to mitigate attacks on web applications? How

effective the new approach would be compared to other existing anomaly-based approaches?

 How do we overcome the limited list of attack signatures in existing signature-based IDS

with the goal of detecting new attacks? How effective is the new approach compared to

existing signature-based approaches?

1.4 Research Methodology

The research methodology involved multiple literature reviews of more than 40 articles. Content

within the articles varied. For example, articles were included that discuss anomalies, signatures,

intrusion detection systems, and web application attacks. The methods used for this research

include the following activities:

1) Conduct literature searches on attacks related to data breaches, anomaly-based attack

detection, signature-based attack detection, hybrid models and log analysis.

2) Explore the logs based on attack detection types, categorizing them as signature-based or

anomaly-based detection approaches, to create an offline analysis framework for storing

and indexing the data from the various logs.

3) Develop a set of pre-defined signatures from an established database and a model that

represents a normal data (training data) access pattern to make an abnormal data (testing

data) access pattern identifiable.

4) Calculate the result of the test log data to measure the performance of the proposed

solution at detecting false positives and false negatives.

5) Compare the results using information theoretic metrics with other available prototype

tools on performance.

1.5 Overview of Research Tasks

This work addresses the stated research by performing the following tasks:

1) Conduct Literature Search

i. Conduct literature search on existing log combination techniques, specifically aimed at

methods used by intrusion detection systems. Since there are two main types of intrusion

detection systems, the literature search will include explanations and techniques of each

type.

16

ii. Compose a survey of compiled papers related to this topic and document the findings.

2) Develop Virtual Environment

i. Profile available pre-defined signature and anomaly-based intrusion detection systems

and identify common attacks within each IDS and which logs are generated by these

attacks.

ii. Use the resulting profile to develop a centralized log server that is connected to a web

server and a database server collecting logs from the generated attacks.

3) Develop Hybrid Detection Model

i. Propose detection techniques for both types of attacks in one model. This purpose of this

is to detect any type of attack so prevention methods can be deployed.

ii. Use the hybrid model to demonstrate the proposed approach within controlled

environment.

4) Conduct Testing and Evaluation

i. Deploy web applications in XAMPP in the Linux and Windows environments. XAMPP

is an integrated web platform consisting of a web server and a database server.

ii. Generate normal traffic and attack traffic data and MySQL logs and Apache logs to detect

the application layer attacks.

iii. Detect anomalies using information theoretic metrics with an expected false alarm rate

below the average of 8.4% seen in the literature [8, 18].

iv. Detect attacks that have unique signatures based on a signature database as seen in other

studies conducted in the past [19-20]. The expected accuracy level of signature detection

is 100%.

5) Disseminate Work Results

i. Disseminate the log analyzer and dataset with those in the field of technology.

ii. Prepare and submit one or more papers for publication at relevant venues.

In the next Chapter, we discuss the findings from literature surveys surrounding our research goals

and objectives.

17

Chapter 2: Literature Review

2.1 Overview

This Chapter elaborates on the surrounding literature searches and explains the findings from the

literature research. Due to the level of detail that is required for this thesis, multiple literature

reviews were carried out, but only five directly apply to the case studies and fit within the context

of this work. In subsequent sections, first, anomaly-based intrusion detection is explained,

followed by a short description of how entropy is used to detect attacks. Then, a section discussing

related literature on signature based intrusion detection is provided. Next, genetic algorithms are

illustrated as a new avenue for attack detection. Finally, this Chapter concludes with a discourse

about benchmarks used for evaluation of datasets in the literature.

2.2 Anomaly-based Intrusion Detection

Literature surrounding this topic is not scarce. In fact, in [21] the authors study the development

of an IDS by a training dataset collected from a large scale web application. The work only

considered GET requests and did not consider POST types of requests or response pages. They

captured logs from a TShark tool and converted them to Common Log Format. The filtered data

was generated by accessing sub-applications. They manually inspected every single request to

gather a filtered (good) dataset. Their detection used nine models. Cho et al. [22] develop a

Bayesian parameter estimation-based anomaly detection approach from web server logs and

showed that it outperformed signature-based tools such as Snort. They assume a user visits a set

of pages in a certain order (denoted as a session). Their approach is effective when the order is

maintained. Ariu [23] develop a host-based IDS to protect web applications against attacks by

employing the Hidden Markov Model (HMM). HMM is used to model a sequence of attributes

and their values received by web applications. To account for various parameters and their values,

they employ multiple HMMs and combine them to generate an output for a given request on

likelihood that it would be generated from the training dataset.

Park et al. [24] analyze both GET and POST request data and capture the profiles of the data for

each parameter. Then they apply the Needleman-Wunch algorithm for a new parameter value to

see if the new value would be accepted or not as part of the alarm generation process. Le et al. [25]

18

develop the DoubleGuard framework that examines both web server and database server logs to

precisely detect attacks leaking confidential information. They report 0% false positive rate for

static web pages, and 0.6% false positive rate for dynamic web pages. A similar approach has been

proposed by Vigna et al. [26] earlier. Their work reduces false positive warnings in a web-based

anomaly IDS by combining web log anomaly detection and a SQL query anomaly detector. In

their approach, a request that was found to be anomalous, based on logs, would still be issued to a

database server if it is found that the request is not accessing sensitive data from the server.

Ludinard et al. [27] profile web applications by learning invariants (e.g., a user session should

have same value as the login value). Then source code is instrumented to check violation of

invariants. If an invariant is violated, it indicates an anomalous input has been supplied. Li et al.

[28] develop an anomaly-based IDS by first decomposing web sessions into workflows. A

workflow consists of a set of atomic requests which may access one or more data objects. They

apply HMM to model the sequence of the data access of workflows. Gimenez et al. [29] develop

a web application firewall (as an anomalous request detector) and captured its behavior through

an XML file, which specifies the desired attributes of parameter values. An input value deviating

from the expressed profile is considered an attack. However, the approach would generate false

positive warnings as it does not consider page and path information to be more precise.

Our work [30] is focused on web-based anomaly detection analyzing log files, based on the

outlined work of Robertson et al. [31]. Both studies consider similar resource names to compare a

new request with profiled requests to reduce false positive warnings. However, we apply

information theoretic measures to compare entropy levels for parameter combinations and values.

A comparison of each aforementioned study to our own objectives is provided in Table 2.

19

Table 2: Related Works on Anomaly-based IDS

Author(s) Study summary Contrast with our study [30]

Nascimento et al.

[21]
The work only considered GET requests

and did not consider POST types of

requests or response pages; Captured logs

from a TShark tool and converted them to

Common Log Format; The filtered data

was generated by accessing sub-

applications

We employ both server and client

side tools to collect GET and POST

data, combined them to form unified

log files and processed them for

defining good and bad datasets

Cho et al. [22] Develop a Bayesian parameter estimation

based anomaly detection approach from

web server logs and showed that it

outperformed signature-based tools such

as SNORT; Assume a user visits a set of

pages in a certain order

Our approach relies on path

resources and does not need to rely

on the order in which a user visits

different pages

Ariu [23] Create a host-based IDS to protect web

applications against attacks by employing

the Hidden Markov Model (HMM).

HMM is used to model a sequence of

attributes and their values received by

web applications

Our approach is free from the state

explosion problem that the HMM

approach suffers from

Park et al. [24] Analyze both GET and POST request data

and capture the profiles of the data for

each parameter; Apply the Needleman-

Wunch algorithm for a new parameter

value to see if it would be accepted as part

of the alarm generation process

We employ entropy levels of

parameter values for profiling and

attack detection

Le et al. [25] Create the DoubleGuard framework that

examines web server and database server

logs to detect attacks leaking confidential

information

Our study uses a similar framework,

but aims to identify all potential

attacks

Vigna et al. [26] Reduce false positive warnings by

combining web log anomaly detection and

a SQL query anomaly detector; A request

that was found to be anomalous would

still be issued to a database server if the

request is not accessing sensitive data

We focus on web server logs and

apply entropy measures to detect

anomalous requests

Ludinard et al. [27] Profile web applications by learning

invariants (e.g., a user session should have

same value as the login value); Then

source code is instrumented to check for

violation of invariants, which indicate

anomalous input

Our work does not rely on source

code instrumentation

Li et al. [28] Develop an anomaly-based IDS by

decomposing web sessions into

workflows of a set of atomic requests

which may access one or more data

objects; Apply the Hidden Markov Model

We apply cross entropy of the

parameter name, value, and types

20

Author(s) Study summary Contrast with our study [30]

(HMM) to model the sequence of the data

access of workflows

Gimenez et al. [29] Use a web application firewall as an

anomalous request detector and specifies

the desired attributes of parameter values;

This generates false positive warnings

since it does not consider page and path

information

Our work does not rely on firewall

policies and applies entropy

measures to detect anomalous

requests

Robertson et al. [31] Similar resource names are used to

compare new requests with profiled

requests to reduce false positive warnings

We apply information theoretic

measures to compare entropy levels

for parameter combinations and

values

2.3 Related Works: Information Theoretic Metrics

The earliest work we are aware of in the literature is from Lee et al. [32]. In their work, the authors

applied several metrics (entropy, relative entropy and conditional entropy) to model network log

data to demonstrate anomalies. Similar to their work, we apply entropy to model web request

parameter values. However, we explore the application of information theoretic metrics for web-

based anomaly detection. Shahriar et al. [33] apply entropy to detect vulnerable SQL queries in

PHP web applications. Later they explore an information theory based dissimilarity metric

(Kullback-Leibler Divergence) to detect XSS attacks in web applications [34]. The KLD measures

have been explored to detect repackaged Android malware [36] and content provider leakage

vulnerabilities [35]. Ozonat et al. [37] detect anomalies in performance metric behavior in large-

scale distributed web services applying information theoretic metrics. Below, Table 3 presents

these works with additional details.

21

Table 3: Detecting Anomalies through Information Theoretic Metrics

Author(s) Main Objective Metrics Used

Lee et al. [32] Suggest how to build the correct anomaly

IDS for audit datasets and measure the

performance

Entropy, Conditional Entropy,

Relative Entropy, Information Gain

and Information Cost

Shahriar et al. [33] Discover PHP web applications that are

vulnerable to SQL injection without

relying on attack input

Entropy

Shahriar et al. [34] Implement malicious JavaScript code

intentionally to find XSS attacks
Kullback-Leibler Divergence

Cooper et al. [35] Identify the source and the source code

behind specific malicious functions of

interest on Google’s Android mobile

operating system

Kullback-Leibler Divergence

Shahriar et al. [36] Detect repackaged malware on an

Android operating system to avoid end

users from downloading applications with

unexpected, malicious functionalities

Kullback-Leibler Divergence

Ozonat [37] Model the temporal and spatial

relationships between various web

services to find anomalies

Relative Entropy

2.4 Signature-Based Intrusion Detection

A representative sample of literature works have developed signature-based IDSs [20, 38, 39, 40,

41, 42]. The vast amount of research on this topic has focused on the network layer and multiple

Denial of Service attacks. Each of the previously mentioned works has its own strengths, but all

of the approaches have universal underlying limitations. First, in the literature, there is little wide-

spread coverage of the known web application layer attacks (see Table 4 for the levels we follow

in this Chapter). Each study identified at least one of these types of attacks. Second, each of the

related works have yet to attain zero false positive and false negative rates with only one exception.

Finally, regardless of the type of attack the authors were searching for, each study only considered

one type of log data for analysis. This paper addresses these limitations by discussing a signature-

based IDS framework to detect certain application layer attacks by analyzing data from multiple

logs generated by web applications. The included signature-based IDS is meant to protect web

applications. Table 4 shows various attack types at different levels and related work that proposed

IDS. This Table was created based on industry-level data [44]. Our approach analyzes web server

log data, trains an IDS using a GA, and detects three common web application attacks (Cross-Site

22

Scripting, SQL Injection and Remote File Inclusion attacks). The definitions and explanations of

these attacks can be found in Section 2 of Chapter 4. In addition, the evaluation of previously

collected normal data and newly created malicious data via this approach would provide a detailed

view of the results.

Table 4: Signature-based Attack Detection

App Layer Attack Type Work(s)

Application

XSS [15, 19, 30, 41, 43]

RFI [30, 43, 46]

SQLI [12, 30, 43, 45]

Brute-Force [13, 15, 40]

Buffer Overflow [5]

 CSRF [53]

 Zero-days [38]

Transport

SYN/ACK [40]

XMAS Scans [20]

 DoS [5, 39]

 Apache2 [42]

Network

Smurfs [20]

Ping-of-Death [20]

 SYN flooding [40]

For our purposes, the network layer and the transport layer attacks in the Table 4 above are

irrelevant. However, it serves to illustrate that attacks are diverse and can occur in other contexts

outside of this case study. From the vast body of literature about signature-based IDSs, we classify

the works in multiple ways. We look at benchmark data sources, the attributes of examined data,

metrics employed by the IDS, the environment where implementation and evaluation was

conducted, the types of attacks being covered, and reported performance rates (false positive and

false negative rates). Among all the works, one study achieved detection of zero-day attacks by

analyzing web and database server logs, and examining attack code, command payload and traffic

generated by the payload [38]. Neelakantan et al. [39] used protocol information, headers, and

packet payloads of packet captures to reduce the total number of false alarms from DDoS attacks.

