
 Eindhoven University of Technology

MASTER

A data-driven approach for generating insights into software development

Rexhepi, N.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/adfae0c1-f64c-4981-8289-1a6f85ecbbc3

A data-driven approach for
generating insights into software

development

Master’s Thesis

Nderim Rexhepi

Department of Mathematics and Computer Science
Department of Industrial Engineering and Innovation Sciences

Supervisors:

prof.dr.ir. Uzay Kaymak
dr. Anna Wilbik

dr. Alexander Serebrenik
ir. Edwin Geritz
ir. Martijn Kabel

in partial fulfillment of the requirements for the degree of
Master of Science in Business Information Systems

Eindhoven, August 2017

Abstract

Data analysis has become an integral function for all organizations due to the multitude of gener-
ated data and benefits that it can provide. One important field of application is that of software
development, where information is constantly generated and accumulated. In the scope of software
production, there are various issues that arise due to functionality or incompatibility of applica-
tions with client needs. To manage the process of resolution, workflow management systems are
in place. Though these systems provide the means to record the procedures and investigation to
a certain extent, no systematic methodology for analysis of this data is in place.

The current literature lacks a well-structured approach for implementing a thorough data ana-
lysis on ticket-resolution systems while considering all important metrics for software development.10

In this master thesis, we address this research gap by investigating the theory and applying suit-
able practices to our case-study. We investigate three different data analysis approaches and assess
the generated insights with regard to validity and relevance to improving software development
performance. Our single most important metric in a fast-paced environment such as software en-
gineering is time, followed by compliance and other important distribution elements. By applying
the series of approaches, we comprehensively determine the optimal approach based on process
characteristics and stakeholder preferences. The result of this project is a practical investigation
that can be used for bench-marking and as reference in choosing the right data analysis method
for similar future projects.

20

Keywords: Data analysis, Process Mining, Linguistic Summarization, Software Process Improve-
ment

A data-driven approach for generating insights into software development iii

Acknowledgments

This thesis presents the results of my master graduation project in Business Information Systems
at the Eindhoven University of Technology. The research falls under the Information Systems
research group. The practical implementation of the research was carried out within a software
development environment. It has been a challenging but rewarding journey with many unknowns
and a lot of support from my closest ones.

First, I would like to thank my first supervisor, professor Uzay Kaymak for his guidance
throughout the project. During our meetings it was possible to focus on the essentials of the30

research and establish the right study objectives. I would also like to thank my second supervisor
prof. Anna Wilbik for her constructive help and ideas for the research. Third, I would like to
thank prof. Alexander Serebrenik for accepting to be in my assessment committee.

During this graduation project, I had the opportunity to work among an amazing group of
professionals. I would like to express my gratitude to Martijn Kabel and Edwin Geritz for their
support during all stages of the project. I would also like to thank my fellow graduates, Shamil
Mustafayev and Santiago Ruiz for their support.

Finally, but most importantly, I am eternally thankful to my family and girlfriend Mirela, for
their years of support and motivation. You truly made this experience memorable.

40

Nderim Rexhepi August 2017

A data-driven approach for generating insights into software development v

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Statement . 2
1.3 Research Goal . 250

1.4 Research Questions . 3
1.5 Methodology overview . 4

1.5.1 Orientation . 4
1.5.2 Analysis . 4
1.5.3 Design . 4
1.5.4 Validation . 4
1.5.5 Implementation . 5

1.6 Report Outline . 5

2 Literature Review 7
2.1 Data analysis in Information Technologies . 760

2.1.1 Use of analytics in organizations . 8
2.2 Why data analysis, process mining and linguistic summarization? 8
2.3 Descriptive Statistics . 9
2.4 Process Mining . 9
2.5 Linguistic Summarization . 10

2.5.1 Basic concept . 10
2.5.2 Applications of linguistic summarization . 13

2.6 Software development metrics . 14
2.6.1 Why we measure time and process workflow? 15

2.7 Conclusion . 1570

3 Methodology 17
3.1 Research Methodology . 18

3.1.1 Define objectives . 18
3.1.2 Define research questions . 18
3.1.3 Select data analysis methods . 18
3.1.4 Determine relevant case study . 19
3.1.5 Explore case study data sources . 20
3.1.6 Collect data . 21
3.1.7 Pre-process data . 22
3.1.8 Analyze data . 2380

A data-driven approach for generating insights into software development vii

CONTENTS

3.1.9 Validate results . 26
3.1.10 Evaluate approaches . 27
3.1.11 Present final results . 29

4 Results 31
4.1 Descriptive statistics and visualization . 31
4.2 Process Mining . 36

4.2.1 Constructing process maps . 36
4.2.2 Simulating in Bizagi environment . 41

4.3 Linguistic summarization . 48
4.3.1 Interesting findings . 4990

4.3.2 Surprising findings . 49
4.3.3 Wrong or very surprising findings . 52
4.3.4 Missed insights . 52
4.3.5 Event log summaries . 52

4.4 Comparison of aproaches . 54

5 Validation and user evaluation 55
5.1 Validation . 55
5.2 Evaluation . 55

6 Conclusion 57
6.1 Reccomendations . 57100

6.2 Limitations of the study . 58
6.3 Future research . 59

Bibliography 61

A Appendices 65
A.1 Questionnaires . 65

A.1.1 Questionnaires for Managers . 65
A.1.2 Questionnaires for Developers/Testers . 66

A.2 Survey results - managers . 67
A.2.1 Interview 1 . 67
A.2.2 Interview 2 . 67110

A.2.3 Interview 3 . 68
A.2.4 Interview 4 . 69
A.2.5 Interview 5 . 69
A.2.6 Interview 6 . 70

A.3 Survey results - software engineers/testers . 71
A.3.1 Interview 1 . 71
A.3.2 Interview 2 . 71
A.3.3 Interview 3 . 72
A.3.4 Interview 4 . 73
A.3.5 Interview 5 . 74120

A.4 Dataset linguistic summaries . 74
A.4.1 Basic linguistic summaries . 74
A.4.2 Complex linguistic summaries . 76

A.5 All event log sequences . 80
A.6 Literature Study Methodology . 84

A.6.1 Broad-scope exploration . 85
A.6.2 Topic-specific investigation . 85
A.6.3 Study selection . 85

viii A data-driven approach for generating insights into software development

List of Figures

2.1 Process Mining meta-model. 10130

2.2 Trapezoid membership function for case length . 12
2.3 Steps of performance engineering . 15

3.1 DSRM Process Model . 17
3.2 Methodology mental map . 18
3.3 Original workflow map . 20
3.4 Stages of data utilization among organizations . 21
3.5 Algorithm for aggregation of issue states by ID . 24
3.6 Membership function for issue length groups. 26
3.7 Fuzzy quantifiers of dataset. 26
3.8 Fuzzy quantifiers of event log. 27140

4.1 Distribution of issues by length (days) . 32
4.2 Distribution of issues by type. 32
4.3 Distribution of issues by last state. 33
4.4 Distribution of issues length based on last state. 33
4.5 Distribution of issues length based on issue severity. 33
4.6 Distribution of issues length based on project team. 34
4.7 Yearly average and median values of lead time. 34
4.8 Process Map with activity frequency . 37
4.9 Process Map with performance metrics . 38
4.10 View of bottleneck Registered Initiated . 39150

4.11 Process map with bottleneck cases only . 40
4.12 Process map considering only business hours . 40
4.13 Simulation results . 43
4.14 First bottleneck . 44
4.15 Second bottleneck . 45
4.16 Third bottleneck . 45
4.17 Reflection of improvements on process . 46
4.18 Process model using BPMN . 47

A data-driven approach for generating insights into software development ix

List of Tables

1.1 Project stages and main activities mapped to chapters 4160

3.1 Data sources . 21
3.2 Dataset of issues . 22
3.3 Event log of issues . 22
3.4 Components of exploratory and conclusive research design 24
3.5 Summaries with very low validity (0 to 0.25) . 27
3.6 Summaries with low validity (0.25 to 0.5) . 28
3.7 Summaries with average validity (0.5 to 0.75) . 28
3.8 Summaries with high validity (0.75 to 1) . 28

4.1 Frequent sequences in process event log . 35
4.2 Performance metrics and distribution of processes 41170

4.3 Actual and predicted values for arrivals . 42
4.4 Usage of different metrics for simulations vs. real outcome 42
4.5 Simulations for 2017 environment . 46
4.6 Basic (specific) summaries with T >0 . 48
4.7 Basic summaries exhibiting limited (very few) behavior 48
4.8 Basic summaries exhibiting frequent (few) behavior 49
4.9 Complex CR summaries with T >0.7 . 50
4.10 Complex PR summaries with T >0.7 . 51
4.11 Excerpt of event log summaries with T higher than 0.7 53

5.1 Average scores for summary groups . 56180

5.2 Average scores for all summaries . 56

A data-driven approach for generating insights into software development xi

Chapter 1

Introduction

This introduction chapter provides the context and setting of the research. The research con-
text and motivation, problem, objective and questions are described. Lastly, the report outline
concludes the introductory part.

1.1 Context and Motivation

As software is developed and rising issues are patched, developers, testers, engineers, managers
and other stakeholders share continuous efforts to deliver updated state-of-the-art software to the
market.190

In practice, the development cycle of software engineering in this organization leans towards
agile methodologies. A series of short-term sprints are organized to develop and address software
issues only to be concluded with a software release. Due to the robustness and application, the
methodology of agile software development is in full effect as the main catalyst of handling complex
software projects and numerous client requests. As new features are developed and problem
reports pile up, it is challenging to prioritize tasks and resources without concrete evidence on
the potential impact. The organization utilizes an advanced ticket-handling platform to manage
the submission and resolution process of issues. Though this platform serves the handling and
resolution purpose, it is arguable whether the generated data is used to its full extent in terms of
performance measurement.200

Managers and other stakeholders at different levels in the organization are dependent on busi-
ness decision support tools to make informed business decisions. This is enabled through the
field of business intelligence and analytics commonly referred to as the techniques, technologies,
systems, practices, methodologies, and applications that analyze critical business data to help an
enterprise better understand its business and market and make timely business decisions [1]. How-
ever, as data congregates and information requirements change, business intelligence approaches
become more time-consuming and expensive to deploy.

Traditional data analysis with statistical methods and visualization often retrieve information
through pre-defined procedures which suffer [10] from such an environment with high variation.
In multiple industries, the data is analyzed, visualized and described in various ways. This variety210

in interpretation and data types, coupled with differences among users makes it difficult to un-
derstand information gained with traditional methods. Even though a great deal of automation
in Business Intelligence has been researched on to increase efficiency and standardization [34, 24],
the information produced with such methods may not serve the requirements of all its users. A
standardized approach that is easily comprehensible by the average user is necessary to provide
consistent business-intelligent information.

One alternative approach for the generation of relevant insights for today’s information systems
is that of business process mining. As organizations make use of workflow management technology,
systems that have a good description of the process in terms of a process model [45] can make great

A data-driven approach for generating insights into software development 1

CHAPTER 1. INTRODUCTION

use of such mining techniques. Business process mining make use of the event log information and220

provide insights in terms of the process, control, data, organizational, and social structures [3].

With the large amount of data, it is still a challenge to extract potentially useful information
in an efficient way. Furthermore, the challenge of human interpretation is an important variable to
consider when dealing with data summaries [6]. The insights extracted using either visualization
approaches or process mining ones can be often challenging to understand for non-technical users.
That is why we also consider a third and final approach, that of linguistic summarization.

Linguistic summarization allows for a high degree of automation and convenient summarization
of data [23]. It is a technique that allows for analysis and insights of large amounts of data, with
the main advantage being its ability to describe data in a human-language structure. It can
be used to summarize large sets of data into simple sentences that provide key information on230

performance, quality or status of processes. This technique can potentially generate an additional
layer of insights throughout software development processes.

In this research, we conduct a three-fold comprehensive investigation of the software defect-
management data-set, including process event data. We first apply traditional data analysis
approach to generate data visualizations, followed with process mining methods, and lastly with a
linguistic summarization technique. Through the use of these methods, we ensure capturing of the
important elements of the data-set and process, while also evaluating and comparing to determine
which approach is most appropriate in this domain.

1.2 Problem Statement

Software development performance is a pervasive quality difficult to understand and measure,240

because it is affected by multiple aspects of design, code and environment. Performance is a
significant issue in a large number of projects. It can cause delays, failures on deployments, and
even abandonment of projects [53].

A study conducted with information technology executives in [53] shows that software projects
face issues regarding performance in close to 20 percent of released products. The field of Soft-
ware Performance Engineering (SPE) attempts to address these issues by investigating the key
performance indicators (attributes) that best represent the performance.

However, there is no existing methodology or application that systematically shows what data
analysis methods are appropriate in extracting such performance indicators in the software devel-
opment domain. So far, only descriptive statistics — and to some extent inferential analysis —250

have been used to improve processes in terms of decision-support [46], and it is unknown whether
that is the most valid approach. Despite the large amounts of data collected from software projects,
many organizations struggle to extract, analyze and make use of this data for decision-support
[23, 46]. To address this industry need and research gap, we propose a methodology that generates
and evaluates insights within the domain of software development.

Problem statement: ”In software development, there is no comprehensive methodology for
generating insights in defect-management systems”

1.3 Research Goal

The goal and scope of this study is to develop a methodology for generation of insights into soft-
ware development defect-management processes. The study will provide a series of data analysis260

approaches and validation of their usability in the context of software development. By providing
a systematic approach for the extraction of software issue insights, we provide a means of direct
investigation into the software development processes. For the scope of this study, the approaches
are limited to three major data summarization techniques — visualization, process mining and
linguistic summarization.

2 A data-driven approach for generating insights into software development

CHAPTER 1. INTRODUCTION

1.4 Research Questions

Based on the research goal of the study, the main research question is as follows:

• How to generate insights into software development defect-management pro-
cesses?

The following sub-questions are defined and then investigated in order to answer the main270

research question:

• What qualifies as an insight in software development?

An ”insight” is defined as the capacity to gain an accurate and deep understanding of someone
or something. In our study, we use the common metrics elaborated in the field of software perform-
ance engineering as a benchmark to generate these insights. By measuring the available metrics
and discussing them with software develpoment professionals, we reach the conclusion of what
qualifies as useful insights.

Due to the focus on defect-management resolution process, our case study dataset limits the
collectible metrics which can be turned into valuable insight for the involved stakeholders. There-
fore the generated insights provide decision support in the terms of time, issue distribution and280

resolution process compliance.

• What data analysis methods can be used for generating such insights?

There are many data analysis methods that can be used to summarize data. In the context
of software development, performance metrics regarding lead-time, process compliance and issue-
specific attributes are the most significant figures [53]. A thorough study by Poncin, Serebrenik and
van den Brand [38] provides with meaningful metrics that are necessary to analyze in a software
development context. By investigating this data from a quantitative and qualitative point of view,
it is possible to generate overviews and important information regarding the performance of the
resolution process.

