2,814 research outputs found

    Summary Management in P2P Systems

    Get PDF
    International audienceSharing huge, massively distributed databases in P2P systems is inherently difficult. As the amount of stored data increases, data localization techniques become no longer suf- ficient. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this paper, we consider summaries that are synthetic, multidimensional views with two main virtues. First, they can be directly queried and used to approximately answer a query without exploring the original data. Second, as semantic indexes, they support locating relevant nodes based on data content. Our main contribution is to define a summary model for P2P systems, and the appropriate algorithms for summary management. Our performance evaluation shows that the cost of query routing is minimized, while incurring a low cost of summary maintenance

    Managing Linguistic Data Summaries in Advanced P2P Applications

    Get PDF
    chapitre... Ă  corrigerAs the amount of stored data increases, data localization techniques become no longer sufficient in P2P systems. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this chapter, we describe a solution for managing linguistic data summaries in advanced P2P applications which are dealing with semantically rich data. The produced summaries are synthetic, multidimensional views over relational tables. The novelty of this proposal relies on the double summary exploitation in distributed P2P systems. First, as semantic indexes, they support locating relevant nodes based on their data descriptions. Second, due to their intelligibility, these summaries can be directly queried and thus approximately answer a query without the need for exploring original data. The proposed solution consists first in defining a summary model for hierarchical P2P systems. Second, appropriate algorithms for summary creation and maintenance are presented. A query processing mechanism, which relies on summary querying, is then proposed to demonstrate the benefits that might be obtained from summary exploitation

    Probabilistic and fuzzy reasoning in simple learning classifier systems

    Get PDF
    This paper is concerned with the general stimulus-response problem as addressed by a variety of simple learning c1assifier systems (CSs). We suggest a theoretical model from which the assessment of uncertainty emerges as primary concern. A number of representation schemes borrowing from fuzzy logic theory are reviewed, and sorne connections with a well-known neural architecture revisited. In pursuit of the uncertainty measuring goal, usage of explicit probability distributions in the action part of c1assifiers is advocated. Sorne ideas supporting the design of a hybrid system incorpo'rating bayesian learning on top of the CS basic algorithm are sketched

    The Role of Graduality for Referring Expression Generation in Visual Scenes

    No full text
    International audienceReferring Expression Generation (reg) algorithms, a core component of systems that generate text from non-linguistic data, seek to identify domain objects using natural language descriptions. While reg has often been applied to visual domains, very few approaches deal with the problem of fuzziness and gradation. This paper discusses these problems and how they can be accommodated to achieve a more realistic view of the task of referring to objects in visual scenes

    The role of graduality for referring expression generation in visual scenes

    Get PDF
    Referring Expression Generation (reg) algorithms, a core component of systems that generate text from non-linguistic data, seek to identify domain objects using natural language descriptions. While reg has often been applied to visual domains, very few approaches deal with the problem of fuzziness and gradation. This paper discusses these problems and how they can be accommodated to achieve a more realistic view of the task of referring to objects in visual scenes.peer-reviewe

    Summary Management in P2P Systems

    Get PDF
    International audienceSharing huge, massively distributed databases in P2P systems is inherently difficult. As the amount of stored data increases, data localization techniques become no longer suf- ficient. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this paper, we consider summaries that are synthetic, multidimensional views with two main virtues. First, they can be directly queried and used to approximately answer a query without exploring the original data. Second, as semantic indexes, they support locating relevant nodes based on data content. Our main contribution is to define a summary model for P2P systems, and the appropriate algorithms for summary management. Our performance evaluation shows that the cost of query routing is minimized, while incurring a low cost of summary maintenance

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies
    • …
    corecore