The rules defining the source address, destination address and destination port were used to

increase the speed of signature detection in another study [40].

23

In [20], the signature of a priori algorithm from the MySQL database logs was proposed to detect

known network level attacks. Based on PHP source code, Gupta et al. [41] used a controlled VM

to detect XSS attacks achieving 0% FP and 0% FN rate. The authors of [42] used known SNORT

and ClamAV signatures to detect signature-based attacks. Additionally, the researchers utilized a

honeypot to collect data for a character frequency exclusive signature matching scheme and the

Boyer-Moore algorithm was applied to the dataset. Through the use of Mail Exchange (MX)

records on Windows servers, the authors of were able to brute-force into numerous Hotmail

addresses [13]. In [5], Vigna et al. examined Apache logs to collect data on string length and

sequence and exploited mutations to detect buffer overflows, directory traversals and other attacks.

Chou [12] used web servers that were hosted in a Cloud environment to detect SQL injections,

XSS, and brute-force attacks. Finally, in [15] the researchers looked at innerHTML properties such

as GET, HTTP header and cookies to determine the presence of mutation-based XSS attacks,

denoted as mXSS. This work, in contrast, uses logs collected from both the web server and the

MySQL database for analysis. The environment is configured with a single host running multiple

virtual machines (VMs) within a virtual cluster. Some of the VMs are running Windows while

others are running Linux. We decided to use a signature matching scheme and added genetic

operators to introduce changes into the signatures. Such mutation allowed for the GA to detect all

of the known attack input. These include XSS, SQLI and RFI attacks and result in 0% false positive

rate and 0% false negative rate. We outline the major points of each of these studies and compare

them with our proposed approach, as shown in Table 5 below.

Table 5: Related Work on Signature Based Attack Detection Approaches

Author
Source of

data/

benchmark

Attributes

of data

examined

Metrics used

in their

model

Environment,

configuration,

virtual

machines

Attacks

detected

Effort to

reduce alarm

rates
(FP and FN)

Holm [38] Web servers

and database

servers

Attack code,

command

payload,

traffic

generated by

the payload

% of known

attacks

detected

Windows

2000, XP,

2003, Vista

and Ubuntu

10.04

Zero-day

Attacks
False positives

are mentioned,

but no % is

provided due

to the variety

of employed

OS

24

Author
Source of

data/

benchmark

Attributes

of data

examined

Metrics used

in their

model

Environment,

configuration,

virtual

machines

Attacks

detected

Effort to

reduce alarm

rates
(FP and FN)

Neelakantan

et al. [39]
Apache,

OpenSSH,

SMTP

Protocol

information,

headers, and

packet

payloads of

packet

captures

% of critical

alarms

generated

Linux (Red-

Hat), Windows

2003 and

Windows 2000

DDoS The article

mentions that

the total

number of

false alarms

were reduced

Krugel et al.

[40]
Web servers Rules

defining the

source

address,

destination

address, and

destination

port

Average

increase in

speed of

signature-

detection

Red-Hat Linux Brute-Force,

Synscan,

Portscan

Not reported

Modi et al.

[20]
MySQL

database log
Signature A

priori

Algorithm

Proposed

solution, not

implemented

thus far

Eucalyptus on

Ubuntu
Known

network

attacks, DoS

derivatives

Propose a low

FP rate

Gupta et al.

[41]
PHP Source

Code
HTML

Context

including

styles, body

tag names,

etc.

Number of

safe vs.

unsafe files

Controlled VM XSS attacks 0% FP and 0%

FN rate

Meng et al.

[42]
Honeypot Character-

frequency

exclusive

signature

matching

scheme and

the Boyer-

Moore

algorithm

Maximum

execution

time variance

using

incoming

payload or

signature set

partitions

VMs in Cloud

Environment
Known

SNORT and

ClamAV

signature-

based attacks

Not

mentioned;

focused on

reducing

TIME to

process

signatures, not

FP/FN rates

Parwani et

al. [13]
MX records

on Windows

servers

Expired

Hotmail

addresses

Number of

accounts that

were hacked

Windows Brute Force

Attacks
Not discussed

Vigna et al.

[5]
Web

servers, such

as Apache

String length

and

sequence,

exploited

mutations

Number of

signature-

based attacks

detected by

either

SNORT or

IIS

RealSecure

Linux,

Windows,

OpenBSD

Buffer

Overflows,

DoS, Stack

Overflow,

DT, Double

decoding

(code

execution),

Did not

consider

FP/FN results

because the

goal was to

provide useful

indication

about the

25

Author
Source of

data/

benchmark

Attributes

of data

examined

Metrics used

in their

model

Environment,

configuration,

virtual

machines

Attacks

detected

Effort to

reduce alarm

rates
(FP and FN)

before and

after

mutating data

Non-

exhaustive

Signatures

average

quality of

signatures

under testing

Chou [12] Web servers

in the Cloud
Data models

categorized

as SaaS,

PaaS or IaaS

Increased

frequency of

identified

SQL

injection

attacks in

SaaS, PaaS,

and IaaS

Cloud

settings

measured in

%

Linux, Solaris,

Windows VMs

in Cloud

environment

Malware

(SQL)

injection,

other attacks

detected with

Cloud

systems:

DDoS, brute-

force, session

hijacking,

XSS, etc.

Not discussed;

focus was

more on cloud

security

Heiderich et

al. [15]
Web servers innerHTML

properties:

GET, HTTP

header,

cookies,

etc.; mXSS

vectors

Page load

time in

milliseconds

versus the

page size

with and

without the

performance

penalty

introduced to

users by

TrueHTML

VMs running

Ubuntu
Mutation-

based XSS

attacks

(mXSS)

Briefly

suggested as

potential

future

research, but

not directly

addressed

This study

[43]
Web servers
MySQL

database

Signature

matching

scheme with

added

genetic

mutations

Mutation,

selection,

chromosome

cross-overs

VMs running

Linux or

Windows

XSS, SQLI,

RFI
0% FP and 0%

FN rate

2.5 Genetic Algorithm

Data sources and types of detected attacks vary greatly across the body of signature-based IDS

literature. For example, in [48], Avancini et al. examined parameters and values of PHP code to

find XSS attack vectors. These authors use static analysis of the Genetic Algorithm (GA) to

automate the log analysis procedure. They also minimized the false positive and false negative

alarms through path sensitization. Authors of [49] created their own set of suspicious data and used

26

the DARPA dataset as the normal dataset for their study. This study was the only study in the

literature we encountered to use the DARPA dataset as a normal dataset. When comparing this

GA-based IDS to a known signature database called Snort, the authors found that the GA-based

IDS outperformed Snort by detecting a higher number of attacks and having a lower false alarm

rate than Snort. Danana et al. [50] obtained all of their data from the KDD99 dataset, and were

able to find attacks including Denial of Service, Probing, User-to-root and Remote-to-local attacks.

A fuzzy genetic algorithm utilized in [51] pulled data from a six-by-six matrix of response-

resource entries to measure the parameters of the fitness function.

A multivariate statistical clustering algorithm was suggested to detect web application attacks in

[52]. The discrete variables in the study were measured by frequency and the number of similar

characters between two separate activities (attacks) was suggested as a way to lower the number

of false alarms. Liu and Fang genetically modified two sets of real numbers to shorten the lengths

of the chromosomes to optimize the GA [53]. In another study, network attacks like smurf,

teardrop, neptune, portsweep and others were identified in offline, normal audit data as well as in

real time, processed data [53]. Normal data and attack data were compared by the authors looking

for Denial of Service, Probes, User-to-root and Remote-to-local network-level attacks [54].

Authors of [55] lowered the false alarm rates by implementing an optimal genetic feature selection

process and a support vector machine. Despite the potential of the existing signatures in the

literature to detect patterns across any operating system, this work will use genetic operators to

mutate such patterns for detection. Table 6 summarizes these related works and the methods used

by the authors to reach their conclusions.

Table 6: Comparison of Related Work on Genetic Algorithms

Author Source of data Metrics Types of

attacks
Effort to reduce

alarm rates
(FP and FN)

Avancini et al.

[48]
Parameters and

values of PHP

code

Integrating a static

analysis of the genetic

algorithm and taint

analysis

Cross-Site

Scripting

attack vectors

FP and FN were

minimized

through path

sensitization
Barati et al. [49] Normal dataset

(DARPA) and

suspicious dataset

Number of scan attacks

detected/missed by this

GA-based IDS versus

Snort

Horizontal

and vertical

scan attacks

Overall false

alarm rate was

10%

27

Author Source of data Metrics Types of

attacks
Effort to reduce

alarm rates
(FP and FN)

Danane et al. [50] KDD99 dataset Accuracy, execution

time, memory allocation
DoS, Probe,

U2R, R2L
Rules added in

the testing phase

to reduce FP and

FN
Fessi et al. [51] 6 by 6 binary

matrix of

response-resource

entries

Rules that only match
anomalous connections

to show signatures,

parameters of fitness

function

Not specified;

focused on

the fitness

value: attack

impact ratio

FP rate was

“low” but not

specified

numerically

Zhou et al. [52] Multivariate

statistical

clustering

algorithm is

suggested to

detect attacks; No

real data is used

in the study

Frequency for discrete

variables; the number of

similar characters

between 2 activities

Web-layer

attacks under

study, but

none are

specified

Not disclosed

but states the

goal is “a very

low rate”

Liu et al. [53] Two sets of real

numbers are

genetically

modified to

shorten

chromosome

length

Delphi method to

determine Figure 1 in

this article; fitness value

of each chromosome,

total fitness values,

selection probability

No attacks;

discusses

modified

genetic

algorithm for

optimization

No FP or FN;

studied detection

reliability (R),

time of detection

(T), and

threshold time

(S)
Narsingyani et al.

[54]
Offline data for

normal traffic

dataset [audit

data]; real time

data for attack

detection

[Processed data]

Src_bytes, land,

wrong_fragment, [all

numerical] and service

[nominal]

DoS attacks:

smurf, pod,

teardrop,

Neptune,

back,

portsweep

Specifically

focused on FP

rate to improve

performance by

increasing the

number of rules

Senthilnayaki et

al. [55]
Attack data and

normal data
Protocol type, service,

src_bytes, flag,

num_failed_logins,
Logged_in,

srv_diff_host_rate,

dst_host_srv_count,

is_guest_login, and

num_shells

DoS, Probe,

U2R, R2L
False alarms

reduced by using

optimal genetic

feature selection

and a support

vector machine

2.6 Benchmarking and Evaluation

Work completed by Alhamazani et al. [56] proposes a benchmark named the Cross-Layer Multi-

Cloud Application Monitoring- and Benchmarking-as-a-Service (CLAMBS). This study used an

Apache web server, a Tomcat web server and a MySQL database. The attack detection approach

28

worked across Windows and Linux environments, and was implemented to establish the baseline

performance of applications while also monitoring each application’s quality of service (e.g.,

round trip time, packet loss). In this study, datasets of 50, 100 and 200 MB were generated on a

virtual machine as a proof-of-concept to test Amazon Web Services and Windows Azure.

However, this benchmark also had a heavy reliance on JAVA and specific reliability on cloud

services. As described by [57], a study by Champion et al. [58] utilized an attack detector titled

Ebayes by the authors. This detector was able to detect more attacks at the application layer than

the commercially available intrusion detection system (IDS) in 2001. Despite this, Ebayes still

only detected up to 50% of known attacks in the in-house generated dataset. Athanasiades et al.

[57] also describe a study carried out in 1997 [59]. Through the use of customized software based

on the Tool Command Language Distributed Program (TCL-DP) package, these authors simulated

users performing FTP and/or Telnet procedures. A script was then created to record and replay the

user actions to generate their dataset. These authors used a very controlled environment to ensure

that the results of the study could be replicated. Aside from this precaution, the authors neglected

to test their dataset for attack detection in a normal network environment. Instead, attack detection

was only under study in the stress tests of the data [59].

Using a self-named benchmark, Ballocca et al. [60] created a fully integrated web stressing tool.

The benchmark, called the Customer Behavior Model Graph (CBMG), relies on the stressing tool

that is composed of a script recorder and a load generator. This allowed the traffic from the

workload characterization to be automated and begin from the web log files. Generating this

workload, on the other hand, is time consuming and involves multiple processes. The authors in

[61] developed a unique algorithm to generate the Research Description Framework (RDF)

benchmark. Generating datasets would no longer be an issue if RDF was adopted as a universal

benchmark because the authors state that this generator can convert any dataset (real or fake) into

a benchmark dataset. They can even make sure the user-specific data properties are generated.

While this sounds like a potential solution, the authors also noted that the initial input data must

first be cleaned and normalized. Neto et al. [62] took a trust-based approach to application-layer

attack detection. By defining how likely vulnerabilities were to be found rather than determining

a specific number of attacks that would be found, these authors measured the trustworthiness of

the relationship between the application and the developer. As a new approach, this approach may

29

sound simple, but it is full of complex coding and involves a three step process. Anyone wishing

to use this benchmark would require a fundamental understanding of how to read complex

computer code.