Our efforts focus on investigating and generating useful insights into the issue resolution pro-290

cess by applying data visualization approach, process mining and lastly linguistic summarization.
Through the use of these methods, we ensure to capture important elements of the data-set and
process, while also evaluating and comparing to determine the more valid and resourceful approach.

• What are the results on the case study?

After we have determined the methods of investigation, we apply the approaches in a case-
study with real data from a software development environment. The data-set contains significant
attributes captured by the issue resolution tracking system of which we generate insights based
on the industry-preferred metrics in the field of software development.

• How to validate and evaluate insights with stakeholders?

After we have generated the insights from the data-set, we validate our findings with the300

organization stakeholders to determine their usefulness, relevance and validity. This step is crucial
in determining whether the quality of our assessment meets the needs of the organization, as well
as validation to check if our findings match with the perception of the stakeholders.

• How do the approaches compare?

Lastly, after the validation and evaluation steps, we investigate the differences of generated in-
sights from the methods, and provide recommendations based on each approach. This comparison
as well as conclusions from the previous questions help finalize a concrete answer to the research
question and provide conclusive remarks.

A data-driven approach for generating insights into software development 3

CHAPTER 1. INTRODUCTION

1.5 Methodology overview

A systematic five-step approach was used to execute the study. The approach was motivated310

by the design-science paradigm in information systems as described in Hevner et al. [16]. The
correlated activities and references to the chapters are described in 1.1.

Table 1.1: Project stages and main activities mapped to chapters

Stages Activities Report Chapter

Orientation Case-study introduction, Research gap Chapter 1 & 2

Analysis Methodology approach, Data collection & evaluation Chapter 3

Design
Data summaries, Process mining & simulation, Lin-
guistic summaries

Chapter 4

Validation
Validate findings, Formal interviews, Compare ap-
proaches

Chapter 5

Implementation
Present & compare findings, Conclusion & future
work

Chapter 6

1.5.1 Orientation

The first step of the research was to understand the project nature, and define clear objectives of
the study. Meetings with the organization supervisor and relevant stakeholders were conducted to
check what area of analysis can provide useful insights for the software development teams. During
this initial stage, it was necessary to organize and discuss project objectives, define the necessary
resources and privileges to conduct the study. Furthermore, it was important to establish the
main contact resources to collect the static information regarding the issue resolution process.

1.5.2 Analysis320

Analysis and conversational evaluation of data sources. Through meetings and discussions, it was
determined which data resources are valid and can be used to reach our objectives. During this
step, we also conducted exploratory literature review to deepen our knowledge into the topic,
understand and acknowledge the state-of-the-art approaches in data analysis. Data collection
from the workflow management system was also conducted, followed by descriptive analysis of the
content. Due to numerous sources of information and noisy variables, we select the most valid
ones in consultation with organization professionals.

1.5.3 Design

We proceed with the design and application of our data analysis methods - traditional, process
mining and linguistic summarization. We use a combination of existing solutions for data analysis,330

process mining and develop a linguistic summarization environment in Matlab. During this stage
it is possible to generate early results, analyze them and drill-down on produced insights.

1.5.4 Validation

We perform validation in two phases. First, we share our results on a continuous basis with the
organization stakeholders, upon which the findings are validated. After multiple iterations and
consultation with informed process owners, we establish the final results. Second, we evaluate and
validate the findings of each analytical method through interviews in the later stages of the study.

4 A data-driven approach for generating insights into software development

CHAPTER 1. INTRODUCTION

1.5.5 Implementation

The generated insights, validation feedback and final remarks are summarized in written and
presented to the organization. Furthermore, the tools and environment used to generate the340

insights are made available for use to the organization and future researchers. A thorough meth-
odology of our approach is elaborated in 3.1.

1.6 Report Outline

This section describes the structure of the study. The report starts with the introduction chapter
that provides the motivation and context on the topic, presents the problem of focus, the research
objective and the research questions. In Chapter 2, the review of literature is presented along with
the established research gap of the study. Chapter 3 provides the research methodology used in
this report. Chapter 4 provides the case-study results for the application of data visualizations,
process mining and linguistic summaries. In Chapter 5, we evaluate and validate the findings with
the organization stakeholders. Chapter 6 presents our conclusions, recommendations, limitations350

and future research areas.

A data-driven approach for generating insights into software development 5

Chapter 2

Literature Review

Literature analysis enable the exploration of the topic of research and enable its application in
our study. This review is aimed at exploring the methodologies for generating data summaries in
software development, with emphasis on the topic of linguistic summarization in computer science
literature specifically within the domain of Information Systems. We present the current status
of software development data insights, and focus on major definitions and concepts in the field
of data visualization, process mining and of linguistic summarization. We use the systematic
literature review (SLR) guidelines by Kitchenham as described in detail in Appendix A.6.360

In line with our main research question, we structure our literature based on the following key
questions:

• What metrics are important in software development?

• What common approaches for data analysis/summarization exist?

• What are the common uses of visualization, process mining and linguistic summarization?

• How is linguistic summarization represented in the software development domain?

Through these questions, we seek to collect concepts and recent developments in the industry
in order to motivate our study objectives.

2.1 Data analysis in Information Technologies

Rapid advancements in information technology have been trailed with large amounts of data across370

multiple domains. As the amount of data increases, it becomes challenging and time-consuming
to understand data in its original (raw) format. To deal with this issue, various data mining
approaches for summarization have been developed.

According to Wu et al. [54], there are two main classes of data-set summarization: numerical
summarization and linguistic summarization. The traditional approach of summarization with
descriptive statistics provides meaningful information on the measures of central location of data
(mean, median, mode), variability (range, standard deviation, coefficient of variation), relative
standing (percentiles, quartile), relationship (covariance, correlation) and more. Information is
then processed and can be shown graphically using charts, bars, and lines. It is a common
practice among many industries and provides valuable insights into numeric data sets and time380

series data [35].
The limitations of the technique surface when the data in question is stored in an unstructured

format, or is simply non-numerical data. This scenario is a commonality in software development
processes as various log files are generated; data is stored, but often at the cost of highly un-
structured formats and storage environments. Analysis of such data with traditional descriptive
statistics requires extensive efforts to conduct. Furthermore, descriptive statistics are efficient

A data-driven approach for generating insights into software development 7

CHAPTER 2. LITERATURE REVIEW

at analyzing quantitative, highly structured data, which is less common in the field of software
development.

2.1.1 Use of analytics in organizations

In all industries around the world, digital information has become an integral part of their business390

decisions [28]. However, the massive amount of information that is collected is not always being
used in generating useful insights. As technologies for collecting and analyzing data are becoming
more frequent, organization leaders are questioning what is the best approach in gaining value
from such systems.

A study carried by MIT Sload Management Review and IBMs Institute for Business Value
with nearly 3,000 executives, managers and analysts from multiple industries, shows that data
analytics is crucial in the performance of organizations [28]. The most top-performing organiza-
tions use analytics five times more than lower performers. Furthermore, the same study reveals
that improvement of information and analytics is a top priority in their organizations, emphasizing
the market need to develop improved solutions and generate more insightful approaches for the400

future.
Data analytics as a concept revolves around the concept of analyzing a set of records (actions,

events), to make inferences about the general dataset (population). The most frequent insights
gained from such analysis are presented in the forms of visualized charts, graphs or images. The
observed charts and graphs are referred to as functional data and statistical methods for analyzing
them are described as functional data analysis (FDA) [40]. In essence, the goals of data analysis
are:

• Represent and transform data in ways that aid analysis.

• Display data so as to highlight various characteristics.

• Study important sources of pattern and variation among the data.410

• Explain variation in an outcome or dependent variable by using input or independent variable
information.

However, data analysis can provide a limited view over a certain data-set, and a more explorat-
ory approach is needed. That is where data mining techniques provide the additional prowess and
aid in recognizing various patterns in data, through mathematical and computational algorithms.
In essence, data mining is a pattern discovery approach, involving a combination of methods such
as machine learning, statistics and database systems. [9] It is an approach frequently favored in
business, science research and even government security [12].

Based on the type of stored data, alongside data mining techniques, there exist other min-
ing approaches which deal specifically with text (text-mining), process (process-mining) and web420

(web-mining) etc. Much research has been done in this context, and the specific techniques are
thoroughly review by Linoff et al. [30]. Their application in todays industries is an integral
characteristic into making better and informed decisions.

2.2 Why data analysis, process mining and linguistic sum-
marization?

Our case-study is a large organization that already has numerous analytical platforms in place for
the improvement of processes and activities, although our analysis will deepen the context and
provide future recommendations on the suitable approach. The combination of visualization of
information, metrics on the performance of processes and finally linguistic summarization of the
data will provide sufficient insights for any organization.430

Significant literature exists with regard to the methodology of data visualization [11, 29, 25, 18,
43] and process mining [32, 4, 48, 13, 2]. This literature is aimed at concepts and methodologies

8 A data-driven approach for generating insights into software development

CHAPTER 2. LITERATURE REVIEW

necessary to expand knowledge and use of analytics in multiple industries. Since we elaborated on
these concepts briefly in sections 2.3 and 2.4, we shift our attention towards the area of linguistic
summarization.

2.3 Descriptive Statistics

Analysis of data has been an important element in biology, economics, engineering and countless
other disciplines [35]. The preferred approach to deriving insights from these fields has commonly
been that of statistical methods, or more particularly descriptive statistics. Using this technique,
organizations are able to extract information of key performance indicators, making use of large440

stored data sets. Most frequently, analysis is done on exploring the relationships between attrib-
utes, grouping the data, identifying patterns and trends, building regression/classification models
and describing such findings statistically [33].

These descriptions are often presented in the form of graphs, tables or similar visualization
techniques, only then to be interpreted in text. This poses a challenge regarding the gained
insights, as the visualizations are often not interpreted uniformly by different users. The issue of
interpretation makes chart visualizations an unreliable method, as users may perceive the findings
different from the original intent [27].

With the increasing load of data in the industry, it becomes challenging to manually describe
statistical findings in a textual format. Businesses are seeking automated methods that present450

information in meaningful formats in order to support their decision making in near-real-time.

2.4 Process Mining

The nature of different industries requires a specific approach. When dealing with process data, a
common approach is that of process mining. In essence, process mining is built on two pillars (a)
process modeling and analysis and (b) data mining [1]. The continuous growth of stored data is a
key driver for popularity of data mining and process mining approaches. According to van Dongen
[45], organizations have various data, and more frequently in the form of workflows/processes, a
type of event log that stores information about when and what activities were carried out during
a timeframe . This information is then analyzed with process mining or data summarization/visu-
alization techniques to provide insights into the process or variables that are significant to the460

context.

The output of this analysis can be expressed in terms of rules, clusters, tree structures, graphs,
equations, patterns, etc. [1]. The extent to which these features are useful, is dependent on the
final user. Many times the context is business-oriented, and not all final users are tech-savvy.
Therefore the presumption that these extracted insights will be understood is a common mistake.
That is why research is continuously conducted in an effort to bridge the gap of technicality and
provide insights into explicit forms.

One significant problem that visualization and process mining insights bring is that of inter-
pretation. The challenge is to extract potentially useful knowledge not only in an efficient way but
also in a way that could be understandable by humans [6]. An alternative to this issue is that of470

linguistic summarization, aim of which is to produce easy-to-understand summaries from data in a
human-language structure (sentence). This method is receiving great amount of attention due to
the ever-increasing amount of complexity in data systems and diversity of the data interpretation
(final users). By addressing these issues, this approach can be applied in various industries with
great success and with an extensive amount of automation.

In order to be suitable for process mining, our data-set should conform to the process mining
event log meta model in Figure 2.1. An event log is comprised of a number of processes (usually
one) [38]. Every process contains a series of instances that are unique. Lastly, every process has
activities with information on when it was executed.

A data-driven approach for generating insights into software development 9

CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Process Mining meta-model.

For our purposes, we can use process mining to derive representations of process control flow,480

detect relations between activities and in event logs with resources (person), we could detect
relations between them [38].

2.5 Linguistic Summarization

Linguistic summarization was enabled through the utilization of the concept of fuzzy sets (FS)
by Zadeh [60], into implementable form by Yager [56, 57, 58, 59] and later developed into other
domains by renowned scientists Kacprzyk [19, 20, 21, 22] and recently Wilbik and Kaymak [51, 50].

Wu et al. [54] describes linguistic summarization as a data mining or knowledge discovery
approach to extract patterns from databases. This basic definition does not fully capture the
extent of linguistic summarization, as the explicit characteristic of information generated with
this methodology is crucial to this concept.490

A more specific definition is presented by Mani et al. [31], according to whom summarization
is the process of distilling the most important information from a source to produce an abridged
version for a particular user and task. The current accepted definition of the term most commonly
falls under the description of Wilbik and Kaymak, according to whom ”linguistic summarization
offers novel ways of gaining insight into large amounts of data by extracting their main properties
and representing them linguistically” [51]. This depiction pertains to the current industry standard
approaches that are deployed in weather forecasting, health-care, CRM systems and more.

The concept of linguistic summarization was introduced by Ronald Yager [56] in 1982, and
then developed into an implementable form by Kacprzyk and Yager [21] in 2001. The basic idea
of summaries is the interpretation in terms of the proportion of elements containing a certain500

property [54]. To illustrate, the summarization of data in a software development project could be
presented in the form of ”most bugs are time-consuming” or ”increasing bugs most of the time are
of a low variability”. The produced output from language summarization techniques is considered
as ”less terse than the statistically produced data and permits various ways of data summarization
[54].

2.5.1 Basic concept

The way humans process their thoughts and communicate is inherently fuzzy [20]. Due to a con-
stantly changing environment, almost no events can be defined in only true or false categorizations.
Decisions are made based on a preemptive though process logic whereby a person analyzes the
scenario and decides based on the circumstances. The format for such a decision is defined as a510

generalized modus ponens, and is presented in the following format [60]:

If X then Y .

10 A data-driven approach for generating insights into software development

CHAPTER 2. LITERATURE REVIEW

X.
Therefore, Y .

Due to the strictness of this format, many events in the real world may not be represented.
By attributing fuzzy values to X and Y , it is now possible to interpret more scenarios in the
real-world. A ’truth degree’ between 0 and 1 is indicated, and a value can fall somewhere between
(compared to only true or false crisp values).

If X, then Y .
mostly X.520

Therefore, mostly Y .

