1,375 research outputs found

    Experimental and simulation efforts in the astrobiological exploration of exooceans

    Get PDF
    The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core

    Constructing a distributed AUV network for underwater plume-tracking operations

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in International Journal of Distributed Sensor Networks 2012 (2012): 191235, doi:10.1155/2012/191235.In recent years, there has been significant concern about the impacts of offshore oil spill plumes and harmful algal blooms on the coastal ocean environment and biology, as well as on the human populations adjacent to these coastal regions. Thus, it has become increasingly important to determine the 3D extent of these ocean features (“plumes”) and how they evolve over time. The ocean environment is largely inaccessible to sensing directly by humans, motivating the need for robots to intelligently sense the ocean for us. In this paper, we propose the use of an autonomous underwater vehicle (AUV) network to track and predict plume shape and motion, discussing solutions to the challenges of spatiotemporal data aliasing (coverage versus resolution), underwater communication, AUV autonomy, data fusion, and coordination of multiple AUVs. A plume simulation is also developed here as the first step toward implementing behaviors for autonomous, adaptive plume tracking with AUVs, modeling a plume as a sum of Fourier orders and examining the resulting errors. This is then extended to include plume forecasting based on time variations, and future improvements and implementation are discussed.This research was made with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a

    Search methods for an autonomous underwater vehicle using scalar measurements

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution July 1996The continuing development of the autonomous underwater vehicle as an oceanographic research tool has opened up the realm of scientific possibility in the field of deep ocean research. The ability of a vehicle to travel to the ocean floor untethered, collect data for an extended period of time and return to the surface for recovery can make precise oceanographic surveying more economically practical and more efficient. This thesis investigates several scalar parameter searching techniques which have their basis in mathematical optimization algorithms and their applicability for use specifically within the context of autonomous underwater vehicle dynamics. In particular, a modified version of the circular gradient evaluation in the simulated environment of a hydrothermal plume is examined as a test case. Using a priori knowledge of the expected structure of the scalar parameter contour is shown to be advantageous in optimizing the search

    Partitioning of crystalline and amorphous phases during freezing of simulated Enceladus ocean fluids

    Get PDF
    This work was supported by The Leverhulme Trust (grant number RPG‐2016‐153).Saturn's ice‐covered moon Enceladus may contain the requisite conditions for life. Its potentially habitable subsurface ocean is vented into space as large cryovolcanic plumes that can be sampled by spacecraft, acting as a window to the ocean below. However, little is known about how Enceladus’ ocean fluids evolve as they freeze. Using cryo‐imaging techniques, we investigated solid phases produced by freezing simulated Enceladean ocean fluids at endmember cooling rates. Our results show that under flash‐freezing conditions (>10 K s−1), Enceladus‐relevant fluids undergo segregation, whereby the precipitation of ice templates the formation of brine vein networks. The high solute concentrations and confined nature of these brine veins means that salt crystallization is kinetically inhibited and glass formation (vitrification) can occur at lower cooling rates than typically required for vitrification of a bulk solution. Crystalline salts also form if flash‐frozen fluids are re‐warmed. The 10 µm‐scale distribution of salt phases produced by this mechanism differs markedly from that of gradually cooled (∼1 K min−1) fluids, showing that they inherit a textural signature of their formation conditions. The mineralogy of cryogenic carbonates can be used as a probe for cooling rate and parent fluid pH. Our findings reveal possible endmember routes for solid phase production from Enceladus’ ocean fluids and mechanisms for generating compositional heterogeneity within ice particles on a sub‐10 µm scale. This has implications for understanding how Enceladus' ocean constituents are incorporated into icy particles and delivered to space.Publisher PDFPeer reviewe

    Effusive and explosive volcanism on the ultraslow-spreading Gakkel Ridge, 85°E

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q10005, doi:10.1029/2012GC004187.We use high-definition seafloor digital imagery and multibeam bathymetric data acquired during the 2007 Arctic Gakkel Vents Expedition (AGAVE) to evaluate the volcanic characteristics of the 85°E segment of the ultraslow spreading Gakkel Ridge (9 mm yr−1 full rate). Our seafloor imagery reveals that the axial valley is covered by numerous, small-volume (order ~1000 m3) lava flows displaying a range of ages and morphologies as well as unconsolidated volcaniclastic deposits with thicknesses up to 10 cm. The valley floor contains two prominent volcanic lineaments made up of axis-parallel ridges and small, cratered volcanic cones. The lava flows appear to have erupted from a number of distinct source vents within the ~12–15 km-wide axial valley. Only a few of these flows are fresh enough to have potentially erupted during the 1999 seismic swarm at this site, and these are associated with the Oden and Loke volcanic cones. We model the widespread volcaniclastic deposits we observed on the seafloor as having been generated by the explosive discharge of CO2 that accumulated in (possibly deep) crustal melt reservoirs. The energy released during explosive discharge, combined with the buoyant rise of hot fluid, lofted fragmented clasts of rapidly cooling magma into the water column, and they subsequently settled onto the seafloor as fall deposits surrounding the source vent.We gratefully acknowledge the financial support of the National Aeronautics and Space Administration, the National Science Foundation (N.S.F.), the International Polar Year 2007–2008, and Woods Hole Oceanographic Institution; and the graduate support provided by N.S.F., the NDSEG Fellowship, and WHOI Deep Ocean Exploration Institute.2013-04-0

    Addressing Geohazards Through Ocean Drilling

    Get PDF

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects
    corecore