In [63], Neto et al. implemented Static Code Analysis as a benchmark for attack detection. Four

metrics were applied to real web applications to determine the trustworthiness of the application.

An application with a high mean score across each of the metrics was deemed untrustworthy.

Despite these efforts, the benchmark relied on the TCP-App standard for web application code and

JAVA. Stuckman et al. [64] crafted a modular benchmark on a testbed that automated the

evaluation of an intrusion prevention system. This benchmark was a collection of modules and

each module had an intentionally vulnerable application installed in an environment that would

allow the application to run and simulate an attack. Each testbed was a deliverable virtual machine,

so anyone could easily deploy the benchmark on any system running Debian Linux. The

benchmark was limited in that it had to be customized for each individual developer if the

developer wanted to generate their own attacks. Another benchmark for attack detection was made

by Zhang et al. [65] in 2009. Known as WPBench, or Web Performance Benchmark for Web 2.0

applications, this benchmark utilized a replay mechanism that was able to simulate user

interactions with applications and characteristics of networks and servers. The benchmark worked

well with Internet Explorer, Firefox, and Google Chrome browsers.

Ultimately, this benchmark was intended to measure the responsiveness of each of the browsers to

page loading times and event response times. The main disadvantage of this proposed benchmark

was that is required users to run the benchmark in the background of their daily browsing activities

and recorded their actions. This benchmark would then take more time to replay the actions in

order to learn the user’s environment and preferences. A Model Driven Architecture (MDA)

approach was proposed in [66] and allowed for the generation of repetitive and complicated

infrastructure code by the benchmark tool. The MDA approach included a core benchmark

application, a load testing suite and performance monitoring tools for the user. However, the

approach did not include any type of tool to collect information regarding data performance. Yet

another benchmark suggested in the literature is a web server benchmark named servload by the

authors of the work [67]. This benchmark supports load balancing, can replay web server logs,

30

tells users the number of requests and sessions, as well as provide the connection time and error

counts to the user. All of this information is very useful when trying to establish a standard for

application-layer attack detection, but servload only supports GET requests and has to analyze

web server logs. Varying log formats bring servload to a halt, impeding this benchmark from being

universally adopted. We show the comparison and contrast among these literature works in Table

7. Coupled with this summary, Table 8 highlights the specific data attributes that other authors

measured to evaluate their datasets.

Table 7: Summary of Related Literature on Benchmarking

Author(s)

Description of

proposed new

model or

benchmark

Advantages of

method
Disadvantages of

method
Size of the

Dataset

Alhamazani et

al. [56]
CLAMBS-Cross-

Layer Multi-Cloud

Application

Monitoring- and

Benchmarking-as-

a-Service

Monitors QoS of

application

QoS information of

application

components is shared

across cloud layers

Baseline performance

established by

B-a-a-S

Study a proof-of-

concept on a VM

testing Amazon AWS

and Windows Azure

Heavy reliance on

JAVA

Datasets of

50MB, 100

MB and

200MB

Athanasiades

et al. [57]
Environment

similar to DARPA

1998

Ebayes detector

[58]

Detected more

attacks than the

commercially

available IDS [58]

Not publicly available

(Privacy issues at

Georgia Tech would

not allow researchers

to access their own

subnet)

Did not

disclose the

size of the

dataset

Same as above

[57]

Custom Software

based on the

Expect and Tool

Command

Language

Distributed

Program (TCL-

DP) package [59]

Environment was

very controlled to

make sure the results

could be replicated

Attack identification

only took place during

stress tests

Did not

disclose the

size of the

dataset

Ballocca et al.

[60]
Customer

Behavior Model

Graph (CBMG)

Traffic from the

workload

characterization is

automatic

The characterization

process begins from

the web log files

Creating a workload

takes a lot of time and

involves four different

processes: merging

and filtering web logs,

getting sessions,

transforming sessions,

and CMBGs clustering

No size given

31

Author(s)

Description of

proposed new

model or

benchmark

Advantages of

method
Disadvantages of

method
Size of the

Dataset

Duan et al.

[61]
Research

Description

Framework (RDF)

This generator can

convert any real or

fake dataset into a

benchmark dataset
and make data with

similar characteristics

as the real dataset

with user-specific

data properties

Must perform data

cleaning and

normalization of the

dataset before using

this method

User can

indicate

dataset size

Neto et al.[62] Trust-based

benchmark with 5

metrics: Code

Average Code

Prudence, Code

Average Code

Carelessness,

Quality, Hotspot

Prudence

Discrepancy and

Hotspot

Carelessness
Discrepancy

Defining how likely

vulnerabilities are to

be found rather than

the number of

vulnerabilities

Anyone using this

benchmark method

would have to

understand how to

read code

No set size of

data

Neto et al.[63] Static Code

Analysis
Applies all 4 metrics

to real web

applications; higher

metric values mean

the product is less

trustworthy

Relies on TCP-App

standard for code on

web applications

instead of developing

their own

JAVA heavy

Not disclosed

Stuckman et

al. [64]
Run a modular

benchmark on a

testbed that

automates the

evaluation of the

IPS

Testbed can be given

out as a VM, so

anyone can deploy it

with Debian Linux

Need to make this

customizable for

individual developers

to generate their own

attacks

Resulting size

of code; not

specified

Zhang et al.

[65]
WPBench: Web

Performance

Benchmark for

Web 2.0

applications

Replay mechanism

simulates user

interactions with

applications and

characteristics of

servers and networks

Requires users to run

the benchmark in the

background of daily

browsing to create a

recording of steps to

replay so the

benchmark learns the

environment and user

preferences

38MB

32

Author(s)

Description of

proposed new

model or

benchmark

Advantages of

method
Disadvantages of

method
Size of the

Dataset

Zhu et al. [66] Model Driven

Architecture

(MDA) approach

Generates repetitive

and complicated

infrastructure code

No tools are included

to collect data

performance

Claim a large

amount of

data, but not

specific

Zinke et al.

[67]
Web Server

Benchmark named

servload

Can replay web

server logs, tells

users the # of

requests, sessions,

connect time, and

error counts; error

counts may be

connection errors,

HTTP codes, or # of

timeouts

Web server logs have

to be analyzed and log

formats can limit this

feature

Only supports GET

requests

No dataset

size

Table 8: Measured Data Attributes for Benchmarking

Author(s) Attributes discussed
Alhamazani et al.
[56]

Worked on Windows and Linux
Monitoring agent used SNMP, HTTP, SIGAR and custom built APIs
Benchmarking component measured QoS parameters like network

bandwidth, download and upload speeds, and latency
Web server: Apache Tomcat
Database Server: MySQL

Athanasiades et al. [57]

Generated traffic like DARPA 1998 [58]
FTP server was the “victim”
Used attack injection programs and in-house tools
Attack effectiveness measured by number of hung connections at the

victim server
Percentage of detected hosts were measured (ranged from 25-50%)

[58]
Same as above [57] Simulated users performing Telnet and/or FTP operations [59]

Script was used to record and reply the user actions to generate data
Some attacks used: password files being sent to remote hosts,

password cracking, elevating user access, password dictionary
Ballocca et al. [60] Fully integrated web stressing tool

Workloads were extracted from web log files
Stressing tool was made up of a script recorder and a load generator

Duan et al. [61] TPC Benchmark H (19 GB) was used as the baseline for this

generator
The authors created a unique algorithm to generate a benchmark

Neto et al. [62] Measured the trustworthiness of the relationship between the

application and the developer

33

Author(s) Attributes discussed
A 3 step process: user sent parameters (i.e., session token) to the

server and identified a target resource, server processes code, server

sent back output like a form or html text
Neto et al. [63] Raw number of vulnerabilities reported

Calibrated number of vulnerabilities reported
Normalized raw number of vulnerabilities reported
Normalized calibrated number of vulnerabilities reported

Stuckman et al. [64] Benchmark was a collection of modules that were each within a

vulnerable application in an environment that let the application run

and simulated an attack against the application
Zhang et al. [65] Worked with Internet Explorer, Firefox or Chrome

Measured responsiveness of browsers to page loading times and

event response times
Zhu et al. [66] Included a core benchmark application, a load testing suite, and

performance monitoring tools
Zinke et al. [67] Supported load balancing

Did not ignore think times or different user sessions
Generated higher workloads than SURGE with similar statistical

characteristics through 1 of 3 methods: multiply, peak, or score

method

In the next Chapter, we discuss anomaly intrusion detection, and our proposed technique to

increase the attack detection rate.

34

Chapter 3: Anomaly-Based Intrusion Detection System

Development

3.1 Overview

This Chapter introduces the anomaly Intrusion Detection System (IDS) development and discusses

some relevant work on anomaly IDS development in Section 3.2. Next, in Section 3.3 we introduce

the idea of detecting web application attacks by using cross-entropy metrics. Section 3.4 explains

our proposed approach to detect such attacks using web application log data based on our previous

publication [30]. Finally, Section 3.5 shows how we compared our measures to other accepted

measures.

3.2 Related Explanation of Anomaly-Based IDS Development

A recent report from Imperva [68] shows many applications have been targeted to exploit known

vulnerabilities such as SQL Injection (SQLI), Remote File Inclusion (RFI), Directory Traversal

(DT), and Cross Site Scripting (XSS). SQL injection attacks attempt to provide part of a SQL

query in a web request URL (parameter value) where the query part is intended to change the

structure of the query to introduce anomalous behaviors [69]. Remote File Inclusion [70] adds

arbitrary server-side source files to introduce unwanted application behaviors. A directory

traversal attack [71] supplies arbitrary traversing of directory commands in supplied URLs. XSS

attacks inject arbitrary JavaScript code and occur when unsanitized inputs are passed within

request URLs and are accepted by applications and processed or stored [72]. The vulnerability

may arise from plugins the application uses during runtime, for example. One million Wordpress

websites have been reported to be vulnerable to SQLI due to leak of secret keys from associated

plugins [73]. Similarly, security protocols used by web applications can play the role for successful

exploitation (e.g., heart bleed bug exploited to reveal secret information from web servers [74]).

IDS is a popular approach to prevent attacks. IDS can be classified into two types based on the

location of deployment: host-based (where one host or computer is protected) and network-based

(where a set of hosts connected to a network is protected). This work considers development of a

host-based IDS. Depending on the type of detection, an IDS can apply signatures of known attacks.

35

For example, Snort and Bro are two popular signature-based IDS. Both of these signature-based

IDS have currently available signatures to detect web-based attacks such as SQLI and XSS [38,

75]. However, the limitation of an established signature-based IDS is that they are not suitable for

detecting new attacks and it is common to see attackers devise new signatures to bypass IDS

detection [39, 40]. To address this limitation, anomaly-based IDS have been getting much attention

from the research community [5, 12, 15, 39, 40].

An anomaly-based IDS has learning and detection phases. During the learning phase, it learns

profiles of normal web requests and then compares with a new request to find the dissimilarity

level. If the level exceeds a certain threshold level, an attack is detected. Anomalous IDS has the

advantage of detecting new attacks, but at the cost of a high number of incorrect detections. Thus,

it is important to explore approaches to reduce the number of warnings. Most of the anomaly-

based IDS analyzing web logs from the literature [5, 12, 15, 39, 40] primarily analyzes GET

requests, and do not consider POST requests. These POST requests include parameter and value

information that should be considered for profiling of requests. Some existing approaches require

the knowledge of source code level information to reduce the number of false warning [5, 20, 39,

43]. However, source code may not be accessible while developing an IDS.

In contrast to earlier works, our approach relies on path resources (e.g., a request page in a certain

path) and does not need to rely on similar assumptions of the other works. We place the emphasis

on web server logs and apply entropy measures to detect anomalous requests. Our work employs

cross entropy levels of parameter name, value, and types for profiling and attack detection.

3.3 Detection of Web Application Attacks with Cross-Entropy

Our approach is motivated by earlier works that apply information theoretic measures. For our

study, we created the framework of the web anomaly IDS for the learning phase. A browser is

used to run deployed web applications and access resource pages with benign input, as illustrated

in Figure 1. All GET requests from the browser get logged into the web server log files. For POST,

we deploy a suitable browser extension (Firebug for Firefox [76]). We combine the POST request

data with GET request data during offline analysis by the anomaly detector. The anomaly detector

learns request profiles based on resource paths.

36

Figure 1: Information-theoretic IDS Framework

Figure 2 shows two example requests (we display part of the log due to space constraint) that we

gather during dataset generation by deploying a large scale web application named Joomla [77].

The first request is intended to access the resource /joomla/index.php, and has the list of parameters

such as option, view, task, id, timeout with associated values com_installer, update, update.ajax,

6, and 3600. The second request accesses the same resource as the first one. However, it has one

parameter (option) with the value com_media. Therefore, applications may let a user access the

resource path with various sets of parameters and values. Solely relying on the parameter sequence

would not be enough to detect attacks where the sequence remains the same (e.g., SQL Injection).

We also find that the value of id is related to the user account, and the type of the parameter usually

remains as numeric with no upper or lower bound.

/joomla/index.php?option=com_installer&view=update&task=update.ajax&id=6&skip=700&ti

meout=3600… …

/joomla/index.php?option=com_media …

Figure 2: Example of Log Data

For each of the common paths, the anomaly detector profiles three types of information: parameter

set, parameter value set and parameter value data type. To account for all of these variations within

parameters and their values, our proposed detection approach employs three types of measures.