The membership is expressed in object x of set A as:

XA(x) =

{
1 if x ∈ A
0 if x 6∈ A

For each object in universal set, a membership value is shown about the degree membership
to which x belongs to A. Then the fuzzy set can be expressed:

A = {(x, µA(x)) : x ∈ X}
where µA(x) is the degree of membership of element x in A. Multiple approaches to sum-

marization using fuzzy sets exist [36]. This basic concept is then extended into implementable
formats. The most common one used frequently for the generation of fuzzy linguistic summaries
is motivated on Yager’s terminology [56] in the form of Qy’s are/have S where:

V = a quality (attribute) of interest, (e.g. types of issue in database)
Y = {y1, .., yn} a set of records with quality (attribute) V for object y1
D = {V (y1), ..., V (yn)} a set of data (”database”)

The summary of a dataset consists of:530

a summarizer S (e.g. short, long)
a quantity Q (e.g. many, most)
a truth (degree) value T (e.g. 0.2 for low, 0.8 for high)

as, e.g., ”T (most of issues are long)=0.8”. The truth T is represented as a validity of the
summary, and to a certain extent as a quality or goodness of the summary. For a given set of data
D, we can explore various matching summarizer S and quantity Q, and the assumed measure of
truth indicates the truth that Q data set entries satisfy the summarizer S.

Summarizer

The summarizer S is a linguistic expression semantically represented by a fuzzy set. A summarizer
such as ”short” is tagged as fuzzy set in the universe of discourse (e.g. length of issues in days
{0, 1, 2, ..., 3000}), containing all the possible values for issue lengths in our data-set. To present
an abstract view, let us assume cases can only be ”short” or ”long”. With this assumption we can540

define the membership function as:

• issues that last up to 25 days are definitely ”short”, (membership = 1).

• issues that last more than 35 days are definitely ”not short” (membership = 0).

• issues that fall between 25 to 35 days will have a membership value between 1 and 0. The
shorter the issue, the higher its corresponding degree of membership.

Similarly, we can add the fuzzy set ”average”, ”long” and ”very long” to further define our
membership function. It follows that a specific case of length (e.g. 40 days) can be a member
of all fuzzy sets, but the functions µshort(40), µaverage(40), µlong(40) and µverylong(40) have very
different membership values for same issue length.

A data-driven approach for generating insights into software development 11

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Trapezoid membership function for case length

Quantifier550

There exist two types of quantifiers - the absolute quantifiers (e.g. nearly 20 issues), or relative
quantifiers (e.g. many, most, almost all). The fuzzy property allows them to be defined as possib-
ility distributions over non-negative integers and the real interval [0,1]. As the fuzzy summarizers
and quantity in agreement are subjective, they can be predefined (as in Dijkman and Wilbik [15])
or defined (as we did for our main dataset).

Protoforms

Zadeh [61] defines a protoform as an abstract template for a linguistic summary. We can implement
custom linguistic summaries by changing the format of the protoform. The basic summaries in
section 2.5.1 can be represented as:

Qy’s are S560

e.g., ”most (Q) of issues (y′s) are short (S)”, and the extended form:

QRy’s are S

e.g., ”most (Q) of Change Request (R) issues (y′s) are short (S)”, where Q is the quantifier,
S is the summarizer, y’s is the quality of a set of objects, and R is the qualifier.

Evaluation of linguistic summaries

The quality of summaries can be evaluated in multiple ways. Much research has been done to
improve the estimation of linguistic summary validity, most notably by Wu et al. [54] and Delgado
et al. [14]. The more common rules present in the field are: Degree of truth, Degree of sufficient
coverage, Degree of usefulness, Degree of outlier and Degree of simplicity. For our purposes, the
degree of truth or validity T serves the purposes of determining which summary is useful or not570

(from [0,1]).
For a given data-set D, the degree of truth T is a measure of how the quantity in agreement

Q satisfies the summarizer S. A low degree of truth T (most of issues are long) (0.2) - stands for

12 A data-driven approach for generating insights into software development

CHAPTER 2. LITERATURE REVIEW

a summarization that has very little support from the data. On the other hand, a high degree of
truth T (most of issues are average) (0.8) - stands for a summarization that is highly true, where
a large number of records support the conclusion.

Summarizer S and qualifier R are fuzzy sets in Y, and a linguistic quantifier Q is assumed to
be a fuzzy set in [0,1] as:

µQ(x) =

 1 for x ≥ 0.8
2x− 0.6 for 0.3 < x < 0.8

0 for x ≤ 0.3

Based on this, Zadeh’s [61] calculus of linguistically quantified propositions yields the following
for Qy’s are S:580

T = µQ

[
1

n

n∑
i=1

µS(yi)

]
and for QRy’s are S:

T = µQ

[
n∑

i=1

(µR(yi) ∧ µS(yi))

/
n∑

i=1

(µR(yi))

]
where µR is membership function representing the summarizer and µQrepresenting the quanti-

fier. The minimum operation is represented by ∧ which can be generalized as a t-norm. Equations
are for the basic and extended protoform, respectively.

2.5.2 Applications of linguistic summarization

The concept of linguistic summarization has been applied in different industries, for various types
of data formats. There exists designated literature in Linguistic Summarization for summarizing
databases [22], analysis of time-series data [8], and recently for process log data [50]. Investigating
these dimensions is crucial to define the aptitudes and limitations of linguistic summarization.
Additionally, there are summarization techniques and knowledge regarding video data, sensor590

data and even web logs [51].

Linguistic summarization in databases

Analyzing large data sets (databases) using linguistic summarization techniques can provide mean-
ingful insights to organizations. Although the technique is not automated to a full degree, a
semi-automated procedure where the user solely provides input is available using Kacprzyk and
Zadroznys fuzzy querying add-on for Microsoft Access [22]. The technique can be expressed using
mainly two types of linguistic quantity absolute e.g., about 3, more or less 50 and relative e.g., a
lot, most. These types of expressions derive from the so-called fuzzy linguistic quantifiers discussed
previously and elaborated by Zadeh [60].

In essence, there are two extensions of Yagers approach [56] to linguistic summarization of a600

set of data. The first is through the utilization of additional degrees of validity and their weighted
average which is used to validate the quality, and the second through the embedded summarization
procedure in a flexible fuzzy querying environment using Kacprzyk and Zadroznys (1994 1997)
FQUERY approach for Access[22].

Linguistic summarization in event logs

With todays workflow management systems, software development organizations store much of
their data in the form of event logs which resource accessed a file, who edited it, at what time,
what action which are then logged on the database. Event logs show occurrence of events over
time and each event refers to a process and case [45]. By this definition, linguistic summarization

A data-driven approach for generating insights into software development 13

CHAPTER 2. LITERATURE REVIEW

must also provide insights into the timeliness and completeness of various events that occur in a610

given setting.
Analysis of event log data using linguistic summarization requires pre-processing and data

understanding [50]. According to Wilbik and Kaymak [50], when we seek to calculate performance
indicators such as lead time, we primarily need to combine the cases and calculate required values.
However, this approach is not always applicable as data is not formatted properly. Based on
the industry and scenario, event logs can vary in terms of storage, making event log analysis
using linguistic summarization all the more challenging. In brief, producing meaningful linguistic
summarization requires a certain process mining approach.

Traditionally, there are three perspectives in process mining [45]. The first perspective is that of
processes, which focuses on control flow. The second is case perspective, where the focus is on case620

characteristics. Lastly, the organizational perspective focuses on the human resources (or other
types) which are at some level involved in the process, and how. Using linguistic methodology,
Wilbik and Kaymak [50] claim that process log summarization can provide insights by combining
all the process mining perspectives . Various underlying processes of a setting can be improved,
and detection of problems and bottlenecks could be feasible. Such improvements in an already
existing system would be largely beneficial to any organization and industry.

A practical implementation of linguistic summarization in event logs has been recently (2017)
investigated by Dijkman and Wilbik [15]. The approach for generation of insights is provided,
alongside with results from a case-study in the Netherlands. This research was a key starting
point for our study, motivation and evaluation of generated findings.630

2.6 Software development metrics

Extensive research on software performance engineering exists, where the focus is mostly on the
performance of the software (code) and hardware. Limited literature exists for the analysis of
the software development issue resolution processes. Software performance as a field of study
is generally concerned with capacity and timeliness [53]. Based on this approach, there exists
a highly disciplined approach known as Software Performance Engineering (SPE) which aids in
evaluating a systems performance and ways for improvement. The approaches of Software Process
Engineering are described using early modeling [42]. Barber describes the process using specific
measurements [5]. Similar approaches are further elaborated in [44] and [49].

Software Performance Engineering represents the software development procedures and ana-640

lysis which is used through the software development cycle. Using the Software Performance
Engineering definitions, our case-study falls into this category, with a different focus that of pro-
cesses. By aligning with the metrics which are crucial in a software development context, we are
also successfully providing relevant means of analytical approaches to draw insightful information
from the software development context.

As software performance is a difficult quality to comprehend, it is affected by the code design,
environment and resources. In many software development environments software problems cause
delays, costly projects and failed deployment. It is therefore important to address why such
performance problems arise, and tackle them.

Software Performance Engineering defines a series of activities (illustrated in Figure 2.3) signi-650

ficant in determining a systems performance. The first activity is that of identification of concerns
(the important operations and resources). Afterwards the requirements such as operational pro-
file, workload and throughput are necessary to describe and analyze behavior. Unified Modeling
Language is commonly used to describe these processes. The next step is to predict scenarios by
modeling the behavior of the resources using various industry-standards such as Business Process
Management Notation (BPMN). The next step is to conduct performance testing on multiple seg-
ments of the system and understand the produced results. Then we need to conduct maintenance
and evolution, by predicting the changes and necessary activities. It is possible to add features
and determine what the impact on the process will be. As a final step, a total system analysis is
necessary to extend the improvement activities of the process into the future [53].660

14 A data-driven approach for generating insights into software development

CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Steps of performance engineering
[42]

2.6.1 Why we measure time and process workflow?

Understanding the reasons behind performance bottlenecks in software development can be extrac-
ted from data most commonly through data visualization of patterns and relationships. Woodside
et al.[53] argues that future areas must provide the means for better visualizations deep catalogs
of performance patterns and algorithms for automated search and diagnosis. Challenges of fu-
ture approaches is to visualize the causal interaction among behavior and resources and not only
analyze one aspect of the system.

By combining metrics such as time (lead-time), diversity of issue types, it is possible to ana-
lyze and present visually (or in other forms) significant insights into the process of development.
Furthermore, by modeling the information in terms of a process workflow, it is possible to analyze670

from a process compliance point of view, and determine bottlenecks and areas of improvement
from a visual perspective. Franks et al. discusses a search approach that can detect resource pools
and lead-time related bottlenecks. Then depending on the findings the process can be improved
based on the designer expertise using the principles described in [55]. This research is instrumental
in motivating our two key metric measurements time and process compliance.

2.7 Conclusion

Data has become more sizable and complex than ever before and thus the process of deriving
insights has become more challenging. Descriptive statistics and traditional (manual) methods of
textual interpretation have put barriers into the processing speed of analysis, and their accuracy.
As data mining and process mining techniques continue to provide detailed information onto680

data and processes, an alternative approach of linguistic summarization has become available to
combine insights and present it in simple, human language format.

Significant linguistic summarization research is being conducted recently, with Kacprzyk and
Zadrozny [20] focused on generic data sets, on time-series by Castilla-Ortego et al. [8] and on event-
log data by Wilbik and Kaymak [51]. A very recent practical implementation by Dijkman and
Wilbik (2017) [15] served as a guide towards the implementation of the practices and motivation
behind our study.

Nonetheless, linguistic summarization remains in isolation when it comes to software devel-
opment and its potential in this domain. This review is partially motivated by the lack of this
methodologys use in an industry where summarization of information is crucial to project leaders690

and developers alike, as well as the motivation to evaluate such summaries regarding their validity.
We believe that there is potential in studying the concept, algorithms and methodologies

of linguistic summarization to generate insight into software defect management. By studying
the recent research and applying it practically, it is possible to determine which methodology

A data-driven approach for generating insights into software development 15

CHAPTER 2. LITERATURE REVIEW

suits software development environments best. This is done as an attempt to bridge the current
knowledge gap for what analytical approaches are best in the field of software development.

With rapidly increasing software development projects, team-members, complex data struc-
tures, it is of particular significance to study and develop a methodology for performance measures
in software development - especially with a practical experimentation. In an environment where
the necessity for real-time information is crucial, it is of great business value to analyze and700

determine what methods are best for generating insights in the software development industry.

16 A data-driven approach for generating insights into software development

Chapter 3

Methodology

According to Peffers [37], design science creates and evaluates IT artefacts intended to solve iden-
tified organizational problems. Although our study is highly driven by data analysis, our research
objective is to generate artefacts, which can provide knowledge into software defect management
processes [47]. While these processes are crucial for the improvement of software performance,
the proposed design science methodology provides the guidelines to resolve observed problems, to
make research contributions, to evaluate the design and to communicate the results to appropriate
audiences [16].710

The most important element that design research produces is an artefact created to address
a problem . The artefacts may include constructs, models, methods, and instantiations, which in
our case translate into the analytical environments of process mining and linguistic summarization
[16]. In our research, we collect, analyze and implement activities necessary to generate insights
and validate their usefulness.

We choose design science research methodology (DSRM), in order to document our approach
in a step-by-step mental model. A mental model is a small-scale model of reality that can be
constructed from perception, imagination or the comprehension of discourse [37]. This model
translates into our methodological approach, as we motivate our research based on the guidelines
of DSRM principles. The desired outcome of DSRM outweighs traditional theory testing or720

interpretative research, since it provides a process model that can be used to resolve tangible
organizational issues.

Figure 3.1: DSRM Process Model
[37]

A data-driven approach for generating insights into software development 17

CHAPTER 3. METHODOLOGY

3.1 Research Methodology

The detailed mental model with complementary activities is mapped in Figure 3.2. Using the
DSRM principles, we have constructed our methodological approach. The complete list of match-
ing activities is grouped accordingly, where our objective definition falls into the problem and
motivation identification. Then we define our research question, which maps the objective defin-
itions for a solution in the DSRM model. The next six activities are mapped to the design and
development of our artifacts (data visualizations, process models, simulations, linguistic summary
generation environment), where we select our analytical methods, determine the relevant case730

study, explore the data sources, collect, pre-process and analyze our data. We then validate our
results in continous basis through demonstration and meetings. Afterwards, we evaluate the use-
fulness of our artifacts through direct interviews with the stakeholders. Lastly, we present our
findings in written as a professional publication.

Figure 3.2: Methodology mental map

3.1.1 Define objectives

We begin our research by defining the overall objectives of the study. Our interest in determining
suitable methods for generating insights in software development raises the need for a thorough
analysis. We elaborate on the steps required to reach our objective by defining the research
questions. To clarify the goal and necessary procedures, we organized multiple meetings with
academic and business stakeholders. This was done to ensure that the objectives are in compliance740

with all relevant parties.

3.1.2 Define research questions

We arranged joint meetings with the relevant stakeholders during the early stages of the study.
Based on these discussions, we identified the main research question that would have scientific and
practical value to the organization, as well as to the field of software development.

We then break down the main research question into five sub-questions that can be translated
into concrete study objectives. First we define what an insight means in the context of soft-
ware development processes. After this is established, we determine what are the state-of-the-art
methods that we can utilize to generate such insights. This was accomplished through extensive
literature review and in consultation with field experts. Afterwards, we implement our analytical750

methods and generate final results. These results are reviewed continuously through discussions
and presentation, in order to ensure their validity. Then, we conduct interviews to evaluate the
usefulness of each method to the case study. Finally, we compare the approaches and provide
recommendations.

3.1.3 Select data analysis methods

This study explores and evaluates three methods for generating insights into software development
defect-management processes. These methods are selected after a thorough literature review and

18 A data-driven approach for generating insights into software development

CHAPTER 3. METHODOLOGY

academic supervision. The methods we implement in this study are:

• Traditional data analysis

• Process mining760

• Linguistic summarization

Due to the common application of traditional data analysis in various industries, we begin
our study using this method. We acknowledge that this approach can provide useful information
in tabular forms and visualizations (charts, graph). This method can be extended by drill-down
options for deeper analysis, making it suitable for different commercial users.

However, there are certain limitations to this method, e.g. visualization of workflow processes,
or its crisp representation of variable relationships. To explore beyond these limitations, we first
analyze the data using process mining practices.

With process mining we are able to extract useful information from data in the form of event
logs. We use it to check the conformance of processes, detection of bottlenecks and predict770

future execution problems [1]. In software development, it can provide direct insights into the
performance of issue resolution, time, compliance, and predict future system behavior.

Though visualizations are often used to increase understanding of data by emphasis or discovery
of visual cues, there are other ways to generate insights into data. One of these methods is linguistic
summarization, where the most characteristic aspects of data are presented linguistically in natural
language [23]. Linguistic summarization techniques make it easy to gain insight into large amounts
of data by describing its main properties linguistically [52]. Using this technique, we attempt to
provide quick overviews on the main data characteristics, which can be extremely useful to high
level management.

3.1.4 Determine relevant case study780

In this step we analyze whether the case study environment provides the information necessary
for the analysis we want to conduct. This is done in direct communication with company experts
to ensure the data and human resources required to perform primary and secondary analysis are
available. In compliance with the academic goals of this study, we have determined that our
case-study environment provides a suitable environment.

Current process description

The AS-IS resolution process contains any of the following activities: Initiate Register, Investigate,
Assign, Fix, Verify, Close, and Reject.

When an issue is reported by the client or from within, a resource submits this issue along
with the description of the problem, and other characteristics to the system. The issue is then790

registered by a regulation board for investigation, upon which the problem is investigated and then
returns to the board. This task is then assigned to a resource (could be the same person) who will
carry the fixing step. After its completion, another resource verifies if the solution is valid. Lastly
the issue can be closed, or it can be rejected based on a previous step — in the investigation phase
— or immediately after initiation by the board. The original (intended) process workflow map is
presented in Figure 4.18.

Organizational stage of data utilization

Before we initiate with the investigation of software performance metrics, it is crucial to determine
the stage of data utilization within the organization. Since our entire analysis revolves around
data, it is important to know at which stage of data utilization the organization stands.800

The emerging stages of analytical adoption, as described by LaValle et al. are crucial in
identification of which approach is the most valid [28]. There are three levels of analytic adoption
aspirational, experienced and transformed [28], and detailed description is illustrated in Figure

A data-driven approach for generating insights into software development 19

CHAPTER 3. METHODOLOGY

Figure 3.3: Original workflow map

3.4. The first stage can be found in organizations that are largely focusing on automation of
existing processes and cutting spending. The experienced level is found within organizations
that already have some analytic experience and practice in place, and frequently act on new
initiatives to optimize their operational capability. Lastly, the transformed level of analytics is
found among organizations that use data in multiple sectors. By using analytics they are able
to create the competitive advantage and constantly analyze their way of working for the purpose
of improvement. These organizations pay less attention to the implication of cost, as they have810

already automated many of their operations earlier in the process.

Our case-study is a mixture of a highly experienced and transformed organization, where data
is a key driver in decision-making, although due to large amounts of data, many aspects of it are
not analyzed.

3.1.5 Explore case study data sources

Gaining deep understanding of the case-study environment is crucial to defining the relevant data
sources needed for the analysis. Practical experience was a pivotal point in gaining hands-on
knowledge on how software development activities are distributed. This enabled us to identify
process issues that we could address with our research.

In collaboration with company experts, we identified multiple data sources within software de-820

velopment, out of which we selected the data set of the defect management platform. This decision

20 A data-driven approach for generating insights into software development

CHAPTER 3. METHODOLOGY

Figure 3.4: Stages of data utilization among organizations
[28]

was based on the quality of data contained and the overall significance of defect management to
software performance.

Relevant stakeholders were also identified in order to collect additional information regarding
the process and validate our findings. These experts were provided continuous input and support
for the research purposes. Table 3.1 shows the data sources for the collected data during the study.

Table 3.1: Data sources

Data types Sources

Issue data Workflow management system

Code-size
metrics

Information system

SW
Development

Primary research

SW Life cycle Primary and secondary research

3.1.6 Collect data

Primary and secondary data was collected to address the research question. The data derived
provided key insights into the software defect management process. Using simple SQL queries
we were able to extract basic information that is recorded by the workflow management system.830

We were able to investigate various characteristics, focusing on issue type, project type, lead
time, completion rate, resolution type, process compliance, influx and outflux rates and others
for the purposes of the study. Thorough analysis was performed to ensure we work with data
that is relevant to the analysis methodologies outlined in this study. Therefore, we selected the

A data-driven approach for generating insights into software development 21

CHAPTER 3. METHODOLOGY

following attributes to be able to conduct comparative analysis throughout all analytical methods:
state, project type, severity, issue type, submit and close date. Furthermore, we collect the defect
management event log to analyze the behavior of the system from a workflow point of view.

Due to relevance of study at in relation to current processes, the analysis was focused only in
the last 5 years. The extracted data contains 3,981 completed issues.

Dataset of defect-management system840

The data-set being analyzed contains information on the process of issue resolution system,
whereby information on issue type, project, priority, severity, description, and other variables
are stored. Each issue is stored with a specific issue ID, and a complementary time stamp is
recorded for each activity. A state of an issue shows at which stage the current issue exists in the
current moment. The project type refers to project buckets among issues. Severity is provided
as a means to issue resolution team to determine what the impact of the case has on the oveall
system. In this way, the issues can be prioritized and resolved accordingly. The issue type refers to
the different defects, which can be a problem report for a non-functional aspect of the software, or
a change request, which is a request to modify or change a particular characteristic of the software
in order to improve it. Lastly, the submit and close date are given for each record.850

Table 3.2: Dataset of issues

Issue Id State Project type Severity Issue Type
Submit
Date

Close
Date

321913 Rejected Field Crash Problem Report 1/5/2012 1/10/2012
321667 Rejected MS windows Major Problem Report 1/4/2012 3/1/2017
322439 Closed Field Minor Problem Report 1/10/2012 1/17/2012

Our secondary data resource — the event log — contains records of the workflow process for
handling issues allows tracking the sequential activities that are undertaken by staff. It records
the all state changes over the resolution process, by specifying the date of such a change with a
timestamp and respective state change.

Table 3.3: Event log of issues

Issue Id State Timestamp
321913 Initiated 1/5/2012 16:44
321913 Registered 1/5/2012 16:44
321913 Investigated 1/9/2012 15:00
321913 Rejected 1/9/2012 17:00

Our second data collection source was the software development stakeholders. The experienced
professionals played a crucial role during the gathering of additional insights as well as validating
the relevance of our results. This information was collected in an informal manner during the
exploration period, and then followed by formal interviews to collect their insights on final results.

3.1.7 Pre-process data

Pre-processing was done to ensure only values that contained insightful data were contained in the860

final data-set. More than 470 different variables were available for extraction. Due to the system
being used for a variety of departments, many of the variables were not used at all, or to an extent
that provides insightful information.

As the data was recorded using an efficient information system, there were very limited cases
when data cleaning was necessary. This was only the case when generating the process maps
from event logs, as there were erroneous activities that were manually recorded. Some issues

22 A data-driven approach for generating insights into software development

CHAPTER 3. METHODOLOGY

have unusual traces and produce noise in our process map. It was necessary to remove a small
number of entries due to inconsistencies with regard to intended process workflow (incorrect traces,
duplicates). The impact of this removal was minimal (6 percent).

Furthermore, additional filters were added to remove all cases which have taken more than 2870

years to complete, as these issues are regarded as insignificant to the process owners and produced
complicated process maps. The impact of this step was a removal of less than 3 percent of cases
from the original dataset. Lastly, issues with Propose Reject were treated as Rejected due to the
fact that they are always followed by this state. Time difference was taken into account for this
change. The final dataset for the event log contains 3,485 issues which make up for 91 percent of
the original entries.

3.1.8 Analyze data

Our investigation revolves around the analytical steps that are necessary to generate insights.
This process is somewhat a direct answer to our research question, as we analyze the dataset and
provide results. We also defined our crisp representation of issue lengths throughout all approaches880

earlier in the process. This definition is presented in section 3.1.8.

Traditional data analysis

We begin with the traditional data analysis, where we generate the basic descriptive statistics from
the dataset, followed by visualizations of the findings. Then we describe the figures using tables,
and drill-down on the distribution by length of issues, type of issues, whether issues are rejected or
closed, etc. Furthermore, we ensure that we use the correct figure for average summarization, by
checking the total distribution of issues based on their length. Based on the type of distribution
(i.e. skewed vs. smooth), we determine whether the average or median is a good representation of
our data. Using the dataset of issue resolution, we can generate a variety of other ad-hoc requests
if necessary.890

Using Pride and Ferrell’s [39] exploratory and conclusive research design, it is possible to ap-
proach the collection and analysis stage of traditional data analysis in a meaningful and productive
manner.

We also analyze the event log in order to view any frequent or unexpected behavior on the
process traces. We need to pre-process the data presented in an unfavorable format (with each
event having a repeat ID and timestamp) using Python environment further described in Figure
3.5. We aggregate the activities in sequential order, as determined by the timestamp for each
issue. This step helps us modify the data in a meaningful format that we can then analyze. It is
also useful for validation of findings drawn from Process Mining and Linguistic Summarization.

Process Mining900

After we have conducted our basic analysis, we shift our attention to the area of process mining.
Due to limitations of what we can achieve with trace information, we import the event log in the
Fluxicon Disco environment to analyze it in detail. The parameters used for this process are the
in-built Fluxicon discovery algorithm, mainly an updated version of Christian W. Gnthers Fuzzy
Miner process discovery algorithm [41]. The output is a Fuzzy Model, ideal for use in unstructured
log data. Using this discovery algorithm, we simplify the process model at our desired level of
abstraction, thus leaving out some less important activities (hide in clusters) compared to Heuristic
miner in ProM (which produced spaghetti-like process maps). One disadvantage of the fuzzy model
is that it may not be directly converted to other process modeling languages.

To further determine the exact number of working hours spent on issues, we make use of the910

additional Timewarp function available in Fluxicon Disco. This ensures that the time-stamps are
used as point of reference to calculate the actual working hours, acknowledging weekends and
holidays. This helps to visualize the map with business hour metrics. The settings for the working
hours were set from 08:00 until 17:00. Such a figure is crucial in determining the exact amount

A data-driven approach for generating insights into software development 23

CHAPTER 3. METHODOLOGY

Table 3.4: Components of exploratory and conclusive research design

Components Exporatory research Conclusive research

Research purpose
Generate insights about software

development ticket-handling
Verify insights via

linguistic summarization

Data needs
Challenge to retrieve only necessary

information

Determine course of
action with primary and

secondary research

Data sources
Difficult to retrieve due to confidentiality and

multiple-sources
Narrow scope supports

conclusive remarks
Data collection

form
Highly textual data, unstructured, followed

with primary research (interviews)
Filtered, structured to

good extent

Sample
Commenced with small sample analysis,
followed by entire data-set since 2002.

Only entries since 2012,
narrow study period to

last 5 years

Data collection
Multiple data sources available, workflow

management systems

More organized, though
still multiple sources

necessary

Data analysis
General statistics, quantitative and

theoritical
Qualitative and

quantitative insights

Reccomendations
Suggestive of trends based on

data/text/process mining
Conclusive and exact

Figure 3.5: Algorithm for aggregation of issue states by ID

of time spent on issue, and translate these findings with the cost of resources responsible for the
activities. Due to lack of this information, we have not extended our analysis but merely find it
significant to mention the methodology.

For our simulation purposes, we recreate the process model using the derived insights from
the process map in the Bizagi environment. This is useful to derive and simulate insights into
the AS-IS and TO-BE defect management process. We are able to reproduce the results of our920

dataset, and conclude that the environment is able to simulate the next coming years based on a
changing arrival rate of issues (or other configurations). We first experiment with the environment
variables so that our simulated environment is able to reproduce the same (or similar) results as

24 A data-driven approach for generating insights into software development

CHAPTER 3. METHODOLOGY

our real data. This is done through a series of testing with our data for particularly year 2016.
The actual activities are abstracted in the next paragraph, whereas the final results are presented
in Chapter 4.

We first we introduce the average metrics of the entire last 5 years. Then we introduce the
metrics of year 2016 using average as input. Since our dataset is not well represented by the
average, we use the median for the next simulation. Getting closer to the desired results, we
finally determine the arrival rates of the issues as they occurred using normal distribution. This930

provides us with an ideal environment where we can conduct further analysis and simulation of
year 2017 with potential changes to the process.

Linguistic summarization

Lastly, we also implement the approach of Linguistic summarization. Linguistic summarization is
a contemporary approach in data mining, which can be of great use in modern organizations. It
is used for extracting and summarizing information in an understandable, natural language (sen-
tences) format. Moreover, this method is suitable for environments where there is high variation
and constant information is necessary to improve processes. Software development environments
can greatly benefit from this methodology.

What makes linguistic summarization even more powerful is that in our case-study, we can940

use this approach to extract information from the data-set, and also the event log. We apply
the algorithm and develop our implementable format in MATLAB, where we generate basic and
medium-complexity sentences for the first data-set, and basic sequence summaries from the event
log data-set using a recent solution implemented by Dijkman and Wilbik [15]. Due to unreliability
of generated results and advice from the original author, we only present the event-log findings for
validation purposes. As our main emphasis revolves around the metrics of time and compliance,
this approach provides sufficient knowledge contribution (insights).

For the generation of linguistic summaries of our data-set, the membership definition is expan-
ded into categories as deemed feasible for the data. We use the trapezoid membership function to
define our parameters. Following the investigation on membership functions by Bouchon-Meunier950

(1996) [7], we studied the use of other approaches such as piece-wise linear functions, triangular
(three parameters) or trapezoidal (four parameters) and smooth-curved functions such as Gaus-
sian function. We choose the trapezoid membership function for reasons of simplicity into defining
our parameters.