We now present the processing of each request that appears in a log file in Algorithm 1.

37

Algorithm 1: Processing of URLs from a log file

Line 2 identifies the resource path and adds to the R set if not included already (Lines 3-4). Line 5

extracts the list of parameters from the request. For each of the parameters (Lines 6-10), we obtain

the value (Line 7) and type of data (Line 8). Then, we update occurrences of the value and type at

Lines 9 and 10, respectively. Finally, Line 11 updates parameter occurrence.

3.4 Case Study and Evaluation

We apply entropy as the metric to profile the randomness of parameter occurrences, parameter

values, and value types. The entropy (H) is calculated using the formula in Equation (i). Here, Q

is a set of symbols (unique values passed in the parameter), where qi is the ith element, p(qi)

indicates the occurrence probability of qi
th element.

 H(Q) =-E[logP(Q)] = -Ʃq£Q(q = qi) log2 P (q=qi) … … (i)

Since entropy is useful for a single set of frequency distribution, it cannot be directly applied to

compare two distributions (i.e., a new request and a set of earlier observed requests). Instead, we

apply a cross-entropy measure between two distributions. Cross entropy (CE) [78, 79] between

two distributions p and q is shown in Equation (ii). Here, p(xi) is the probability of xith element’s

occurrence.

38

 CE (p, q) = - Ʃi p(xi) * log2(q(xi)) … … … (ii)

In Equation (ii), p(xi) is the probability of xith element from p set, and q(xi) is the probability of

xith element from q set. CE becomes minimal when p and q are identical. The CE between two

probability distributions measures the average number of bits needed to identify an event from a

set of possibilities. We define a threshold level d which, if exceeded, would flag a new request as

anomalous. If the CE does not exceed threshold, we consider it normal request. For web anomaly

detection, we deploy three measures: cross-entropy of parameter (CEP), cross-entropy of value

(CEV), cross-entropy of type (CET). CEP is intended to measure the missing parameter or

additional parameters injected as part of attacks or tampering. Equation (iii) shows CE between

two parameter sets P1 and P2 for a given resource path r. We apply a back off smoothing algorithm

[80] to avoid the zero occurrence of any parameter by replacing zero with a very small probability

value (as the logarithm of zero probability cannot be computed, otherwise).

 CEPr (P1, P2) = - Ʃi P1(xi) * log2(P2(xi)) … … … (iii)

CEV is intended for a given parameter’s observed values during the training. It compares the

distribution of earlier observed values and the values present in a new request. It can capture any

deviation between anomalous attack inputs with an earlier observed normal input. Equation (iv)

shows the CEV between V1 (values observed during profiling) and V2 (value observed during

testing) for a given parameter p.

 CEVp (V1,V2) = - Ʃi V1(xi) * log2(V2(xi)) … … … (iv)

CET is intended to reduce false positives as well as increase attack detection. It observes the

deviation between data type of the supplied parameter values and a new request parameter value

type. Equation (v) shows CET between type set T1 and T2 for a given resource path r.

 CETr (T1, T2) = - Ʃi T1(xi) * log2(T2(xi)) … … … (v)

39

These metrics were applied to both of the datasets in our study, the training dataset and the testing

dataset. For the training phase, we deploy a large scale PHP Content Management System (Joomla

[77]) and perform various functionalities for a four day period. For each day, various types of

inputs have been applied to different pages and the logs are stored. We ensured that the data does

not contain any malicious input by manually inspecting the logs. We then use the first day of data

to build a normal profile of requests and then validate for false positive rates for the subsequent

three days of datasets. Table 9 shows the number of GET and POST requests for all four days. We

combine all the data, and then choose 25% of the data randomly for building profiles, while

keeping the remaining 75% of the data for testing.

Table 9: Good Dataset Characteristics

Request Type Day 1 Day 2 Day 3 Day 4

GET 1,013 1,556 1,640 1,536

POST 412 517 511 481

Total 1,425 2,073 2,151 2,017

We gather attack input from various sources [81-83] and apply them to the deployed application

to generate the attack dataset. Table 10 shows the number of samples we applied in our attack

dataset generation. These attack inputs are applied randomly within web requests from the

browser.

Table 10: Distribution of Attack Inputs

Attack type # of samples

SQLI [83] 1000

DT [71, 82] 8

RFI [70] 5

XSS [81] 60

Total 1073

When the IDS generates a warning we call it positive, if it is real, we call it True Positive (TP). If

no warning is generated we call it negative, if it is actually not a malicious request, we call it True

Negative (TN). If the IDS misses the actual attack detection, we call it False Negative (FN). We

follow similar approaches [39, 40] to evaluate the performance of the proposed approach. We use

a Receiver Operating Characteristics (ROC) curve to evaluate the performance of the anomaly

IDS. It has two measures: True Positive Rate (TPR) on the y axis, and False Positive Rate (FPR)

on the x axis. TPR and FPR are defined as follows:

40

 TPR = TP/(TP+FN) … … … (viii) FPR=FP/(FP+TN) … … … (ix)

Ideally, we expect IDS to demonstrate a TPR of 100%, while FPR would be 0%. The filtered

(normal and attack input free) data is used to evaluate an IDS to produce FPR, whereas the dataset

containing only attack requests would be used to obtain TPR. Table 11 shows that the lowest FPR

is observed for CEV (0.53%) while the highest FPR is for the CET (3.6%). The lowest TPR

observed is 83.66 (CEP) while the highest TPR is obtained for all measures when considering

higher threshold levels (d>8). The raw results are presented in Table 11.

Table 11: FPR and TPR for the Proposed Measures

d

CEP CEV CET

FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%)

d >2 0.54 83.66 0.53 90.22 1.2 94.21

d >4 1.1 92.45 1.45 94.53 1.45 95.67

d>6 1.26 98.67 1.67 99.33 2.56 98.67

d>8 2.56 100 1.92 100 3.6 100

Data from Table 11 is also below in Figure 3. The Figure shows the ROC curve of performance

for the IDS for various distance (d) values. In this graph, the x axis shows FPR (%) and the y axis

shows TPR (%). We find that a higher detection accuracy is achieved at the cost of a higher FPR.

Among CEP, CEV, and CET, the best performance is shown by CEV as it has the lowest FPR.

Figure 3: ROC Curve of various Cross Entropy Metrics

41

3.5 Comparison of Related Metrics

We compare our approach with two earlier proposed approaches: value length and Mahalanobis

distance [31]. The length of a parameter value should be limited in size. However, for an attack

request, it may be higher. We compute mean and variance of length during training and testing.

We measure the deviation based on Chebyshev's inequality (calculating the probability that an

attribute would have the observed length) [84]. Let X be a random variable with mean µ and

standard deviation s >0. Then the Chebyshev Inequality is shown as follows (k>0):

 P(|X-µ| >= ks) ≤ 1/k2 … … … (vi)

Mahalanobis Distance (MD) [85] is a metric to compare two statistical distributions. It indicates

how close a given distribution is to observed distributions. If we assume the two groups are x (x1,

x2, …xn) and y (y1, y2, … yn). Then MD between x and y is defined as follows:

 MD(x, y) = sqrt ((x-y)T*S-1 *(x-y)) … … … (vii)

Sqrt is the square root operation, (x-y)T is the transpose of the difference between x and y, S-1 is the

inverse of co-variance matrix S. We adopt the length measures and consider the length of the

parameter name, and the value and consider k=4 for Chebyshev inequality. For MD, we form

groups based on parameter, value, and type (e.g., each unique parameter, value, or type is labeled

with a numeric value, for example, a data type for number is 1, while string is 2). The following

ROC curves (Figures 4, 5 and 6) compare CE measures from our case study with length and MD-

based anomaly detection approaches. We find CEP performs better than length and MD.

Figure 4: Comparison between CEP, length and MD measures

42

Figure 5: Comparison between CEV, length and MD measures

Figure 6: Comparison between CET, length and MD measures

Among the three measures (CEP, CEV, CET), CEV performs best followed by CEP and CET

when compared with length and MD measures. CEV accounted for payload diversity more than

the other two measures. In all cases, we find that the cross entropy measure performs better than

two other existing anomaly detection measures. As anomaly detection measures become more

capable of detecting advanced web application attacks, the signature-based approach to attack

detection must also be investigated.

The next Chapter discusses how a signature-based IDS can work with a genetic algorithm and

improve attack detection. Another case study will also be included.

43

Chapter 4: Signature-Based Intrusion Detection System

Development

4.1 Overview

In this Chapter, we establish our methodology for creating a genetic algorithm that is applicable

to signature-based intrusion detection in Section 4.2. In Section 4.3, we describe how datasets are

generated and applied. Finally, Section 4.4 presents our case study and results.

Traditional Intrusion Detection Systems (IDSs) use signatures where attacks are defined as a

sequence of events to match with network traffic [86]. This approach is accurate as long as the list

of attacks is known in advance and signatures are defined before deploying an IDS such as Snort

[87] and Bro [88]. There has been little effort to develop signature-based IDS for web applications.

Moreover, they rely on regular expressions to detect attacks. For example, a script created to use

a PHPIDS [89] allows attack signatures to be expressed using a set of regular expressions. The

burden is on the user to keep up with new expressions. To address this limitation of a signature-

based IDS, in this paper, we propose to develop a Genetic Algorithm (GA) based IDS. GA-based

approaches have gained the attention of the research community in recent years. In a signature-

based attack detection approach, the network traffic is monitored and the IDS searches for

malicious behaviors that match the known signatures [4]. Any signatures with even minor

deviations from the attack descriptions would not set off any security alarms, which may leave a

system vulnerable [38]. However, a GA-based approach can address this limitation by generating

new signatures from existing signatures. We explored this idea and carried out a case study [42]

to exemplify how a GA can improve attack detection rates as well.

4.2 Creation of a Genetic Algorithm

Within this Section, we explain how to create a genetic algorithm, based on previous literature.

Generally speaking, a genetic algorithm advances a set of solutions by combining good solutions

to craft new ones until the best solution is found. This process is composed of multiple steps [90-

93]. In order to generate a genetic algorithm, a general process and set of steps can be followed.

The first step is to create an initial population. This population is typically generated in a random

44

manner and may include as many individuals as preferred, from a few to several thousand. An

individual is also called a chromosome in the population. Each chromosome in the initial

population is then evaluated for fitness. Next, a new population has to be created. This process

consists of repeating the steps that use genetic operators, including selection, crossover and

mutation, until the new population is established.

During the selection phase, the main goal is to keep the best individuals in the population and

improve the overall population fitness. Two parent chromosomes are selected from the population

based on their fitness score value. The better the fitness score is, the more likely that the

chromosome will be selected for the population. Crossing over, or the sharing of information, takes

place between two parents to create new offspring or children. This occurs in hopes of crossing

two chromosomes with a high fitness value that will then create an offspring that has the best traits

from each parent chromosome. When mutations occur, there are random changes that happen in

individual genes. This increases the diversity among the initial population over multiple

generations. All of the new offspring are placed into a new population and serve as the base

population for the next iteration of the genetic algorithm. Genetic algorithms are used to create

repetitive populations until the optimum solution for the population is found or the population’s

end condition is reached [91-93]. The genetic algorithm steps are outlined in Figure 7.

1. Begin with a random set of solutions (represented by chromosomes) to form population.

2. Evaluate the fitness of each chromosome in the population.

3. Create new solution by using genetic operators (selection, cross over) by selecting

chromosomes having higher fitness level.

4. Apply mutations randomly on newly generated chromosomes.

5. Repeat steps 2-4 until we reach maximum number of iterations, or exceed population size.

 Figure 7: Steps of Genetic Algorithm

4.3 Dataset Generation for GA-Based IDS Development and Application

As our goal is to apply the GA to improve a signature-based IDS, we start with an attack dataset

that we generated by deploying a large scale PHP web application named Joomla [77]. The

applications interacted automatically using scripts, and were provided with malicious inputs. We

45

collected inputs from the sources such as OWASP [94]. These attack inputs are applied randomly

within web requests from a browser. Table 12 displays the number of each type of attack that was

distributed into the attack dataset. The Apache web server logs were referenced to manually detect

successful attacks. Figure 8 shows an example of log data for a SQL injection attack where an

input field (id) has a tautology attack encoded in hexa-decimal format. Similarly, Figure 9 shows

an example of log data for an XSS attack where an image source has been supplied with malicious

code. Finally, Figure 10 shows an example of log data for a RFI attack, where the FORMAT field

is included with an include statement pointing to a file source from an attacker-controlled website,

followed by an exit() command.

Table 12: Distribution of Attack Input Data

Attack type # of samples

SQLI 1000

RFI 5

XSS 60

Total 1073

"GET

/sqlinj/?id=1%27+or+%271%27+%3D+%271%27%29%29%2F*&Submit=Submit&user_token

=c14e5f424d9f279c19ba507492745d50…

Figure 8: Example Log Data for SQL Injection Attack

"GET

/xss_r/?name=%3CIMG+SRC%3DJaVaScRiPt%3Aalert%28%26quot%3BXSS%26quot%3B%

29%3E&user_token=f37e5a82a994725092fd3155bb8cffba…

Figure 9: Example Log Data for XSS Attack

“GET /?FORMAT={${include("http://www.verybadwebsite.com/hacker.txt")}}{${exit()}}…

Figure 10: Example Log Data for RFI Attack

Step 1: The GA accepts a set of chromosomes as input, and provides another set of chromosomes

as outputs after a certain number of iterations while following the fitness evaluation, cross over

and mutations. For our contribution, we first convert each of the GET requests to a chromosome,

which is a bit string representation. Figure 11 shows an example representation of a chromosome

for SQL injection attack (based on the log in Figure 8 above). Here, we have three blocks of

46

information that include total number of SQL keywords (two of them include OR, =), presence of

an encoded character (1=Yes, 0=No), number of input fields that have SQL keywords (one field

here has a SQL keyword). The last block is the decision block, which represents attack type,

expressed in four bits. In the literature, there are six common types of SQL injection attacks.

Hence, we reserve three bits to express various types of attacks.

of SQL

keywords

Presence of

encoded character

of fields with

SQL keyword

Attack

type

010 1 001 0001

Figure 11: Example of a Chromosome (C1) for SQL Injection

Since each chromosome length should be same across different types of attacks, we define

chromosomes for XSS and RFI using three blocks of bit representation, followed by attack type

information. Figure 12 shows an example of chromosome for XSS based on the XSS log data

described earlier. Here, three script/html words are present (<script>, , </script>), the input

is encoded, and one field has XSS keywords. Figure 13 shows an example of RFI chromosome

based on the RFI log data presented, where the attack payload includes one URL, and it was not

encoded. There is only one command included for this situation. Once each attack has the

appropriate binary string, Step 2 can begin.

of script/html

keywords

Presence of

encoded character

of fields with

XSS keyword

Attack type

011 1 001 0111

Figure 12: Example of a Chromosome (C2) for XSS Attack

of URLs Encoded # of commands Attack type

001 0 001 1100

Figure 13: Example of a Chromosome (C3) for RFI Attack

Steps 2 and 3: We define two fitness functions (FF2, FF3) to evaluate chromosome x as follows

(Equation (i) to (iii)).

FF1(x): # of attacks detected by x in training dataset/total # of attacks in training data … … (i)

FF2(x): # of attacks detected by x in testing dataset/total # of attacks in testing data … … (ii)

FF3(x): FF1(x) + FF2(x) … … … (iii)

47

For example, we can apply FF3 to evaluate the fitness value of a SQLI chromosome (C1). If we

assume that C1 matches with 1 attack input out of 100 samples, and results in no false positive

warning, then its fitness value is 0.01. When we are evaluating the fitness function for a

chromosome, we are considering the entire dataset including training and testing. We compare bit

level representation of chromosomes from training or testing data to determine how many attacks

are detected. The chromosomes are crossed over based on fitness level. We apply one point cross

over for this case study. For instance, if we decide to cross over between C1 and C2, the before

and after results would mimic those added below. If we assume in C1 (after cross over), the fourth

bit gets mutated from 1 to 0, then we have a new signature (01000010111) for XSS, where the

attack payload is not encoded. This cross over process is illustrated below as well.

Before cross over (C1, C2):

C1 010 1 00 1 0001

C2 011 1 00 1 0111

After cross over (C1, C2):

C1 010 1 00 1 0111

C2 011 1 00 1 0001

Step 4: Our proposed framework allows for the web log data to be converted to chromosomes, as

demonstrated. The GA is then applied to generate more chromosomes which act as new attack

signatures until the solution is achieved. The generic framework we applied is shown below in

Figure 14.

Figure 14: GA-Based IDS Framework

4.4 Case Study and Evaluation

In this Section, we evaluate our approach in multiple ways. First, the GA parameters were

evaluated. We divide our attack dataset (web log files) into two parts: training dataset (30%) and

testing dataset (70%). This division is based on some earlier literature work that also developed a

GA-Based classifier (see Table 3). For each of the training dataset logs, we convert GET or POST

48

requests into chromosome representations by editing and implementing a number of open source

PHP class files [95]. Figure 15 shows a screenshot of the application output used while evaluating

this approach on a Windows Computer.

Figure 15: Screenshot of Results from GA-Based IDS

Based on the variables involved, such as the mutation rates, fitness functions and cross overs,

multiple scenarios were carried out to evaluate our approach. These results are depicted in this

Section. Figure 16 shows attack detection accuracy for various population sizes while using FF2

as the fitness function and keeping the mutation rate at 0.5. We can observe that the higher the

selection rate for a chromosome to cross over, the better accuracy for attack detection capability

we achieve. Figure 17 shows the attack detection accuracy for various population sizes while using

FF3 as the fitness function and keeping the mutation rate at 0.7. Each chromosome had varying

selection rates, which makes it easy to see that attacks are detected with more accuracy as the

population size increases and the selection rate increases.

49

Figure 16: Attack Detection Accuracy vs. Population Size (FF2, mutation rate=0.5)

Figure 17: Attack Detection Accuracy vs. Population Size (FF3, mutation rate=0.7)

Figure 18 demonstrates that as mutation rate changes, so does the accuracy of attack detection.

Here, the selection rate was set at 10% and FF2 was used as the fitness function. A higher mutation

rate implies that the attacks can be detected with more accuracy and within a smaller population.

Figure 19 illustrates that as mutation rate increases, so does the attack detection accuracy. For this

situation, FF3 was used as the fitness function and the selection rate was set at 20%. A higher

mutation rate shows that the attacks can be detected with more accuracy and in a smaller

population.

50

Figure 18: Attack Detection Accuracy vs. Mutation Rate (FF2, selection rate=10%)

Figure 19: Attack Detection Accuracy vs. Mutation Rate (FF3, selection rate=20%)

Despite obtaining the expected results, we continued with our case study a step further. We

compared the GA-Based IDS with PHPIDS [89], which is a popular open source web application

level attack detector. PHPIDS relies on a set of regular expressions in a configuration file to detect

known signatures. Such regular expressions are the signatures of each attack under study.

Therefore, by testing a known attack dataset, we compare GA with PHPIDS. Figures 20-22 below

illustrate samples of the regular expressions provided in PHPIDS for XSS, SQLI and RFI. In

Figure 20, any script code can be detected that is pre or post pended with an arbitrary string

(“(?:\<scri)|(<\w+:\w+)]”). It can also detect data having possible scripts (other than tag).

Similarly, Figure 21 shows an example regular expression that is supposed to detect SQL injection

attack inputs having specific keywords (e.g., exists, type). Figure 22 shows an example of a regular

expression for remote file inclusion that looks for a php file.

<![CDATA[(?:\<\w*:?\s(?:[^\>]*)t(?!rong)) | (?:\<scri)|(<\w+:\w+)]]>

Figure 20: Regular Expression for Cross-Site Scripting

51

<![CDATA[(?:\[\$(?:ne|eq|lte?|gte?|n?in|mod|all|size|exists|type|slice|or)\])]]>

Figure 21: Regular Expression for SQL Injection

<![CDATA[(?:@[\w]+\s*\()|(?:]\s*\(\s*["!]\s*\w)|(?:<[?%](?:php)?.*(?:[?%]>)?)|(?:;[\s\w|]*\$\w

+\s*=)|(?:\$\w+\s*=(?:(?:\s*\$?\w+\s*[(;])|\s*".*"))|(?:;\s*\{\W*\w+\s*\()]]>

Figure 22: Remote File Inclusion Example

To compare the GA-Based IDS with PHPIDS, we consider the population set generated by GA

and then convert back to string representation of attack inputs. We then pass these inputs to

PHPIDS and see if all of them can be detected by PHPIDS. Figures 23 and 24 show example

performances of the PHPIDS. In both cases, as the GA generated a greater population (of

signatures), the PHPIDS failed to detect all of them. Thus, a GA can be complementary to a

PHPIDS to detect new attacks using a signature-based approach.

Figure 23: Performance of PHPIDS for GA Generated Signatures (cross over rate=10%,

mutation rate=0.5)

Figure 24: Performance of PHPIDS for GA Generated Signatures (cross over rate=20%,

mutation rate=0.7)

52

The initial results find that the use of a GA is promising and can act as complementary to other

existing signature-based IDS approaches. When the population size of chromosomes is increased

(representing rules), the better the GA achieves the capability of detecting new attacks. Further,

having increased selection rate and mutation rate, we can generate new attack detection rules that

can address the limitation of traditional signature-based IDSs, such as the PHPIDS.

In the next Chapter, a broad summary of benchmark evaluation is presented and applied to a

selection of the previous log files.

53

Chapter 5: Benchmark for Evaluation

5.1 Overview

Technologists and computer scientists need a set of standards, called a benchmark, to evaluate the

datasets they handle on a daily basis that may be made up of log files generated by user actions,

web applications, and login attempts. These types of datasets may vary in size, content, purpose,

and many other characteristics. However, all of the datasets should be able to be evaluated by the

same benchmark. For the purposes of this chapter, we consider a benchmark to be a set of data

obtained from real world applications and that can be used to measure performance of web

application attack detection tools. The benchmark could be used to detect how resistant an

application is towards detecting attacks and performance changes [96, 97]. Benchmarking can be

carried over into almost any domain of technology; however, this chapter focuses on developing a

benchmark for detecting attacks against web applications.

5.2 Description of a Benchmark

A benchmark can be applied to nearly any situation in the technology field. Based on the literature

dating back to 1997 and as far forward as 2015, this section will explain why the need for one

collective benchmark is a relevant issue. Strictly by definition, any attack aimed at the application

layer of the Open Systems Interconnection (OSI) model is a web application attack [98]. These

application-layer attacks often involve a web server and/or a database server, depending on the

specific type of attack. To exemplify this, consider XYZ-WebTech, a technology company located

within the United States. At this company, a benchmark would be needed that could be applied to

web application security testing. However, this company would also need a separate benchmark

to apply to web service performance monitoring. The body of literature surrounding benchmarking

discusses the lack of one universal benchmark to detect web application attacks. Currently, the fact

that there is no benchmark for web application attack detection has led authors to develop their

own benchmarks for their specific datasets [56, 57, 58, 60, 62]. A discussion of why the

disadvantages of each approach outweigh their respective advantages is still to come. In addition,

the reasons authors in the literature attempted to establish their own benchmarks will be explained

in more detail in the next section.

54

5.3 Motivations for an Application Layer Benchmark

Once a benchmark is created, such as the MIT Lincoln Lab dataset for detecting network-layer

attacks from 1998 [99], the attackers find new avenues to explore. This process is nearly cyclic in

nature since attackers are continuously looking for different ways to access important information,

such as web server or database server logs. Such logs may hold highly sensitive information

including company passwords, client credit card data or employee payroll information, for

instance. Measures such as intrusion detection systems are in place to prevent such actions, but no

benchmark is available to evaluate the efficacy of the detection systems. Relevant characteristics

of the numerous benchmarks that independent studies have instituted must be considered when

developing a benchmark for detecting application layer attacks.

Among the benchmarks individual authors have proposed in the literature, all authors agree that

there is no current benchmark for evaluating datasets for web application layer attack detection.

For instance, for authors working with cloud-based datasets, it is stated that existing monitoring

frameworks such as Amazon CloudWatch, do not monitor all of an application’s components [56].

Since the release of the DARPA dataset in 1998 and similar datasets in surrounding years, no

updated datasets have been published as a benchmark. The datasets published in the 1990s are

irrelevant now. Specifically for this chapter, the DARPA dataset [99] or the KDD Cup dataset

[100] are not only outdated, but also focused on network layer level attacks rather than the web

application layer. Two examples of the multiple network layer attacks are depicted in the Figures

55

below. Figure 25 shows the steps involved in an Apache2 attack, and Figure 26 illustrates how a

User-to-Root attack would occur.

Figure 25: An Apahce2 Attack Illustration

56

Figure 26: User-to-Root Attack Diagram

57

Attacks such as the previous examples cause issues at the network layer, but are not the same

attacks leading to havoc at the application layer. Due to this situation, authors have transitioned

towards crafting their own benchmark in a controlled environment [57]. Common characteristics

of benchmarks across the literature included a consistent focus on application-layer attack

detection by training and testing their datasets. During a training phase, the researchers would use

normal day-to-day logs generated by user activities and regular business actions that were

simulated on a web server and/or database server. Testing datasets were often the datasets that

contained malicious data that researchers placed into the normal data. This was done so that the

researchers, regardless of their objectives, could easily observe if the attacks were detected by their

benchmark application or not. Similarly, our case studies used training and testing data as well.

The observed dissimilarities can demonstrate what should be the best suitable application and

potential scope for the benchmark. For example, a few of the benchmarks proposed to detect

application-layer attacks, or data security breaches, were heavily reliant on complex coding

schemes [62] and using JAVA platforms posed issues as well [56, 63].