In our case, we classify our cases based on length in four separate categories. These qualifica-
tions were conducted and agreed upon with the organization metric standards. The membership
function for the dataset is detailed in Figure 2.2. Cases can be short, average, long and very long
- and in a crisp binary ’definition’, they are defined as:

Short - Issues that take up to 30 days
Average - Issues that between 30 to 90 days
Long - Issues that between 90 to 120 days
Very long - Issues that take more than 120 days

In terms of fuzzy, we define the case-length values by the lower limit a and upper limit d, and960

the lower and upper limits of the nucleus b and c respectively. As agreed with stakeholders of the
organization, the defined values are illustrated in 3.6 (shown only until 300 for clarity) using the
following values: (0 0 25 35) (25 35 85 95) (145 155 2190 2190).

The membership for our quantifier is defined using trapezoid membership for values veryfew,
few, many, most, respectively (0 0.1 1 1) (0.3 0.5 1 1) (0.5 0.7 1 1) (0.7 0.9 1 1). These values are
set in order to spot isolated behavior (veryfew, few) and recurrent behavior (many, most) and
are represented in Figure 3.7.

For the generation of linguistic summaries from the event-log, we use the definitions from
research case-study by Dijkman and Wilbik (many, most, almost all) [15]. The membership
function for length of issues is illustrated in Figure 3.8.970

A data-driven approach for generating insights into software development 25

CHAPTER 3. METHODOLOGY

Figure 3.6: Membership function for issue length groups.

Figure 3.7: Fuzzy quantifiers of dataset.

3.1.9 Validate results

Results generated from descriptive statistics and process mining are validated continuously through-
out the study. We present the data summaries and process maps after which we receive feedback
on the accuracy of the findings from the company stakeholders. These experts help us in un-
derstanding particular behavior appearing in our analytical findings, as well as clarifying any
inconsistencies.

As for validation of linguistic summaries, we discussed the results with key process owners, who
were aware of the system behavior and could provide credible advice on our findings. We presented
the results in their original context, while explaining the concept of linguistic summarization.
When presenting the numerous summaries without any additional filters, the stakeholders had980

difficulty going through the list to find interesting summaries. That is why we deemed it necessary
to evaluate these summaries through interviews.

26 A data-driven approach for generating insights into software development

CHAPTER 3. METHODOLOGY

Figure 3.8: Fuzzy quantifiers of event log.

3.1.10 Evaluate approaches

We evaluate the preferred methods according to the opinions of the stakeholders in the organiza-
tion. This is done both informally during the study duration — where we check what sequences,
data summaries are possible — and formally later during the interview stage.

Besides evaluation of the preference of stakeholders regarding the summarization of data, we
focus extensively on evaluating the extent to which the degree of truth summarizes the dataset.
This evaluation is based on the perceived sense of company experts, who are informed about the
process.990

For the purpose of linguistic summary evaluation, we ask stakeholders at the organization in
identifying sentences which are true (valid) and untrue (invalid) without showing them the degree
of truth. We evaluate a series of summaries, which are categorized into four different groups with
different truth values ranging from very low values - 0 to 0.25; low values 0.25 to 0.5; medium
values 0.5 to 0.75; and very high values 0.75 to 1. Groups contain four randomly selected
summary sentences and are presented in random fashion during the interviews. The gathered
results are then summarized by the average of each group to determine whether there is a direct
correlation between validity of sentences based on the value of truth, and the perceived validity
based on company experts. Many stakeholders expressed interest in viewing the entire list of
linguistic summaries at the end of the interview sessions.1000

The sentences used for this experiment are recalled in Tables 3.5, 3.6, 3.7 and 3.8. The order
of sentences was distributed randomly to ensure the question was not a lead-type.

Table 3.5: Summaries with very low validity (0 to 0.25)

Summary T

ST281 Many rejected issues are short. 0.12

CM13 Most Change Requests which are Closed and of Critical severity are short. 0

CM765 Most Problem Reports which are Rejected and of Major severity are short. 0.11

IT45 Most Problem Reports are short. 0

A data-driven approach for generating insights into software development 27

CHAPTER 3. METHODOLOGY

Table 3.6: Summaries with low validity (0.25 to 0.5)

Summary T

SV309 Few major severity issues are short. 0.36

B16 Most issues without project type information are very long. 0.35

CM140 Many Change Requests in maintenance which are Closed and Minor are very long. 0.5

CM980
Very few Problem Reports in premium which are Closed and are Critical are very
long.

0.41

Table 3.7: Summaries with average validity (0.5 to 0.75)

Summary T

TM57 Many issues in field are short. 0.58

CM176
Most Change Requests in maintenance which are Rejected and are Minor are very
long.

0.7

CM1696 Most issues in interface which are rejected and of Minor severity are very long. 0.7

TM200 Few issues in transactions are very long. 0.57

Interviews

In order to collect additional information into the process of ticket resolution and quality of
generated linguistic summaries, we conducted a series of interviews with relevant stakeholders.
The main target groups were the managerial level and software developers, testers, architects.
The interview process was necessary to understand the validity of the generated insights using
linguistic summarization in particular, as well as investigating and confirming findings with other
approaches.

A brief pilot-project was conducted with 1 software engineer and 1 research and development1010

manager to ensure that the questionnaire was applicable and desired information retrievable. A
total of 6 managerial level staff were then interviewed, followed by 5 developers and testers. The
measured objectives were both qualitative and quantitative which further aided in the validation
of findings and generation of new instances of relevant information.

The interviews were conducted face-to-face with the targeted groups and each interview lasted
approximately 20 minutes. The main objectives of the interview process were:

• Usage and understanding of the workflow management system (WMS) (as perceived by
managers/dev/testers)

• Development cycle of issue resolution (as perceived by dev/testers)

• Preferences for data summarization1020

• Evaluation of linguistic summaries

The Usage and understanding of WMS experiment was aimed at revealing the level of
utilization of the defect-management system. This information is gathered to check whether stake-
holders with more knowledge about the system have different opinions or evaluations regarding

Table 3.8: Summaries with high validity (0.75 to 1)

Summary T

B1 Very few issues are short. 1

B12 Many issues with no information on type are very long. 1
CM61 Most Change Requests which are Rejected and of Critical severity are short. 1

CM187
Many Change Requests in maintenance which are Closed and are Major are very
long.

1

28 A data-driven approach for generating insights into software development

CHAPTER 3. METHODOLOGY

our analytical approaches. This was specifically useful in determining whether more informed
process owners can correctly identify linguistic summaries with a high validity of truth T .

The Development cycle of issue resolution was focused at understanding the shared
perceptions regarding a regular software cycle release. This information was intended to reveal
the average time it takes for software developers and testers for a regular software engineering
process.1030

The Preferences of data summarization section was focused on understanding what meth-
odology was preferred within the software development context. We asked the participants ques-
tions regarding their preferred format of data summarization, and what kinds of insights do they
consider useful in their line of work.

The Evaluation of linguistic summaries section was conducted to specifically check the
extent to which the degree of truth T is able to represent valid summaries of the issue resolution
data. The experiment was set up in a format that randomizes a set of linguistic summaries with
different values of T , in order to check whether respondents can correctly identify them.

Complementary information was collected through these questionnaires which help validate
the findings and reveal additional insights into the ticket resolution process. The questionnaires1040

can be found in Tables A.1.1 and A.1.1, whereas the complete answers can be found in Table
A.2.1.

3.1.11 Present final results

We lastly present our findings in written to the organization and relevant stakeholders. Further-
more, all primary and secondary research is archived and made available for use. All analytical
environments are made available to the stakeholders and serve as a road-map for future researchers
to recreate the environment and analysis.

A data-driven approach for generating insights into software development 29

Chapter 4

Results

Our secondary research and analysis is focused on analytical activities. The format of the datasets1050

is described in section 3.1.6. Briefly, we analyze:

• classical multidimensional data-set in 3.2 - information on issues ID, State, Project, Severity,
Type, Submit Date, Close Date.

• event log in 3.3 - information on activity type and time stamps based on issue ID.

The first dataset is useful in visualizing information from a classical perspective, and deriving
insights into issue distributions, allowing for deeper extension of the analysis towards the area of
performance measurements such as lead-time, influx-outflux, rates of arrival etc.

The second dataset is useful in reviewing the activities taken towards issue resolution, the
compliance of the activities with the workflow, as well as time variations between different activities
or entire issue groups.1060

4.1 Descriptive statistics and visualization

Using traditional approaches we conducted exploratory analysis with the intent to produce stat-
istical and visual summaries of the data-set. We first focused on determining the distribution of
the issues based on their length. Immediately the figure 4.1 shows us that the majority of issues
are resolved within the first few months, and a large amount within the first year after they have
been submitted.

We then focus our attention to generation of specific insights regarding lead-time based on
issue, project type, and severity and on whether an issue was successfully resolved or rejected. We
first present summaries with visualization (graphs), by focusing on the percentage distribution.
Figure 4.2 shows that there are significantly more problem reports than change requests in the1070

system.

Such figures are useful during performance reviews within the software development depart-
ment. By summarizing with visualization in Figure 4.3, we determine that a slightly larger number
of issues are closed successfully, raising questions to what type of issues are being rejected more
than closed, or vice versa.

By cross tabulating the number of closed and rejected issues based on lead-time, it is possible
to represent the findings in Figure 4.4. This shows that a majority (52%) of rejected issues are
completed within a short time interval. On the other hand, a large (32%) percentage of closed
issues are average. We categorize issues that require up to 30 days as short, those between 30
to 60 as average, 60 to 120 as long and finally those longer than 120 days as very long. This1080

crisp categorization of our values, allows for a strict division of our data and a variety of cross
tabulations with other data attributes.

A data-driven approach for generating insights into software development 31

CHAPTER 4. RESULTS

Figure 4.1: Distribution of issues by length (days)

Figure 4.2: Distribution of issues by type.

Using the same approach, we can visualize the data-set and provide insights into the distribu-
tion based on severity among the issues. Figure 4.5 allows us to see that Critical severity issues
are most commonly solved in a short-time interval. In fact, it shows that the severity of issues is
widely compliant in terms of prioritization to resolve issues.

Another perspective is that of distribution by project types. This measure provides key inform-
ation to the managerial level stakeholders and team-leads for their specific performance. From
Figure 4.6, we can interpret that issues in project bucket field are most commonly solved within
the short-term, whereas issues in premium and transactions require a long time to resolve.1090

It is important to also measure the standard deviation and variance of the issue distribution
times, to understand whether the mean or median are good representations of the sample. In fact,
judging by the distribution in Figure 4.1, we already are aware that our distribution is skewed. In
such scenarios, using the mean may provide us with misleading information, and that is why the
median is a better representation, of the average lead-time.

32 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Figure 4.3: Distribution of issues by last state.

Figure 4.4: Distribution of issues length based on last state.

Figure 4.5: Distribution of issues length based on issue severity.

The standard deviation of lead-times is 230.8, a difference of 230 days among the distribution
of issues. This figure is large enough to determine that the mean of our lead-time (128 days) is not
a good representation of our data-set. Therefore any representation regarding the average time it

A data-driven approach for generating insights into software development 33

CHAPTER 4. RESULTS

Figure 4.6: Distribution of issues length based on project team.

requires for a group of issues (i.e. based on year) to be completed is better summarized using the
median in Figure 4.7. The median value for our data set stands at 50 days, which is the average1100

amount of time it takes to complete an issue. As we can see, the median leadtime is increasing
due to the fact that a number of issues are not being completed since their first submission date
in 2012. As time passes this growth is more evident in the system, namely a median of 92 days in
2017.

Figure 4.7: Yearly average and median values of lead time.

Using this dataset, we can do additional calculations and provide insights regarding the arrival
rate and resolution rate of issues, provide visualizations on the influx-outflux of resolution for a
specific time-frame (i.e. a sprint cycle, a release) and various cross tabulations with our data-set
attributes. Although these are interesting measures for the process of software resolution but not
for our specific scope of research, a simply approach to generate these insights is based on the
same principles of the discussed variables.1110

34 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Event log

When analyzing our event log data-set, using traditional analysis and visualization, we are limited
in the extent to which we can generate insights. We can visit the state activities and generate
which activity is most frequent among all, though this provides limited information from a process
improvement perspective. We group all activities based on their ID and transpose it into a trace.
This method generates all the possible traces that exist in our data-set.

Process traces that are most frequently are presented in Table 4.1. The most frequent sequence
is of activities which go through a normal procedure of Initiation, Registration, Investigation,
Assign, Fix, Verification and finally Closure. The next most present sequence is that of issues
that are simply Rejected after Initiation. There are a total of 139 unique sequences, of which the1120

shortest is comprised of 2 activities, and the longest is 21 activities. A full list of the sequences
can be found in Appendix A.5.

Table 4.1: Frequent sequences in process event log

Nr. Sequence Freq. % of total

1 Initiated Registered Investigated Assigned Fixed Verified Closed 1237 35.51%
2 Initiated Rejected 449 12.89%
3 Initiated Registered Initiated Rejected 380 10.91%
4 Initiated Registered Investigated Rejected 329 9.44%

5
Initiated Registered Investigated Registered Investigated As-
signed Fixed Verified Closed

224 6.43%

6
Initiated Registered Investigated Assigned Fixed Assigned Fixed
Verified Closed

121 3.47%

7 Initiated Assigned Fixed Verified Closed 117 3.36%
8 Initiated Registered Investigated Registered Initiated Rejected 60 1.72%

We are limited in what we can do with trace information in this format. That is why traditional
methods for visualizing and interpreting such a dataset are not suitable. Therefore, in order to
analyze the process performance in more detail, we now switch our attention towards the area of
process mining. Using this approach we will be able to visualize the process model and perform a
business-oriented analysis.

A data-driven approach for generating insights into software development 35

CHAPTER 4. RESULTS

4.2 Process Mining

Through the use of process mining we are able to generate various performance insights of the
development process. It allows us to measure significant metrics in terms of performance —1130

process compliance, time, distribution among process activities. We are able to visually represent
the workflow process of resolving an issue and then simulate the system behavior with different
arrival rates or process changes.

First we are able to determine the total number of events that occur in the event log, followed
by the average and median case duration for data since 2012.

Total cases: 3,485
Total events: 21,480

Average case duration: 88.4 days
Median case duration: 43.4 days

4.2.1 Constructing process maps

We are then able to generate and visually represent this process using the event log data. Visual-
ization 4.8 provides the distribution of all issues among the relevant activities, and all the possible
traces during the last 5 years. The process models were constantly reviewed with stakeholders to
validate their representation of process reality. In majority of cases, the models were perceived as1140

the correct representation, with exceptions of behavior in cases when issues were rejected without
an investigation phase. However, this is a common behavior that occurs (1,017 cases documented)
and is further validated by the traces found in the dataset. This qualified as a surprising finding
to many stakeholders during discussions.