5.4 Generating Data and Setting up a Test Environment

An environment that is used to generate data has to be very controlled to ensure that no attacks can

be introduced into the setting. For this chapter, the benchmark datasets were generated through the

use of a virtual machine cluster using VMware Workstation 12 on the host machine [101]. The

host machine is a 64-bit standalone server running an AMD FX 8350 eight core processor at 4Ghz,

contains 32 GB of physical memory and 64 GB of virtual memory. The operating system on the

host machine is Windows 7 Ultimate. Figure 27 is a diagram showing the environment that was

used for this data generation process. Having a virtual setting for the benchmark generation

provides an additional layer of defense against any out-of-network traffic. Thus, the resulting web

application traffic was all generated by the user actions and the benchmark was known to be free

of application layer attack attempts.

Some of the virtual environments had a Windows 7 operating system while others ran on a Linux

operating system. This variation in the operating system was utilized to make sure the benchmark

was applicable to machines with Windows and Linux environments. All security features, such as

antivirus and firewalls, were deactivated to allow for the generation of attack data. Each virtual

58

environment had the same baseline software installed including Microsoft Office and Notepad++

and Google Chrome served as the default web browser.

Figure 27: The Environment for Data Generation

In addition to the baseline software, a popular open source software named XAMPP was added to

each virtual environment. This web application works across operating systems and incorporates

Apache, MySQL, PHP and PERL. To generate datasets in the controlled environment, Apache

was used as the web server and MySQL was used as the database management system.

Implementation of the PHP and PERL features of the application were beyond the scope of this

thesis work. Both the Apache web server and the MySQL database management system kept logs

of information about what was occurring on the system while XAMPP was running. A total of five

web applications were installed on the virtual machine cluster, and the user was only accessing

one web application at a time. The web applications that were installed on the virtual cluster were

all open source applications and already integrated with the XAMPP software. These applications

had various functions, which led to the creation of different types of data over the course of four

days for the final benchmarking dataset.

59

5.5 Evaluating the Benchmark

Multiple web applications were launched in the virtual environments, but the initial benchmark

was used to evaluate the detection capabilities of the IDS. This data, generated solely from the

content management system application Joomla, was comprised of basic user action logs and

utilized to merge with known attack data. Attack data was generated by executing and re-executing

many known web application layer attacks. The specific virtual environment for this case study

was running a Windows 7 operating system without any antivirus, firewall, or other known

security features. A lack of security software in a virtual, otherwise completely controlled, setting

is required to lower the number of false positive results obtained during the evaluation process.

An anomaly-based IDS is used in this case study to determine which data in the combined datasets

should be flagged as potential attacks against a web application. As described earlier in Chapter 3,

entropy is a measure that falls under the category of information theoretic metrics. The entropy

level of normalized traffic from the Content Management System was represented by a limit (X)

to create a cut-off point. Any traffic with an entropy level above the pre-determined limit was

considered anomalous and thus an attack against the Content Management System web

application. A data security breach would be an example of an outcome from this type of attack.

For the purposes of comparing the probability distributions of the normal traffic and attack traffic

to one another, a cross-entropy measure was used. The normal data is also referred to as the learned

profile because this data was utilized to establish the benchmark. In contrast, the attack dataset is

also called the new requests because such data was not introduced to the benchmark prior to the

evaluation step.

To test a new request, the cross entropy between the learned profile and the new request is

measured. A high level of cross entropy is considered malicious for this study. Based on the

characteristics of the preliminary dataset from the Content Management System application, three

cross entropy measures from Chapter 3 were employed: cross entropy for parameter (CEP), cross

entropy for value (CEV) and cross entropy for value data type (CET). The preliminary results of

this case study showed that the lowest false positive rate (FPR) was observed for CEV while the

highest FPR was for the CET. False positive rates ranged from less than 1% to about 4%. The

lowest true positive rate (TPR) observed was for the CEP equating to almost 84 % of those results.

60

Additionally, the highest TPR was obtained for all measures when considering higher threshold

levels. Given that previous literature states the average anomaly detection IDS has a FPR of 8.4%

[41, 49], we can report that this benchmark allowed us to reach our objective of lowering the FPR

to under 4%. Based on the preliminary evidence, cross entropy was a valid metric for the

benchmark datasets.

Since the conclusions contain only results from the case study using the Content Management

System logs, these case study results cannot be generalized across all web applications for attack

detection approaches. To empirically evaluate the entire set of log files from all five of the

deployed web applications, another case study would have to be carried out, allowing the

benchmark to be applied to all of the log files that were generated after the final submission of the

case study [30]. If additional web application log files are included in benchmark evaluation, the

empirical conclusion would be further supported and extended to multiple applications based on

the initial findings in the study. Figure 28 shows the set up for the continuation of the case study

with examples of open source PHP applications.

Figure 28: Web Applications Deployed in Apache and Stored in MySQL

The following Chapter demonstrates the output from Apache logs for these web applications and

additional tools used during the course of this work.

61

Chapter 6: Implementation and Testing

6.1 Anomaly Detection

For the context of this section of the Chapter, it is important to revisit Chapter 3 and review the

case study we conducted. Our approach was used to detect the occurrence of specific attacks

including SQLI, RFI, DT and XSS. We used measures of cross entropy to detect anomalies in the

dataset. Cross entropy was calculated for parameters, values and value types, as illustrated in

Figures 29 and 30. The resource path in the first line of Figure 29 would be /joomla/index.php.

The parameter of this resource path is controller followed by the value config.display and the value

type is config. Similarly, in Figure 30, the last GET request would be parsed into its parameters

(post, action, message) and values (207, edit, 6). Figure 30 would not have any value types.

Figure 29: Content Management System Log Entries

Figure 30: Blogging Platform Log Entries

Figure 29 shows an example of normal traffic as GET entries from the Apache server’s log file

generated by the content management system application named Joomla. Figure 30 shows both

GET and POST requests. The last GET request is posting a message by a user. The POST examples

are related to the image that the user uploaded to the blog application. Each log entry, including

training and testing data, was parsed in this manner through the use of the algorithm we described

earlier. Once each entry was broken down into its parameters, values and types, the previously

described cross entropy equations were applied to the data. Overall, the cross entropy of the data

parameters showed the lowest performance, with a true positive rate of 83.66%. In contrast, the

cross entropy of data values was the best measure in the study, producing a false positive rate

below 1% (see Table 11). The implementation and testing of this approach outperformed both

measures from previous literature as well.

62

6.2 Signature Detection

The subject matter and discussion in this section is a reflection of the study presented in Chapter

4. We completed the signature-based approach case study with the same datasets as those used in

our anomaly case study, but did not have any DT attacks in the attack dataset during that time. Our

technique for detecting signatures employed a genetic algorithm. For each log entry, we applied

the algorithm and transformed the data into a binary string. These binary strings, or chromosomes,

were used to identify the signature of the attacks. A screenshot of the genetic algorithm output was

presented earlier (see Figure 15). We utilized methods explained in Chapter 4, such as changing

cross over rates and mutation rates, to increase the variability of the attack signatures. Through the

use of our genetic algorithm to create new attack signatures, our detection rates were increased

relative to other literature in the field.

All of the logs from the Content Management System were used to make new signatures. However,

we deployed many applications after the initial case study, as mentioned. Shortened samples of

normal traffic from the Apache web server logs of the other applications are presented in the

Figures below to illustrate the variability across the final dataset. Specifically, the deployed

applications consisted of a content management system, a blogging platform, a bulletin board

system, a classifieds marketplace, and an e-commerce platform. In Figure 31, the POST log shows

that an entry was deleted from the bulletin board while one of the GET requests demonstrates the

user browsing the forum. Figure 32 provides evidence of the user conducting searches and adding

content to the classifieds application. Finally, Figure 33 illustrates the user browsing the various

pages of the e-commerce application by generating GET requests.

 Figure 31: Bulletin Board System Log Entries

 Figure 32: Classifieds Marketplace Log Entries

63

 Figure 33: E-commerce Platform Log Entries

Attack data was made up of the aforementioned attacks that we successfully simulated. Figure 34

illustrates a small sample of SQL injection attacks that we purposefully introduced to the IDS

during testing. Here, the main log information would be the SQL keywords (select-from-where,

etc.) and database changes that can be seen in Apache logs. The provided Figure demonstrates an

attacker sending a query to discover which users are super users based on the privilege type the

user has in the user privilege table.

Figure 34: Malicious Data Composed of SQL Injections

In the next Chapter, we present the dissemination of our research results thus far into the work.

64

Chapter 7: Dissemination of Research Results

This chapter illustrates the dissemination of results, such as published conference papers and other

works completed for this thesis. Below we list the title, abstract, and venue for each dissemination.

7.1 Information Theoretic Anomaly Detection Framework for Web Applications

Robert Bronte, Hossain Shahriar and Hisham Haddad. Conference Proceedings. Proc. of 40th

IEEE International Computer and Software Application (COMPSAC), Atlanta, GA June 10-14,

2016, pp. 394-399. Doi: 10.1109/COMPSAC.2016.139 [30]

Abstract

Intrusion Detection System (IDS) is a popular approach to detect attacks in web applications.

Signature-based IDS may not know all possible attack signatures in advance, thus a

complementary anomaly-based IDS is deployed to and detect new attacks. In this paper, we

propose an anomaly detection approach that utilizes three measures: cross entropy for parameter,

value, and data type. The measures are intended to compare the deviation between learned request

profiles and a new web request. To reduce the number of incorrect detections, we consider requests

accessing similar resource paths to learn entropy parameter’s value. We evaluate this approach by

generating log datasets from a large scale web application (Content Management System). The

initial results show that the proposed approach can detect all malicious web requests and

demonstrate lower false positive rates. It outperformed when comparing two other approaches:

length of parameter value and Mahalanobis Distance.

7.2 A Signature-Based Intrusion Detection System for Web Applications based on Genetic

Algorithms

Robert Bronte, Hossain Shahriar and Hisham Haddad. Conference Proceedings. Proceedings of

the 9th International Conference on Security of Information and Networks (SIN '16), July 2016,

NJ, USA, ACM, pp. 32-39. Doi:10.1145/2947626.2951964 [43]

Abstract

Web application attacks are an extreme threat to the world’s information technology

infrastructure. A web application is generally defined as a client-server software application where

the client uses a user interface within a web browser. Most users are familiar with web application

attacks. For instance, a user may have received a link in an email that led the user to a malicious

website. The most widely accepted solution to this threat is to deploy an Intrusion Detection

System (IDS). Such a system currently relies on signatures of the predefined set of events

matching with attacks. Issues still arise as all possible attack signatures may not be defined before

65

deploying an IDS. Attack events may not fit with the pre-defined signatures. Thus, there is a need

to detect new types of attacks with a mutated signature-based detection approach. Most traditional

literature works describe signature-based IDSs for application layer attacks, but several works

mention that not all attacks can be detected. It is well known that many security threats can be

related to software or application development and design or implementation flaws. Given that

fact, this work expands a new method for signature-based web application layer attack detection.

We apply a genetic algorithm to analyze web server and database logs and the log entries. The

work contributes to the development of a mutated signature detection framework. The initial

results show that the suggested approach can detect specific application layer attacks such as

Cross-Site Scripting, SQL Injection and Remote File Inclusion attacks.

7.3 Benchmark for Empirical Evaluation of Web Application Anomaly Detectors

Robert Bronte, Hossain Shahriar and Hisham Haddad. Book Chapter. Benchmark for Empirical

Evaluation of Web Application Anomaly Detectors. Empirical Research for Software Security:

Foundations and Experience (under review), [Editors: L. Othmane, M. Jaatun and E. Weippl].

[101]

Abstract

Designing a benchmark that is applicable to a wide range of datasets is not a simple task. Before

any benchmark can be established, the training and testing data has to be generated. The generation

of a dataset is accomplished in controlled environments in most studies [65-67]. Within such

datasets, the data consists of typical user actions on web applications that represent normal traffic

on the network. By normal data, we mean that no attacks are occurring on the network during the

data generation process. An attack-free environment is crucial in order to generate normal data,

which creates the need for controlled study environments. Some examples of common user actions

on web applications that are logged by the web server and/or database server are login attempts,

edits to a Table in an existing database, uploading files or images, and updating user profiles to

name a few. Normal datasets serve as referent or baseline datasets to evaluate the benchmark. Once

a benchmark is established based on normal traffic, the benchmark can then be applied to data in

a controlled environment with known attack inputs. This process allows individuals to determine

the number and types of attacks the benchmark can detect. The detection of data security breaches

in particular may rely on detecting certain types of application-layer attacks. For instance, the

emerging threats against web applications are generally methods used to exploit vulnerabilities

that attackers target in the datasets of web applications.

66

Chapter 8: Conclusions and Future Work

8.1 Conclusions

In this thesis, we proposed an IDS framework based on an information theory metric to detect web

application attacks. The focus was on detecting four types of web-based attacks SQLI, XSS, RFI,

and DT. We proposed three cross entropy measures on parameter, value, and data type. We

evaluated our approach with a generated dataset by deploying a large scale content management

web application. The evaluation suggests that the proposed measures can be applied to detect all

the introduced attacks with a 100% detection rate, while the lowest false positive rate is below 1%.

Further, all three measures can perform better than two related detection approaches we included:

length of value and Mahalanobis Distance.

Next, we contributed to the development of a GA-Based IDS where a set of web logs were

converted to chromosomes and new attack signatures were generated. The approach addresses the

current limitations of signature-based IDS. A limited number of known attack signatures poses a

problem, as does the lack of variation of attack signatures. This may cause a system to miss an

attack in the traffic log. We evaluated our approach with a generated attack dataset from a large

scale PHP application. The results find that the use of a GA is successful and can act as a

complement to other existing signature-based IDS approaches. The larger the population size of

chromosomes becomes (representing numerous rules), the better the GA achieves the capability to

detect new attacks. Further, by increasing the selection rate and mutation rate, we can generate

new attack detection rules that can address the limitation of traditional signature-based IDS such

as the referenced PHPIDS.

Finally, we discussed how a benchmark is defined, the advantages and disadvantages of the

existing benchmarks and the data attributes that previous authors have analyzed within Chapter 5.

The metrics and characteristics previously applied to other datasets for application-layer attack

detection were explained. Additionally, an in-depth description of the host environment was

provided and samples of log files that would be used to evaluate the benchmark were included.

We explained entropy and cross entropy measures taken from information theory concepts and

67

how those metrics were applied to the present dataset with a case study. The methodology of the

case study was compared to other existing application-layer attack detection approaches to

demonstrate its performance. We intend to deploy even more web applications to validate this

benchmark approach while also continuing to compare the approach against others in the literature.

Analysis of logs is a common source of detailed information about what occurs on a network or

host system. Logs with differing content can cause conflicts when trying to present specific

findings. By developing a framework for a hybrid intrusion detection system, the log data can be

used to identify attacks and increase detection rates. A hybrid model can be implemented by the

combination of an anomaly detector that is based on cross entropy measures and a signature

detection method that incorporates the proposed genetic algorithm. Due to the results we obtained

in our two case studies, it can be concluded that our approaches are valid and may be useful for

others to reference.

8.2 Future Work

The results of our work have shown that improving attack detection rates was a feasible goal.

However, obstacles were also introduced into the work. This happened with the web applications

we intended to use for the studies. We plan to deploy more open source web applications to

evaluate the IDS approach. We will expand our work to include those four web applications and

repeat the studies as one large study that implements each approach into the finalized hybrid model.

In our future work, we will compare our proposed techniques based on any additional methods

seen in the literature. For instance, we can compare our genetic algorithm approach to other

algorithms seen in related works. We also plan to implement our combined approaches is through

the use of a rule-based technique that combines the cross entropy measures used earlier into one

metric. Developing a hybrid intrusion detection system derived from our methods thus far seems

to be the beginning of the ever-changing attacks that hackers continuously execute.

68

References

[1] Peretti, K. Data Breaches: What the Underground World of Carding Reveals. Santa Clara

High Technology Law Journal 25, 2, 375–413.

[2] General Accounting Off., Personal Information: Data Breaches Are Frequent, But

Evidence of Resulting Identity Theft is Limited; However, the Full Extent is Unknown, at

2 (GAO-07-737 June 2007), available at

http://www.gao.gov/new.items/d07737.pdf?source=ra

[3] Schmidt, M., Fahl, S., Schwarzkopf, R. and Freisleben, B. 2011. TrustBox: A Security

Architecture for Preventing Data Breaches. 2011 19th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), pp.635-639.

Doi: 10.1109/PDP.2011.44

[4] Massicotte, F. and Labiche, Y. 2012. On the Verification and Validation of Signature-

Based, Network Intrusion Detection Systems. IEEE 23rd International Symposium on

Software Reliability Engineering (ISSRE), pp.61-70. Doi:10.1109/ISSRE.2012.16

[5] Vigna, G., Robertson, W. and Balzarotti, D. 2004. Testing network-based intrusion

detection signatures using mutant exploits. In Proceedings of the 11th ACM conference on

Computer and communications security (CCS '04). ACM, New York, NY, USA, 21-30.

Doi: 10.1145/1030083.1030088

[6] Accorsi, R., Stocker, T. and Müller, G. 2013. On the exploitation of process mining for

security audits: the process discovery case. ACM Symposium of Applied Computing (SAC),

Coimbra, Protugal, pp. 1462-1468.

[7] King J. and Williams, L. 2014. Log your CRUD: design principles for software logging

Mechanisms. Proceedings of the 2014 Symposium and Bootcamp on the Science of

Security, Article 5, 2014.

[8] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H. and Zhou, S. 2002.

Specification-based anomaly detection: a new approach for detecting network intrusions.

In Proceedings of the 9th ACM conference on Computer and communications security,

Vijay Atluri (Ed.). ACM, New York, NY, USA, pp. 265-274.

[9] Mashima D. and Ahamad, M. 2009. Using identity credential usage logs to detect

anomalous service accesses. Proceedings of the 5th ACM workshop on Digital identity

management (DIM), Chicago, Illinois, USA, pp. 73-79. Doi: 10.1145/586110.586146

[10] Liu, Y., Zhang, L. and Guan, Y. 2009. A distributed data streaming algorithm for network-

wide traffic anomaly detection. ACM SIGMETRICS Performance Evaluation Review, 37,

2, pp. 81-82.

[11] Shahriar, H. and Haddad, H. 2014. Content Provider Leakage Vulnerability Detection in

Android Applications. Proceedings of the 7th International Conference on Security of

Information and Networks (SIN '14). ACM, New York, NY, USA, pp. 359. Doi:

10.1145/2659651.2659716

[12] Chou, T. 2013. Security Threats on Cloud Computing Vulnerabilities. International

Journal of Computer Science & Information Technology, 5, 3, pp. 79–88. Doi:

69

10.5121/ijcsit.2013.5306

[13] Parwani, T., Kholoussi, R. and Karras, P. 2013. How to hack into Facebook without being

a hacker. In Proceedings of the 22nd International Conference on World Wide Web (WWW

'13 Companion). Republic and Canton of Geneva, Switzerland, 751-754.

[14] Geer, D. 2004. Just How Secure Are Security Products? Computer, 37, 6, pp. 14-16. Doi:

10.1109/MC.2004.28

[15] Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J. and Yang, E. 2013. mXSS attacks:

attacking well-secured web-applications by using innerHTML mutations. In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security (CCS '13).

ACM, New York, NY, USA, pp. 777-788. Doi: 10.1145/2508859.2516723

[16] Siddiqui, M. and Verma, D. 2011. Cross site request forgery: A common web application

weakness. Proceedings of the 3rd IEEE International Conference on Communication

Software and Networks (ICCSN), Xi’an, China. pp. 538-543. Doi:

10.1109/ICCSN.2011.6014783

[17] Fogla, P. and Lee, W. 2006. Evading network anomaly detection systems: formal

reasoning and practical techniques. In Proceedings of the 13th ACM conference on

Computer and Communications Security (CCS '06). ACM, New York, NY, USA, pp. 59-

68. Doi: 10.1145/1180405.1180414

[18] Moftah, R.A., Maatuk, A. M., Plasmann, P. and Aljawarneh, S. 2015. An Overview about

the Polymorphic Worms Signatures. Proceedings of the International Conference on

Engineering & MIS 2015 (ICEMIS '15). ACM, New York, NY, USA, Article 29. Doi:

10.1145/2832987.2833031

[19] Kruegel, C. and Vigna, G. 2003. Anomaly detection of web-based attacks. In Proceedings

of the 10th ACM conference on Computer and communications security (CCS '03). ACM,

New York, NY, USA, pp. 251-261. Doi: 10.1145/948109.948144

[20] Modi, C. N., Patel, D. R., Patel, A. and Rajarajan, M. 2004. Integrating Signature Apriori

based Network Intrusion Detection System (NIDS) in Cloud Computing. Procedia

Technology, 62, 12, pp. 905-912.

[21] Nascimento, G. and Correia, M. 2011. Anomaly-based Intrusion Detection in Software as

a Service. Proceeding of the 2011 IEEE/IFIP 41st International Conference on

Dependable Systems and Networks Workshops, Hong Kong, China, pp. 19-24.

[22] Cho, S. and Cha, S. 2004. SAD: web session anomaly detection based on parameter

estimation. Computes & Security, 23, pp. 312-319.

[23] Ariu, D. 2010. Host and Network based Anomaly Detectors for HTTP Attacks, PhD

Thesis, University of Cagliari.

[24] Park, Y. and Park, J. 2008. Web Application Intrusion Detection System for Input

Validation Attack. Proceedings of the 11th International Conference on Computer and

Information Technology, pp. 497-504.

[25] Le, M. and Stavrou, A. 2012. DoubleGuard: Detecting Intrusions in Multitier Web

Applications. IEEE Transactions of Dependable and Secure Computing, 9, 4, pp. 512-525.

70

[26] Vigna, G., Valeur, F., Balzarotti, D., Robertson, W., Kruegel, C. and Kirda, E. 2009.

Reducting Errors in The Anomaly-based Detection of Web-based Attacks Through the

Combined Analysis of Web Requests and SQL Queries. Journal of Computer Security, 17,

pp. 205-329, IOS Press.

[27] Ludinard, R., Totel, E., F. Tronel, V. Nicomettee, and Kaaniche, M. 2012. Detecting

Attacks Against Data in Web Applications. Proceedings of the 7th International

Conference on Risks and Security of Internet and Systems, Cork, Ireland, pp. 1-8.

[28] Li, X., Xue, Y. and Malin, B. 2012. Detecting Anomalous User Behaviors in Workflow

Driven Web Applications. Proceedings of the 31st IEEE International Symposium on

Reliable Distributed Sysytems (SRDS), Irvine, CA, USA, pp. 1-10.

[29] Gimenez, C., Villaegas, A. and Alvarez, G. 2010. An Anomaly-Based Approach for

Intrusion Detction in Web Traffic. Journal of Information Assurance Security, 5, 4, pp.

446-454.

[30] Bronte, R., Shahriar H. and Haddad, H. 2016. Information Theoretic Anomaly Detection

Framework for Web Application. Proceedings of the 40th IEEE International Computer

and Software Application Workshop (COMPSAC), Atlanta, GA, USA, pp. 394-399.

[31] Robertson, W., Vigna, G., Kruegel, C. and Kremmer, R. 2006. Using Generalization and

Characterization Techniques in the Anomaly-based Detection of Web Attacks.

Proceedings of the 13th Network and Distributed System Security Symposium (NDSS),

San Diego, California, USA.

[32] Lee, W. and Xiang, D. 2001. Information-theoretic measures for anomaly detection. In

Proceedings of the IEEE Symposium on Research in Security & Privacy, Oakland,

California, USA, pp. 130-143.

[33] Shahriar, H. and Zulkernine, Z. 2012. Information Theoretic Detection of SQL Injection

Attacks. Proceedings of the 14th IEEE International Symposium on High-Assurance

Systems Engineering, Omaha, Nebraska, USA, pp. 40-47.

[34] Shahriar, H., North, S., Chen, W. and Mawangi, E. 2014. Design and Development of

Anti-XSS Proxy. Proceedings of the 8th IEEE International Conference for Internet

Technology and Secured Transactions (ICITST), London, UK, pp. 489-494.

[35] Cooper, V., Haddad, H. and Shahriar, H. 2014. Android Malware Detection using

Kullback-Leibler Divergence. Advances in Distributed Computing and Artificial

Intelligence Journal, 3, 2, pp. 1-8, University of Salamanca Press. Doi:

10.14201/ADCAIJ2014391725

[36] Shahriar, H. and Clincy, V. 2014. Detection of repackaged Android Malware. Proceedings

of the 9th IEEE International Conference for Internet Technology and Secured

Transactions (ICITST), London, UK, pp. 349-354.

[37] Ozonat, K. 2008. An information-theoretic approach to detecting performance anomalies

and changes for large-scale distributed web services. Proceedings of the IEEE Dependable

Systems and Networking (DSN), Anchorage, AK, USA, pp. 522-531.

[38] Holm, H. 2014. Signature-based Intrusion Detection for Zero-Day Attacks: (Not) A Closed

71

Chapter?. In the 47th Hawaii International Conference on System Sciences, Washington,

DC, USA, pp.4895-4904. Doi: 10.1109/HICSS.2014.600

[39] Neelakantan, S. and Rao, S. 2008. A Threat-Aware Signature-based Intrusion-Detection

Approach for Obtaining Network-Specific Useful Alarms. In The Third International

Conference on Internet Monitoring and Protection, pp.80-85, Doi:

10.1109/ICIMP.2008.24

[40] Kruegel, C. and Toth, T. 2003. Using Decision Trees to Improve Signature-Based

Intrusion Detection. In Recent Advances in Intrusion Detection. Pittsburgh, Pennsylvania:

Springer Link, pp. 173–191.