The models reflect the reality of the process as expected and this was confirmed by multiple
stakeholders of the organization. The only challenges that produce surprising behavior is of issues
that were manually recorded in the system. Those issues do not make logical sense in the order
they are presented (i.e. multiple sequential Initiations), and after drill-down analysis on the issue
descriptions, they are commonly incorrect entries by personnel not fully acquainted with the
information system.1150

Figure 4.8 shows the mined process map, along with information on time (median) spent
between states (i.e. 10 hrs) and also the absolute case frequency (i.e. 1,345). It is useful in ana-
lyzing the process compliance and understanding whether any unwanted behavior is present (i.e.
reiterations after rejections). It also provides us with the specific metrics of activity distribution
among each state. We can analyze the main path emphasized by the thickness of the arrows,
showing what is the most frequent process. From this visualization, it can be derived that there
are two main activity variants that occur:

1. Initiated-Registered-Investigated-Assigned-Fixed-Verified-Closed and

2. Initiated-Rejected

An additional perspective that is significant in presenting insights into this process, is through1160

the visualization of the average time spent in the activities. As discussed in the previous section,
we use the median as a better representative of the average figure for the time-performance metric.
In Figure 4.9, we can see the specific time it takes to resolve issues. An issue takes on average 51.5
hours to move from state Initiate to Registered which can be translated to nearly 2 working days.
However, it takes 12 days to complete the investigation, and another 48 hours to be assigned to
a resource for fixing. After an issue has been assigned, it takes a mere average of 67 minutes (1
hour) to fix it. After an issue has been fixed, it then takes close to 1 week (7.4 days) to verify,
and another 28 hours to close it.

Process model in Figure 4.9 also allows us to review the performance metrics of issues that
were rejected. Rejected issues are seemingly completed much quicker (68 hours), as in a large1170

36 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Figure 4.8: Process Map with activity frequency

number of cases they are immediately rejected. The map also allows for analysis of iterations
of processes, or other behavior in the process. These behaviors are hard to capture without the
approach of process mining, as it takes a tremendous effort to identify the sequence among more
than 3900 unique issues in the system.

In fact, the analysis shows that activities which are most time-consuming are the ones that
repeat certain process activities. Specifically the major bottleneck appears to occur in cases
where a Registered issue is sent back for re-Initiation. This can occur when there is not sufficient
information on the problem, and additional information is required by the original submitter
before investigation. This occurrence is frequent, as it appears a total of 708 times in the event

A data-driven approach for generating insights into software development 37

CHAPTER 4. RESULTS

Figure 4.9: Process Map with performance metrics

log, showing that it is a serious hampering to the overall efficiency of the process. This process1180

mining visualization (information) allows us to focus our improvement efforts in areas that require
immediate attention. Another area of interest with regard to performance is that of repetitive
activities after a case has been Assigned (back to Investigated 14.8 days) and Fixed (back to
Assigned 7 days).

Although these iterations are part of the original intended workflow, by analyzing the process
data we can present highly valuable insights for the managerial level on what specific areas require
attention. Furthermore, we can deepen our analysis into specific variants that occur in the system.
The analysis shows that in 35.52% of cases, the process flow is: Initiated-Registered-Investigated-
Assigned-Fixed-Verified-Closed. The second most frequent variant is that of refused issues, at

38 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

12.88%. We can further enrich this knowledge by particularly filtering all activities with this1190

specific trace, and determine its performance. This allows the stakeholders to view the performance
and recurrence of activities within this variant. Other options using this tool include the metrics of
the average time it takes to complete issues, the median, minimum and maximum and a plethora
of other insights generation options.

Additionally, we can analyze cases specifically based on performance metrics such as short-
running cases, or very long ones. This way, we can determine a common obstacle that is evident
in the ones with long time-frames. An example is that of cases which take longer than 1 year to
complete, it is possible to observe that the majority of time is spend in state Registered, after
which a case is sent for re-Initiation after 18.6 months. This occurred 35 times in the filtered
process map, and could be an important area of improvement.1200

Figure 4.10: View of bottleneck Registered Initiated

For the process map illustrated based on the entire data-set, we can visually observe the
sequence of activities and their frequency. The visualization is enriched by the performance metrics
of time and distribution. This allows the process owner and team-leads to tackle the development
process in the areas where it performs the lowest. It also provides them with the multitude of
issues that do not follow the process protocol. One example that was not expected based on the
original process 4.18 is shown in 4.11, where a number of cases are Initiated, Registered then
re-Initiated only to be Rejected. This is of particular interest as the standard procedure requires
that an issue is investigated before it may be rejected, or closed.

We also analyzed the exact amount of working hours spent on activities as summarized in
Figure 4.12. This proceses map shows the exact amount of working hours neccesary to go through1210

the different process activities. Based on this visualization the higher management is able to
translate the direct costs of resources based on their hourly cost, and determine where to take
measures if neccesary. We can conduct similar analysis with regard to performance, compliance
and view how the process may have changed over the years by filtering out the dataset by year.

A data-driven approach for generating insights into software development 39

CHAPTER 4. RESULTS

Figure 4.11: Process map with bottleneck cases only

Figure 4.12: Process map considering only business hours

40 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

4.2.2 Simulating in Bizagi environment

Drawing from the insights gained through process mining in Figure 4.2 we can reconstruct our
process model for further analysis and simulations.

Table 4.2: Performance metrics and distribution of processes

Start state End State
Nr. of
cases

Percent
tot.

Avg. time
to state

Initiated
Rejected 1,017 24% 7.2 days
Registered 3,075 72% 3.9 days
Assigned 135 3% 35 hours
Fixed 44 1% 66 hours

Registered
Investigate 3045 80% 41.2 days
Initiated 738 20% 84.9 days

Investigated
Assigned 1946 62% 18 hours
Rejected 504 16% 5.4 days
Registered 708 22% 3.5 days

Assigned
Fixed 2,269 95% 9.8 days
Investigated 113 5% 48.7 days

Fixed
Assigned 273 12% 20.2 days
Verified 2,040 88% 22.2 days

Verified
Assigned 28 1% 25 hours
Closed 2,012 99% 6.8 days

Closed
End 2,012 100% Instant

Rejected
End 1,473 97% Instant
Initiated 48 3% 30 days

We retrieve exact metrics of activity distribution and use them to draw our model within the
Bizagi environment as illustrated in Figure 4.18.

Using this environment, we show the behavior of the AS-IS and TO-BE system along with1220

addressing three key bottlenecks in the process. The performance metrics for the simulated model
are set using the following information:

• The average time it takes from one state to another

• The frequency of occurrence from one state to another

From the first element we input the averages in order to ensure the model behaves similar to

A data-driven approach for generating insights into software development 41

CHAPTER 4. RESULTS

the real scenario. Using the second element, we ensure that the distribution of cases among the
transitions and states is representative of the original model.

The simulation allows for a analysis of the issue resolution. Primarily, we run a 365 days
simulation (without specification on arrival times) on the model to test the validity of the model.
As expected, the model produces results within the parameters of the data-set a proportion of1230

75% resolved cases out of the entire initiated ones. A total of 277 issues are submitted and a total
of 277 are completed. Among the completed ones, 148 of them are closed and 129 are rejected.

Next, we apply a fixed arrival rate of issues as mined from the data-set. The predicted number
of issues for year 2017 is at 2,699, suggesting that there will be more arrivals per day, more resolved
issues in total and with some unresolved issues remaining at the end of the fiscal year. We can
calculate the arrival rate using information on total arrivals from the data-set within the last 5
years. Furthermore, we use the same information to predict the increase in these figures for year
2017.

Table 4.3: Actual and predicted values for arrivals

Actual values Predicted value
2012 2013 2014 2015 2016 2017

Total arrivals 159 208 516 1,634 2,329 2,699
Arrivals per day 0.4 0.6 1.4 4.5 6.4 7.4

By feeding this information to the model, we can simulate the behavior of the process for year
2017 with key attributes. Successive tests were conducted and the simulation generated valuable1240

insights.
The simulated process model for year 2017 using normal distribution generates a total of 2,699

new issues started. Of these issues, a total of 2,469 are completed, and 230 remain uncompleted
and carried towards the next fiscal year. Of the completed issues, 1,364 of them will be successfully
closed and 1,105 will be rejected. These results are inconclusive as we need to further validate
our model with real data as well as modify the metrics due to the yearly changes the process
undergoes.

Thus, as a first step, we conduct a brief analysis on the previous year 2016 and ensure that
the produced results are within the parameters of the real data-set for that year.

Testing model for year 20161250

Table 4.4: Usage of different metrics for simulations vs. real outcome

Simulations using: Submitted Completed Closed Rejected
Last five year average metrics 2,329 2,114 1,160 954
2016 average metrics 2,329 1,504 785 719
2016 median metrics 2,329 1,835 1,046 789
2016 median & norm. distr of arrivals 2,329 1,658 1,119 539
Real 2016 outcome 2,329 1,673 1,095 578

For simulated year 2016, a total of 2,329 issues were submitted to the model, of which a total
of 2,114 were completed. From the completed ones, a total of 1,160 cases were successfully closed,
and 954 were rejected.

The real figures for year 2016 are somewhat different. Out of a total 2,329 total submitted
issues, 1,673 were completed - 1,095 of them closed and 578 were rejected. The biggest difference
between the simulated results and the real data is in the distribution of the total completed cases
and rejected cases.

The reason behind this difference is mainly due to the improvement of the process over the
years. The simulated environment uses the performance metrics of the combined 5 years in order

42 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

to make these estimations. To account for the continuous improvements of the process over the1260

years, it is imperative that we use the improved metrics of year 2016 to first validate our model.
This requires that we re-analyze the performance metrics of year 2016 in isolation and then reapply
these metrics to our model.

Testing with 2016 performance metrics

The updated performance metrics had an impact on the overall performance of the process. Data
inputs (further illustrated and explained in detail at end of document) ensured that in a span of
365 simulation days, a total of 2,329 cases were initiated. Of those cases, a total of 1,504 were
completed. Of the completed ones, 785 were successfully closed, and 719 were rejected.

A careful statistical analysis revealed that the event distribution was not symmetrical, but
rather skewed towards short-duration cases. Therefore we decided to use median as a more rep-1270

resentative value for the sample set. Using median metrics for state-changes significantly improved
the processing time of issues, as well as the accuracy of the model. Using 2016 median metrics the
model generated a total of 2,329 issues, of which 1,635 completed 1,046 were closed and 589 were
rejected. This data satisfies the real outcome of year 2016, and is thus a credible basis to proceed
with future simulations.

Predicting outcome of year 2017

A 365-day simulation for year 2017 taking into account for the trend (information) rate of im-
provement in the process over the years is conducted on the model. The model assumes an arrival
rate of 7.4 issues per day with normal distribution, and a total of 2,699 new arrivals in the system.

Figure 4.13: Simulation results

Out of a total 2,699 submitted issues, the simulation resulted in a total of 1,706 completed1280

issues, with 1138 of them being closed and 568 being rejected. These results are a reliable estimate
figure of the distribution of issues at the end of 2017, if the current trend of process resolution
were to continue. This translates into a number of issues being left untreated and carried to the
next year. Considering how issues have been piling up for the last 5 years, a careful review of
the process and involved resources is necessary. Furthermore, if we assume that the number of
resolved issues and the time effort spent is an indicator of the quality of software development,
then a direct improvement would also result in better products and services.

Bottlenecks and challenges

Though the overall proportion of time spent in resolving an issue improves over the years, the
worrying number of issues that are not closed within a calendar year is a subject that needs to be1290

resolved. In essence, issues that spend more than 2 years within the system are logically no longer
of significant value. These issues are frequently closed due to aging though also potentially due

A data-driven approach for generating insights into software development 43

CHAPTER 4. RESULTS

to inadequate resources to resolve them. As these factors are statistically difficult to prove, we
focus on simulating the environment by improving the current bottlenecks. We selected three key
aspects that delay the resolution process, and then simulate an environment with these improved
features.

1. Registered — back to — Initiated

When issues are in state registered, they can either continue for investigation or possible re-
initiation. The lead to state investigation takes a total of 12 days, a rather rational amount of
time for analyzing and collecting necessary resources to finding an issue resolution. However, when1300

issues are re-initiated, this process takes close to one month.

Figure 4.14: First bottleneck

The frequency which cases go back to re-initiation is 18% of cases. This percentage adds a
prolonged amount of time to the overall resolution. In fact, cases with such a trace take an average
of 133 days to complete compared to the other cases which take 78 days on average, making it a
large contributor to the process inefficiency.

Similarly, the same discrepancy is visible when comparing the median values 75 days in such
cases and 40 days without such cases.

2. Assigned — back to — Investigated

After issues are assigned, they can either be fixed or sent back for investigation. The fixing
step takes an average of 9.8 days to completed, whereas if sent back to state investigated it takes1310

almost 49 days. The frequency of such cases is near 4% (100 cases) taking valuable time to
complete. Such specific cases specifically take an average of 105 days to complete the whole issue,
whereas if they did not occur, the average processing time would be 65 days. Comparing to the
overall average of 78 days, it is clear that this procedure adds extra processing time.

Similarly the median figures reveal this bottleneck. It takes about an hour to proceed with the
fixing step, whereas it takes almost 15 days to go back to state investigated.

3. Registered — to — Investigated

Although the investigation procedure is a crucial step to the resolution of an issue, it follows
that a large share of time is spent in this phase. Nonetheless, a total of 41 days on average can
be viewed as a somewhat long time in investigating procedure. The median figure for the same1320

transition stands at 12 days. What makes this figure significant in terms of efficiency is that unlike
challenges I and II described above, it occurs in a majority of cases 70% of them. Thus a potential
improvement of this figure in the future may improve the overall process significantly.

44 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Figure 4.15: Second bottleneck

Figure 4.16: Third bottleneck

Addressing the challenges

In order to improve the process, we assume that any improvement in terms of resolution time is a
direct improvement to the process itself. Therefore, we take hypothetical measures to remove or
shorten the length of bottlenecks. We tackle the challenge in the appearing order, and discuss the
impact in performance. Regarding challenge I, by removing traces of issues that are re-initiated,
the overall process improves significantly. However, a realistic assumption is that such scenarios
can not be removed altogether, as there simply will be cases that require such a procedure. Thus1330

our approach for this challenge will be to shorten the length in simulation and evaluate the quality
of this improvement.

From the average (median) of 27 days required for this process, we determine that this task is
administrative in principle and can be improved with more structured supervision by the regulating
board. The submitter files an issue, at which point the board is responsible for handing the task
over to a resource for investigation. At this step, the responsible resource takes an unusual amount
of time to attempt the investigation, where the problem is either irreproducible, the information
is not satisfactory to investigate or due to some other challenges. Nonetheless, judging how this
process takes about 12 days for a successful investigation, it is expected to take a similar amount
of time to determine that the information supplement is not enough, or that the issue is registered1340

to the wrong investigating resource. With this assumption, we apply a 12 day average estimate
for transition Registered back to Initiated.

Next, we tackle challenge II, where we seek to improve the bottleneck of Assigned back to
Investigated. This transition takes a total of 15 days (median), which translates into more than

A data-driven approach for generating insights into software development 45

CHAPTER 4. RESULTS

2 weeks of work. The commonality of such cases is that an assigned resource refuses to carry
the fixing step. A variety of reasons could occur here, with the most frequent being that of the
resource attempting a fix but without success. As this step is necessary and similar scenarios
are possible in the future, we decide not to remove this step from the process, but to improve its
performance. Thus, by adding a process reminder to the necessary resource, and potentially to the
board for increased awareness, we ensure that the resource tasked with the fixing step raises such1350

an alarm earlier. This way, additional resources can be triggered to help in the resolution process
and shorten this lengthy transition. We make the assumption that a reminder would shorten this
procedure close to the amount it takes to successfully resolve an issue 7 days.

Tackling challenge III requires more insight into the investigation procedure. Since this is a
normal and integral process that takes 12 days (median), any improvement in this figure would
be significant to the overall process. Judging by the nature of the transition, it is difficult to as-
sume any improvement of more than 15% within the first year. Through a combination of added
resources (developers, testers etc.) and a reminder service to motivate the completion of invest-
igation phase, a 15% improvement in time is feasible within the short-term. This improvement
translates to a transition that takes 10.2 days instead of the current 12 days.1360

The improved model

After applying the aforementioned improvements, the simulated model was able to more efficiently
address issues. Out of a total 2,699 submitted issues, the simulation resulted in a total of 2,278
completed issues, with 1,538 of them being closed and 740 being rejected. The improved transitions
enabled the resolution of more issues in the long-term, and thus have a direct positive impact on
the overall process of issue resolution.

Figure 4.17: Reflection of improvements on process

Table 4.5: Simulations for 2017 environment

2017 simulations Submitted Completed % Completed Closed Rejected
Predicted trend model 2699 1706 63% 1138 568
Improved model 2699 2278 84% 1538 740

The simulated environment shows that the enhancements in these particular areas improved
the average resolution time from the original 43 days (median) to 38 days (median). This is
a 12% improvement in terms of resolution performance, which is feasible by only following the
aforementioned approaches.1370

46 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Figure 4.18: Process model using BPMN

A data-driven approach for generating insights into software development 47

CHAPTER 4. RESULTS

4.3 Linguistic summarization

We apply no pruning to our generated summaries with regard to truthfulness, as the intent is to
also check the validity of generated summaries with stakeholders in the organization. However,
due to a large number of produced summaries, we present an excerpt of the results based on T
value. Furthermore, we exclusively focus on the lead-time as our summary predicate. Results are
presented and then validated in Chapter 5.1 to understand whether high truthfulness sentences are
perceived as accurate and low truthfulness ones can be identified as inaccurate by the stakeholders.

In the first step, we generate summaries based on the issue type. In 4.6, we present summary
sentences with a truth value larger than zero. A total of six basic summaries with validity exist,
out of a total 337. The brute-force approach of our linguistic summary generation results in such1380

a high initial number of results which are filtered using the degree of truth T .

Table 4.6: Basic (specific) summaries with T >0

Summary sentence T
B1 Very few issues of type: (None) are short. 1
B3 Very few issues of type: (None) are long. 0.3
B4 Very few issues of type: (None) are very long. 1
B8 Few issues of type: (None) are very long. 1
B12 Many issues of type: (None) are very long. 1
B16 Most issues of type: (None) are very long. 0.35

The basic summarizes provide limited insights into the process. Of the summaries with some
or high degree of truthfulness (T >0), we can infer that a large number of issues that were not
tagged with issue type information, the resolution process takes a very long time to complete
(summary nr. B4). Sentences with the quantifier of events that do not occur frequently (very few)
produces multiple summaries (B1, B3, B4) as it is more likely that certain properties of issues
exists at low levels. Sentence B4 overrides B3 in that it is a subset of the main one. Basically, this
sentence informs us that a large number of issues take a very long time to complete, which is a
direct metric into the performance of the system. This is also confirmed by the counter-sentences
generated with no truth value: B13 most issues are short. T = 0 (a full list is present in Table1390

A.4.1.
Next, we check whether there is any correlation of issue length based on whether an issue is a

Change Request or a Problem Report. Summaries IT17, IT18, IT19, IT20, IT33, IT34, IT35, IT36
show that there is manifestation of all case-lengths among small groups of issues. Specifically, very
few cases are present among short, average, long, very long groups with a high degree of truth T .
Summaries IT17 — Very few Change Requests are short — or IT20 — Very few Change Requests
are very long — do not provide substantial insight, since we already expect to have issues among
all quantifiers (case-lengths). Thus, we shift our attention towards other summaries.

Table 4.7: Basic summaries exhibiting limited (very few) behavior

Summary sentence T
IT17 Very few Change Requests are short 1
IT18 Very few Change Requests are average 1
IT19 Very few Change Requests are long 1
IT20 Very few Change Requests are very long 1
IT33 Very few Problem Reports are short 1
IT34 Very few Problem Reports are average 1
IT35 Very few Problem Reports are long 1
IT36 Very few Problem Reports are very long 1

Similarly we generate summaries based on the project types, whether issues were finished by

48 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

rejection or proper closure and lastly by the severity of issues. The summaries generated do1400

not show interesting insights, as there are no particular differences found among the attributes.
Sentences with high degree of truth are present only in very few issues as presented in Appendix
A.4.1. However, it is interesting to see that some issues exhibit a more frequent behavior. Summary
TM53 shows that a few issues in field are short, whereas summary TM231 shows that in cloud
a few issues are long.

Table 4.8: Basic summaries exhibiting frequent (few) behavior

Summary sentence T
TM53 Few issues in field are short. 1
TM231 Few issues in cloud are long. 1
ST277 Few rejected issues are short. 1
SV293 Few critical issues are short. 0.8

The more complex summarizations involve the combination of all variables from our dataset.
This combination results in the generation of a very large number of summaries: 1,905 unique
summaries. Due to the large number of summaries, we can apply manual pruning to only view
summaries that are insightful. The removal of all sentences with a truth degree of zero results in
a remaining 610 summaries. To present more relevant summaries, we also select summaries with1410

a degree of truth T higher than 0.7. This yields 464 summaries, still a high number to consider
as a suitable summarization.

We are interested more frequent behavior in our system, namely in issues that occur in many
or most situations. This yields a total of 25 sentences that summarize the dataset. We present
this filtered list in two tables - Change Requests and Problem Reports - in Table 4.9 & Table 4.10,
and the complete summary list in Appendix A.4.2.

These summaries provide insight into behaviors that are very complex to extract with different
approaches. They show trends which are of particular interest to the stakeholders in terms of
expectations, and information that reveals the development lead-time based on issue type, project,
severity, and how if issues were closed or rejected.1420

4.3.1 Interesting findings

From the summaries, we can infer that Change Request issues of severity level critical are quickly
investigated. Summary CM61 in Table 4.9 summarizes the behavior that such issues are rejected
in a short time. In fact, summaries CM73 and CM89 emphasize that even issues with severity
level major and minor are often times short.

Summaries CM172 and CM187 in Table 4.9 show that Change Requests in maintenance
generally take a long time to complete, without regard to severity or their final state. Similar
findings can be concluded for Change Requests in delivery (CM348, CM352, CM428).

The findings suggest that Problem Reports have somewhat different characteristics. Linguistic
summaries CM745, CM761 and CM777 in Table 4.10 show that rejected issues in field mostly have1430

short times. Similarly, issues in maintenance require a short amount of time to complete. This
finding is contrary to the ones in Change Requests, as they take longer to complete there.

Lastly a large share of Problem Reports in projects transactions and interface disregarding
their final status all take a very long amount of time to complete. Summary CM1600 shows that
in fact almost all issues in transactions of Minor severity require a very long time to complete. A
drill-down on this specific group, reveals a total of 7 issues that take an unusually long amount of
time to complete — specifically an average of 961 days.

4.3.2 Surprising findings

When presented with a summary list, many of the stakeholders were surprised that a majority of
issues are not completed within the short term (30 days). That is the case for almost all projects1440

A data-driven approach for generating insights into software development 49

CHAPTER 4. RESULTS

Table 4.9: Complex CR summaries with T >0.7

Summary sentence T

CM61
Most Change Requests in field which are Rejected and are of Critical severity are
short.

1

CM73
Most Change Requests in field which are Rejected and are of Major severity are
short.

1

CM89
Many Change Requests in field which are Rejected and are of Minor severity are
short.

1

CM172
Many Change Requests in maintenance which are Rejected and are of Minor sever-
ity are very long.

1

CM187
Many Change Requests in maintenance which are Closed and are of Major severity
are long.

1

CM202
Many Change Requests in maintenance which are Rejected and are of Major Sever-
ity are average.

0.83

CM348
Many Change Requests in delivery which are Closed and are of undefined severity
are very long.

1

CM352
Most Change Requests in delivery which are Closed and are of undefined severity
are very long.

1

CM428
Many Change Requests in delivery which are Rejected and are of Minor severity
are very long.

0.83

CM524
Many Change Requests in linux which are Closed and are of Minor severity are
very long.

0.83

CM604
Many Change Requests in MS windows which are Rejected and are of Major
severity are very long.

0.83

CM620
Many Change Requests in MS windows which are Rejected and are of Minor
severity are very long.

1

50 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Table 4.10: Complex PR summaries with T >0.7

Summary T

CM745
Many Problem Reports in field which are Rejected and are of Critical severity are
short.

1

CM761
Many Problem Reports in field which are Rejected and are of Major severity are
short.

1

CM777
Many Problem Reports in field which are Rejected and are of Minor severity are
short.

1

CM937
Many Problem Reports in maintenance which are Rejected and are of Critical
severity are short.

1

CM969
Many Problem Reports in maintenance which are Rejected and are of Minor sever-
ity are short.

1

CM1356
Many Problem Reports in storage which are Rejected and are of Minor severity
are very long.

0.78

CM1548
Many Problem Reports in transactions which are Closed and are of Minor severity
are very long.

0.83

CM1596
Many Problem Reports in interface which are Rejected and are of Minor severity
are very long.

1

CM1600
Most Problem Reports in transactions which are Rejected and are of Minor severity
are very long.

1

CM1644
Many Problem Reports in interface which are Closed and are of Minor severity
are very long.

1

CM1660
Many Problem Reports in interface which are Rejected and are of Critical severity
are very long.

1

CM1692
Many Problem Reports in interface which are Rejected and are of Minor severity
are very long.

1

A data-driven approach for generating insights into software development 51

CHAPTER 4. RESULTS

and issue types, resulting in some interesting discussions during the interview. An interesting
finding was emphasized by multiple interviewees with regard to summary CM745, where Problem
Reports that are rejected and are of critical severity are rejected very quickly. According to the
interviewees, this can be considered as a positive metric in the sense that issues with critical
severity are completed within a short amount of time. However, the same could not be claimed
regarding problem reports in project interface, where regardless of the severity, many issues take
a very long time to complete.

Summaries CM937 and CM969 were a positive surprise for the interviewees, and especially for
the stakeholders directly related to the process management. The fact that issues in maintenance
are rejected in a short notice is a positive behavior. According to them, the process is suffering1450

from long-overdue cases, and not necessarily from the turnout of the resolution process. If issues
are present in the system for a long time and minimal action is taken to complete them, this
translates into a big cost for the organization.

The findings were relatively interesting to the stakeholders. Additional informal feedback
received hinted towards a lot of interest in issues that require a long amount of time to complete,
specifically in Change Requests in maintenance (CM172, CM187), Motion (CM348, CM352,
CM428) and MSwindows (CM620).

4.3.3 Wrong or very surprising findings

It was difficult for stakeholders to answer this question with specifics regarding the summaries.
The biggest concern about the findings were expressed with regard to summaries that generated1460

information about issues with no type, and no project information. Multiple stakeholders were
convinced that since the input format does not allow for such behavior, these summaries are
impossible to generate. However, this is a misrepresentation, since the data-set does in fact
contain such entries as proven by the traditional analysis in the early stages of the project. After
drill-down, a total of 30 issues were found containing no information on severity or issue type,
and were validated by re-querying the original database. The reason for such cases is that users
manually changed the attribute after the issue had already been submitted, something that is
possible only through editing of an issue (not through submission form).

4.3.4 Missed insights

None of the interviewed stakeholders had direct feedback regarding any missing information from1470

the data-set. Their input was largely constructive and suggestive in extending this approach to
other departments and data-set, to see trends in other segments. They claim that the current
data-set under analysis provides a limited view of the resolution process. Combining data sources
from other departments would possibly provide additional insights to the resolution process, and
add more value to the analysis overall.

4.3.5 Event log summaries

We have also implemented an existing (recent) approach for summarization of the event log as
developed by Dijkman and Wilbik [15]. Due to unreliability of results and consultation with expert
(prof. Anna Wilbik), we briefly present the findings but make no claims or validation attempts.

In essence, the summarization produces clusters of sequences that occur more frequently in our1480

data. The summaries are identical in comparison to our traditional brute-force sequences (using
Python), although also produce common trace combinations without a start or end activity. These
findings can help us in identifying a recurrent sequence that may be in-compliant with the originally
intended workflow.

What we can infer from the produced summaries, is that a large share of the events share the
initial sequence of being Initiated and Registered (EV23). This is not a significant insight, since
we already are aware of the process context. However, the fact that this summary has a degree of

52 A data-driven approach for generating insights into software development

CHAPTER 4. RESULTS

Table 4.11: Excerpt of event log summaries with T higher than 0.7

Summary sentence T

EV1 Many cases contain sequence: Initiated, Registered, Investigated, Investigated 1

EV2
Many cases contain sequence: Initiated, Registered, Investigated, Assigned, Fixed,
Verified

1

EV3 Many cases contain sequence: Initiated, Registered, Investigated, Registered 1
EV4 Many cases contain sequence: Initiated, Registered, Investigated, Rejected 1

EV5 Many cases contain sequence: Initiated, Registered, Investigated, Verified 1

EV6 Many cases contain sequence: Investigated, Registered, Investigated, Assigned 0.75

EV7 Many cases contain sequence: Fixed, Assigned, Fixed, Verified, Closed 0.75

EV8 Many cases contain sequence: Initiated, Assigned, Fixed, Verified, Closed 0.78

EV9 Many cases contain sequence: Initiated, Registered, Investigated 1

EV10 Many cases contain sequence: Registered, Investigated, Assigned 0.72

EV11 Many cases contain sequence: Initiated, Registered, Investigated 1

EV12 Many cases contain sequence: Initiated, Registered, Initiated, Rejected 0.70

EV13 Many cases contain sequence: Initiated, Registered, Verified 0.99

EV14 Many cases contain sequence: Initiated, Registered, Rejected 0.98

EV15 Many cases contain sequence: Initiated, Registered, Registered 0.97

EV16 Many cases contain sequence: Initiated, Registered 0.97
EV17 Many cases contain sequence: Initiated, Registered, Investigated 1

EV18 Many cases contain sequence: Initiated, Registered, Fixed 1

EV19 Many cases contain sequence: Initiated, Registered, Delayed 0.97

EV20 Many cases contain sequence: Initiated, Registered, Closed 1

EV21 Many cases contain sequence: Initiated, Registered, Assigned 0.98

EV22 Many cases contain sequence: Initiated, Assigned, Investigated 0.81

EV23 Almost all cases contain sequence: Initiated, Registered 0.80

A data-driven approach for generating insights into software development 53

CHAPTER 4. RESULTS

truth 0.8 shows that there are sequences which do not share these characteristics. So in turn, this
does provide valid insight into what a potential problem with the process compliance could be.