[41] Gupta, M., Govil, M., Singh, G. and Sharma, P. 2015. XSSDM: Towards detection and

mitigation of cross-site scripting vulnerabilities in web applications. In the 2015

International Conference on Advances in Computing, Communications and Informatics

(ICACCI). Doi: 10.1109/ICACCI.2015.7275912

[42] Meng, Y., Li, W. and Kwok, L. 2013. Design of Cloud-Based Parallel Exclusive Signature

Matching Model in Intrusion Detection. In the 10th IEEE International Conference

on High Performance Computing and Communications & Embedded and Ubiquitous

Computing (HPCC_EUC), pp.175-182. Doi: 10.1109/HPCC.and.EUC.2013.34

[43] Bronte, R., Shahriar H. and Haddad, H. 2016. A Signature-Based Intrusion Detection

System for Web Applications based on Genetic Algorithm. In Proceedings of the 9th

International Conference on Security of Information and Networks (SIN '16). ACM, New

York, NY, USA, 32-39. Doi:10.1145/2947626.2951964

[44] MacVittie, L. 2013. The Application Delivery Firewall Paradigm. F5 Networks, Inc. White

Paper. https://f5.com/fr/resources/white-papers/the-application-delivery-firewall-

paradigm

[45] Buja, G., Jalil, K., Ali, F. and Rahman, T. 2014. Detection model for SQL injection attack:

An approach for preventing a web application from the SQL injection attack. Proceedings

of the IEEE Symposium of Computer Applications and Industrial Electronics (ISCAIE),

pp.60-64. Doi: 10.1109/ISCAIE.2014.701021

[46] Robledo, H. 2008. Types of Hosts on a Remote File Inclusion (RFI) Botnet. Electronics,

Robotics and Automotive Mechanics Conference, (CERMA '08), Morelos, Mexico, pp.

105-109. Doi: 10.1109/CERMA.2008.60

[47] The Open Web Application Security Project. Top Ten 2013.

[48] Avancini, A. and Ceccato, M. 2010. Towards security testing with taint analysis and

genetic algorithms. In Proceedings of the 2010 International Conference Workshop on

Software Engineering for Secure Systems (SESS '10). ACM, New York, NY, USA, pp. 65-

71. Doi: 10.1145/1809100.1809110

[49] Barati, M., Faez, K. and Hakimi, Z. 2013. A novel threshold-based scan detection method

using genetic algorithm. In Proceedings of the 6th International Conference on Security

of Information and Networks (SIN '13). ACM, New York, NY, USA, pp. 436-439. Doi:

10.1145/2523514.2523580

72

[50] Danane, Y. and Parvat, T. 2015. Intrusion detection system using fuzzy genetic

algorithm. International Conference on Pervasive Computing (ICPC), Pune, India, pp. 1-

5. Doi: 10.1109/PERVASIVE.2015.7086963

[51] Fessi, B., BenAbdallah, S., Hamdi, M. and Boudriga, N. 2009. A new genetic algorithm

approach for intrusion response system in computer networks. IEEE Symposium on

Computers and Communications (ISCC), Sousse, Tunisia, pp. 342-347. Doi:

10.1109/ISCC.2009.5202379

[52] Zhou, L. and Liu, F. 2003. Research on computer network security based on pattern

recognition. IEEE International Conference on Systems, Man and Cybernetics, 2, pp.

1278-1283. Doi: 10.1109/ICSMC.2003.1244587

[53] Liu, S. and Fang, Y. 2012. Application research in computer network security evaluation

based on genetic algorithm. International Symposium on Instrumentation & Measurement,

Sensor Network and Automation (IMSNA), Sanya, China, pp. 468-470. Doi:

10.1109/MSNA.2012.6324623

[54] Narsingyani, D. and Kale, O. 2015. Optimizing false positive in anomaly-based intrusion

detection using Genetic algorithm. IEEE 3rd International Conference on Innovation and

Technology in Education (MITE), Amritsar, India, pp. 72-77. Doi:

10.1109/MITE.2015.7375291

[55] Senthilnayaki, B., Venkatalakshmi, K. and Kannan, A. 2015. Intrusion detection using

optimal genetic feature selection and SVM based classifier. 3rd International Conference

on Signal Processing, Communication and Networking (ICSCN), Chennai, India, pp. 1-4.

Doi: 10.1109/ICSCN.2015.7219890

[56] Alhamazani, K., Ranjan, R., Jayaraman, P., Mitra, K., Rabhi, F., Georgakopoulos, D. and

Wang, L. 2015. Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and

Benchmarking As-a-Service Framework. IEEE Transactions Cloud Computing, 99, pp.1

Doi: 10.1109/TCC.2015.2441715

[57] Athanasiades, N., Abler, R., Levine, J., Owen, H. and Riley, G. 2003. Intrusion detection

testing and benchmarking methodologies in Information Assurance. Proceedings of 1st

IEEE International Workshop on Information Assurance (WIAS), pp.63-72. Doi:

10.1109/IWIAS.2003.1192459

[58] Champion, T. and Denz, M. 2001. A benchmark evaluation of network intrusion detection

systems. IEEE Proceedings of the 2001 Aerospace Conference, pp. 2705-2712. Doi:

10.1109/AERO.2001.931291

[59] Puketza, N., Chung, M., Olsson, R. and Mukherjee, B. 1997. A Software Platform for

Testing Intrusion Detection Systems. IEEE Software, pp. 43-51.

[60] Ballocca, G., Politi, R., Russo, V. and G. Ruffo, G. 2002. Benchmarking a site with

realistic workload. IEEE International Workshop in Workload Characterization, pp.14-

22, Doi: 10.1109/WWC.2002.1226490

[61] Duan, S., Kementsietsidis, A., Srinivas, K. and Udrea, O. 2011. Apples and oranges: A

comparison of RDF benchmarks and real RDF datasets. In Proceedings of the 2011 ACM

73

SIGMOD International Conference on Management of data (SIGMOD '11). ACM, New

York, NY, USA, pp. 145-156. Doi:10.1145/1989323.1989340

[62] Neto, A. and Vieira, M. “Towards benchmarking the trustworthiness of web applications

code,” Proceedings of the 13th European Workshop on Dependable Computing (EWDC

'11), 2011. ACM, New York, NY, USA, 29-34. doi:10.1145/1978582.1978589

[63] Neto, A. and Vieira, M. 2011. Trustworthiness Benchmarking of Web Applications Using

Static Code Analysis. Proceedings of 6th International Conference in Availability,

Reliability and Security (ARES), pp.224-229. Doi: 10.1109/ARES.2011.37

[64] Stuckman, J. and Purtilo, J. 2011. A testbed for the evaluation of web intrusion prevention

systems. Proceedings of the 3rd International Workshop in Security Measurements and

Metrics (Metrisec), pp.66-75. Doi: 10.1109/Metrisec.2011.14

[65] Zhang, K., Wang, L., Guo, X., Pan, A. and Zhu, B. 2009. WPBench: a benchmark for

evaluating the client-side performance of web 2.0 applications. Proceedings of the 18th

International Conference on World Wide Web (WWW). Madrid, Spain, pp. 1111-1112.

Doi:10.1145/1526709.1526882

[66] Zhu, L., Gorton, I., Liu, Y. and Bui, N. 2006. Model driven benchmark generation for web

services. Proceedings of the International Workshop on Service-oriented Software

Engineering (SOSE '06). ACM, New York, NY, USA, pp. 33-39. Doi:

10.1145/1138486.1138494

[67] Zinke, J., Habenschuss, J. and Schnor, B. 2012. Servload: Generating representative

workloads for web server benchmarking. Proceedings of the 2012 International

Symposium in Performance Evaluation of Computer and Telecommunication Systems

(SPECTS), pp.1-8.

[68] Imperva Report, October 2014, Accessed from

http://www.imperva.com/docs/hii_web_application_attack_report_ed5.pdf

[69] OWASP- SQL Injection, Accessed from

https://www.owasp.org/index.php/SQL_Injection

[70] Server Side Injection, https://www.owasp.org/index.php/Server-

Side_Includes_(SSI)_Injection

[71] Path Traversal, https://www.owasp.org/index.php/Path_Traversal

[72] OWASP-XSS, Accessed from https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS)

[73] Santillan, M. 2015. One Million WordPress Websites Vulnerable to SQL Injection Attack,

http://www.tripwire.com/state-of-security/latest-security-news/one-million-wordpress-

websites-vulnerable-to-sql-injection-attack/

[74] Netcraft News Report. 2014. Half a million widely trusted websites vulnerable to

Heartbleed bug, http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-

trusted-websites-vulnerable-to-heartbleed-bug.html

[75] Varadarajan G. and Santander Peláez, M. 2012. Web Application Attack Analysis Using

Bro IDS, Accessed from https://www.sans.org/reading-room/whitepapers/detection/web-

74

application-attack-analysis-bro-ids-34042

[76] Firebug, Accessed from http://getfirebug.com/

[77] Joomla, Accessed from https://www.joomla.org

[78] Lin, J. 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on

Information Theory, 37, 1, pp. 145-151.

[79] Rao C. and Nayak, T. 1985. Cross entropy, dissimilarity measures, and characterizations

of quadratic entropy. IEEE Transacation of Information Theory, IT-31, 5, pp. 589-593.

[80] Mei, Q. and Church, K. 2008. Entropy of search logs: how hard is search? with

personalization? with backoff?. In Proceedings of the 2008 International Conference on

Web Search and Data Mining (WSDM '08). ACM, Palo Alto, California, USA, pp. 45-54.

Doi:10.1145/1341531.1341540

[81] OWASP XSS Cheat Sheet,

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

[82] Path Traversal, Accessed from

https://www.owasp.org/index.php/Relative_Path_Traversal

[83] SQLI cheat sheet,

https://information.rapid7.com/rs/rapid7/images/R7%20Injection%20CheatSheet.v1.pdf

[84] Meng, Y., Li, W. and Kwok, L. 2013. Design of Cloud-Based Parallel Exclusive Signature

Matching Model in Intrusion Detection. IEEE International Conference on Embedded and

Ubiquitous Computing (HPCC_EUC), pp.175-182, Doi:

10.1109/HPCC.and.EUC.2013.34

[85] Zhou, H., Wen, Y. and Zhao, H. 2007. Detecting early worm propagation based on entropy.

In Proceedings of the 2nd international conference on Scalable information systems

(InfoScale '07). Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering (ICST), Brussels, Belgium, pp. 1-2.

[86] Nielsen, F. and Sérandour, A. 2009. Accuracy of distance metric learning algorithms. In

Proceedings of the 2nd Workshop on Data Mining using Matrices and Tensors (DMMT

'09). Paris, France, pp. 1-8. Doi: 10.1145/1581114.1581115

[87] Snort 2.8.9.0, Accessed from https://www.snort.org

[88] The Bro Network Security Monitor, Accessed from https://www.bro.org/

[89] Gaucher, R. 2008. PHPIDS: Scalp!, GitHub repository,

https://github.com/nanopony/apache-scalp

[90] Obitko, M. 1998. Genetic algorithm. Courses.cs.washington.edu,

https://courses.cs.washington.edu/courses/cse473/06sp/GeneticAlgDemo/gaintro.html

[91] Malhotra, R., Singh, N. and Singh, Y. 2011. Genetic Algorithms: Concepts, Design for

Optimization of Process Controllers. Computer and Information Science, 4, 2, pp. 39-54.

[92] Jacobson, L. 2012. Creating a genetic algorithm for beginners. The Project Spot.

http://www.theprojectspot.com/tutorial-post/creating-a-genetic-algorithm-for-

beginners/3.

[93] Zaman, S., El-Abed, M. and Karray, F. 2013. Features selection approaches for intrusion

75

detection systems based on evolution algorithms. In Proceedings of the 7th International

Conference on Ubiquitous Information Management and Communication (ICUIMC '13).

Kota Kinabalu, Malaysia, Article 10, pp. 1-5. Doi: 10.1145/2448556.2448566

[94] OWASP, https://www.owasp.org/index.php/Main_Page

[95] Brandao, T. 2015. Genetic algorithms in PHP code, an example of evolutionary

programming, Personal programming blog, http://www.abrandao.com/2015/01/simple-

php-genetic-algorithm/

[96] Joshi, A., Eeckhout, L., Bell, R. & John, L. 2008. Distilling the essence of proprietary

workloads into miniature benchmarks. ACM Transactions on Architecture and Code

Optimization (TACO), 5, 2, pp. 769-782. Doi: 10.1145/1400112.1400115

[97] Kalibera, T., Lehotsky, J., Majda, D., Repcek, B., Tomcanyi, M., Tomecek, A., Tuma, P.

and Urban, J. 2006. Automated benchmarking and analysis tool. Proceedings of the 1st

International Conference on Performance Evaluation Methodologies and

Tools (Valuetools '06). ACM, Pisa, Italy, pp. 30-39. Doi: 10.1145/1190095.1190101

[98] Vijayalakshmi, M., Shalinie, S. and Pragash, A. 2012. IP Traceback System for Network

and Application Layer Attacks. Proceedings of International Conference on Recent

Trends In Information Technology (ICRTIT), Chennai, Tamil Nadu, pp. 439-444. Doi:

10.1109/ICRTIT.2012.6206778

[99] Kendall, K. MIT Lincoln Laboratory offline component of DARPA 1998 intrusion

detection evaluation. Retrieved from https://www.ll.mit.edu/ideval/data/1998data.html

[100] KDD Cup Dataset. 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[101] Bronte, R., Shahriar, H. and Haddad, H. Benchmark for Empirical Evaluation of Web

Application Anomaly Detectors. Empirical Research for Software Security: Foundations

and Experience (under review).

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Fall 10-18-2016

	A Framework for Hybrid Intrusion Detection Systems
	Robert N. Bronte
	Recommended Citation

	tmp.1477248243.pdf.Vez8P