Furthermore, when informally investigating these sequence results with stakeholders, it was1490

very surprising to them how there are cases that can be rejected without an investigation phase.
In fact, such a trace has a large presence in our log, as can be validated by summaries EV12
and EV14. Such event traces were also found using the previous process mining approach and
the entire sequence list. The summaries generally show that the process data is compliant to the
intended workflow, and the support for such traces is high (T values larger than 0.7 selected for
preview).

4.4 Comparison of aproaches

The application of traditional data analysis, process mining and linguistic summarization was
necessary to reach conclusions regarding the benefits of each method. According to theory and
practice, as well as stakeholder preference based on their input during the interviews, it is de-1500

termined that no approach is distinctly favored over the other in principle. According to informal
discussions and during result presentation, stakeholders claimed that process mining and linguistic
summarization provide deeper and sometimes surprising knowledge on the issue resolution process.

It is challenging to generate direct correlations using simple analysis, furthermore made difficult
by the fact that our data-set contained mostly textual data. The traditional approach was useful in
showing the exact metrics and distribution of data, and translating them to a visual representation
using graphs or charts. However, the process of analysis and translation was manual and time-
consuming. This is a major drawback in today’s market as data congregates continually and such
methods suffer from high variation.

By utilizing a process mining approach, it was possible to analyze the sequence of issue res-1510

olution by checking for conformance, modeling the process, and measuring all the exact metrics.
This approach provided with a significant amount of interesting insights regarding the workflow,
by pointing specific bottlenecks in the process, hinting towards the type of issues that cause such
behavior, and allowing the user to view different perspectives over the years, releases, types of
issues, based on length, process-flow etc. Though process mining brings valuable insights, it is
also limited in what it can derive from the data.

That is why we felt it is crucial to apply a third and final approach to analyze our data-set,
that of linguistic summarization using fuzzy logic. This method allows a deep understanding of the
correlation between data fields, represented by fuzzy-set membership functions, allowing for more
robustness and detailed analysis of the information. Results generated using this approach hint1520

towards different metrics through different groups of data, with a high variation regarding lead-time
performance of different projects, issue types, and other related variables. Most importantly, the
method is able to correctly identify trends within specific projects, which is a significant indicator
to team-leads and managerial level stakeholders. Through this information, recommendations and
changes can be made to the process.

In conclusion, the three methodologies provide significant insights into the resolution process.
Managerial level stakeholders preferred the provision of textual (linguistic summarizations) and
visual data representations, whereas the software engineers heavily favored the visualizations for
reasons of detail and ability to make individual interpretations. The linguistic summaries were
favored among top-level staff due to the concise summaries that capture the important elements1530

and provide the findings in a single explicit format.

54 A data-driven approach for generating insights into software development

Chapter 5

Validation and user evaluation

5.1 Validation

The stakeholders rated the insights positively throughout the study period. During presentations
and informal discussions, they constructively reviewed the generated findings using traditional
analysis and process mining models. Regarding basic data analysis, stakeholders were surprised
that there is a large difference in terms of resolution time between problem reports and change
requests.

When presented with process models, stakeholders often questioned the fact that there are pos-1540

sible traces in which issues are rejected without investigation. Upon drill-down, it was concluded
that such behavior does in fact occur, and that these are issues immediately rejected by either the
submitter or the control board (due to inaccuracy, inability to reproduce issue or aging). Further
consideration was given to process changes — such as the introduction of a Propose Reject activity
— which was short-lived and simply caused process noise. Upon discussion with process owners,
these activities were clustered so that the process maps presented a clearer, more understandable
format.

Regarding the validation of linguistic summaries, we informally reverse-check a number of
highly valid and completely invalid summaries with out original dataset. This confirmed that the
produced summary behavior is found in the dataset, and thus the sentences are accurate.1550

5.2 Evaluation

Evaluation of descriptive statistics and process mining was not done to a formal level. This
is due to the fact that it was informally communicated multiple times during discussions with
stakeholders and was proven satisfactory. Rather, we put our attention towards the evaluation of
linguistic summaries.

Through our experiment we validate the extent to which the degree of truth is able to represent
truthfulness of statements. We asked participants to review the summaries on a scale from 1 to
10, with 1 being completelyuntrue and 10 being completelytrue. Through our questionnaires,
we combined the steps of gathering additional information for internal purposes and evaluation
of our findings. The sample questionnaires for managers and testers/developers can be found in1560

Appendices A.1.1 and A.1.1 respectively.
The results of our evaluation show that users with familiarity to the process are highly likely

to rate high degree of truth summaries with a high score. This shows that in fact the degree of
truth in summaries is a good metric for determining the validity of summaries. The distributed
average score among managers and software engineers are summarized in Table 5.1 as averages
for groups of sentences, and the individual score summaries are summarized in Table 5.2.

Overall, the results validate that linguistic summaries can be correctly identified by the stake-
holders to a great degree. This confirms that stakeholders are aware of the process, and that the

A data-driven approach for generating insights into software development 55

CHAPTER 5. VALIDATION AND USER EVALUATION

findings are valid. There is however, room for improvement regarding the validation of findings
with very low degree of truth. Overall, managers scores low validity sentences with an average1570

score of 5.3, whereas software engineers with a score of 5.7. Although ideally we would expect
such sentences to have a very low score (close to 0), the fact that they are scored as lowest among
the groups is also a positive conclusion.

In fact, the average scores for groups of sentences increases proportionally with the degree of
truth. This confirms that stakeholders are well-informed about the process, while also showing
that linguistic summarization provides credible insights. Furthermore, we asked our stakeholders if
they are informed about the process and data overall. From the stakeholders with great knowledge
of the process (>7), the scoring is similar with a slight edge on the extremes. Briefly, they are
able to tell low validity sentences slightly better than others (score them as 5.1 vs. 5.5 average),
and similarly score the high degree of truth sentences with a higher value (7.8 vs 7.55 average).1580

However, the more unexpected result was that stakeholders would occasionally rate completely
untrue sentences as valid (although the average was low). It is difficult to come to a conclusion
regarding this behavior, as it could be simply due to a misunderstanding of the summary. When
probed specifically about this issue, the stakeholders pointed towards the data-set itself. In their
opinion, it is impossible to have summaries where there is no project type definition or no severity
defined. However, the data-set itself suggests otherwise, even though these are mandatory fields
in the input form of the ticket-resolution platform. This is due to users editing the issue variables
after the initial submission, an action that is allowed by the current process.

Table 5.1: Average scores for summary groups

Managers SW Engineers
Summaries 0 to 0.25 5.3 5.7
Summaries 0.25 to 0.5 6 5.9
Summaries 0.5 to 0.75 6.4 6.7
Summaries 0.75 to 1 7.8 7.3

Table 5.2: Average scores for all summaries

Managers SW Engineers T
ST281 5.5 4.8 0.12
CM13 4.7 5.2 0
CM765 5.7 6.2 0.11
IT45 5.3 6.6 0
SV309 6.0 5 0.36
B16 5.2 6 0.35
CM140 6.5 6.6 0.5
CM980 6.3 6.2 0.41
TM57 6.3 6.6 0.58
CM176 6.8 6.6 0.7
CM1696 5.7 6.6 0.7
TM200 6.7 7 0.57
B1 7.5 7 1
B12 7.8 7.6 1
CM61 8.2 7.2 1
CM187 7.8 7.4 1

56 A data-driven approach for generating insights into software development

Chapter 6

Conclusion1590

Our research resulted in the generation of numerous insights into the software setting. From the
initial stages of data gathering, validation and down to implementation and application of our three
methodologies, we were able to document the means of insight generation in software development
defect-management systems. By investigating each approach individually, we generate insights
that are relevant to the case study organization, and the software development industry as well.

The three methodologies provide significant insights into the resolution process. Managerial
level stakeholders preferred the provision of textual (linguistic summarizations) and visual data
representations, whereas the software engineers heavily favored the visualizations for reasons of
detail and ability to make individual interpretations. The linguistic summaries were favored among
top-level staff due to the concise summaries that capture the important elements and provide the1600

findings in a single explicit format.

Using data analysis approaches, users can generate various insights into the software defect-
management processes.

Our elaborate analysis on the potential of three methodologies provides a road-map for future
data analysts of managers who are seeking to extract information from their data. By reviewing
the insights generated in our methodology, it is possible to determine what each approach can
reveal, and subsequently determine the feasibility of such a project. Furthermore, by following
our implementations and approaches it also helps the scientific domain with practical applications
through a eloquent case-study, with direct feedback from the domain stakeholders.

Another important element in our study was the evaluation of findings using the linguistic1610

summarization methodology. By checking how the data summaries are validated by stakeholders
without the provision of truthfulness degree, we could confirm that the degree of truth is a relatively
correct estimator of data in Chapter 5.1. This is an interesting finding recalling that extensive
research is conducted in extending the measures for quality control in the generation of linguistic
summaries by Hirota et al. [17] and Wu et al. [54].

In brief, our study show the strengths and weaknesses of each methodology and approach,
and provides a practical approach for generation of insights into software development defect-
management. Using time as a key metric, we generate deep insights into the process, areas of
improvement and a road map of how to reproduce such results. Our approach can be extended to
measure other important metrics within software development such as code size growth, effective1620

lines of code, text mining of issue descriptions and additional elements. Nevertheless, we believe
that this document can serve as a point of reference for data analysts in selecting their data
extraction and interpretation methodologies within the domain of software development.

6.1 Reccomendations

Due to the exploratory nature of the study, we are limited in the provision of direct recommend-
ations regarding the process improvement. Our recommendations are rather presented as conclu-

A data-driven approach for generating insights into software development 57

CHAPTER 6. CONCLUSION

sions regarding the suitable methods that can be used in the software development industry. In
brief, the organization stakeholders should focus their efforts in utilizing our provided tools and
environments to keep track of their process variables. Due to the ease-of-use of process mining
tools, we recommend an of-the-shelf solution which can provide substantial amounts of insight to1630

the managerial level. Concise recommendations regarding the software defect-management process
were derived from process mining and the simulation process. These recommended improvements
are presented in detail in section 4.2.2.

In addition, we recommend that the stakeholders revisit our methodology and conduct a similar
analysis using extensive forms of linguistic summarization, with which interesting data summaries
can be explored and analyzed. We encourage the stakeholders to make use of this environment
for other data sources within the organization. A combination of insights from linguistic summar-
ization and traditional data analysis can reveal future performance issues with regard to projects
teams, types and more.

Overall, our direct recommendation is to primarily make much more use of the available in-1640

formation systems. The data records stored contain important information on the performance of
the departments and overall software quality. By measuring these figures continuously using our
proposed methodology, the organization can improve its decision making and translate these into
improved software defect management.

Furthermore, efforts in cleaning the data are important to conduct ad-hoc and valid analysis.
The system that contains the information is unfriendly to the average user, and provides unneces-
sary information during the extraction process. Close to 450 variables are available for extraction,
and only 20 of them contain useful information. Users find it difficult in conducting valid analysis
with the current set-up.

Forms of issue submission have loopholes regarding validity of entered data. The format still1650

allows for unwanted behavior that leads to issues containing no project, severity and other variable
information. This later translates into confusion during the analysis process, and can be addressed
easily by the workflow management system administrator.

6.2 Limitations of the study

Although this research was carefully prepared, we are aware of its limitations and shortcomings.
The main limitations of this study are methodological and researcher ones. Regarding methodo-
logy, we are limited in terms of measures used to collect primary data, sample size and the issue of
self-reported data. In brief, the interviews would ideally be conducted earlier and at a slower pace,
with more feedback from all relevant stakeholders. To address with this limitation we often had
to re-design the questionnaire, and repeat interviews to collect the right information. Regarding1660

the sample size, we interviewed a total of 11 stakeholders, a rather small number to make general
claims regarding our quantitative results. The sample size was limited by the relevant stakeholders
and interview timing, thus making it difficult to reach a larger number of respondents. However,
as much of our research provided qualitative feedback as well, this issue was managed by asking
more open questions to the relevant stakeholders. This qualitative feedback, although very useful,
was at times difficult to document as the nature of conversations was often informal. We attempt
to address this limitation by continuously requesting feedback and reflecting on it in our final
results.

Regarding researcher limitations, we are limited in terms of access and longitudinal effects.
It was challenging to gain access to the right information throughout the duration of the study.1670

Due to hierarchy and access privileges, extensive amount of time was required to use particular
systems — specifically in extracting event log data. This had an impact on the extent to which
we could implement our process mining experiments. In terms of time, the 6-month duration
was relatively short for developing the correct research methodology and analytical environment
of linguistic summaries. To address this issue, we narrowed our scope of study towards more
simplistic implementation of linguistic summaries and shorter experiments for its evaluation.

58 A data-driven approach for generating insights into software development

CHAPTER 6. CONCLUSION

6.3 Future research

There are a number of gaps in our knowledge around software-defect management processes.
Although our research attempts to bridge the methods and suitable analytical tools according to
current literature and practices, there is a need for additional research and validation specifically1680

in:
1. In-depth exploration of how linguistic summaries translate into concrete knowledge for

the organization stakeholders. Further research might analyze and present various summaries to
the stakeholders and then measure the extent that these insights improved the software defect-
management process. This could be done via a before-and-after experiment during different release
cycles, or between two different departments.

2. Additional methodological work is necessary to capture valid impact of the used analytical
approaches in the domain. Potentially, this project could be extended by text-mining analysis of
the issue descriptions and attempt to find correlation between the description and success rate of
resolution. This way issues with high potential to be unresolved could be identified much earlier1690

in the process, resulting in saved resources and costs.
3. It would be helpful to capture qualitative experiences with process mining and linguistic

summaries of managerial level stakeholders. A series of focus groups could reveal what the meth-
odologies provide and lack in the context of software defect-management. Although the basics of
this research were covered in our study, a more valid extension is necessary to collect and validate
information.

A data-driven approach for generating insights into software development 59

Bibliography

[1] Wil M.P. van der Aalst. ”Process Mining: Discovery, Conformance and Enhancement of
Business Processes”. Springer, 3:352, 2011.

[2] Wil M.P. van der Aalst. ”Process Mining Manifesto”. Business Process Management Work-1700

shops - Lectures Notes in Business Information Processing, 99, 2012.

[3] Wil M.P. van der Aalst, H.A. Reijers, A.J.M.M Weijters, B.F. van Dongen, A.K. Alves
de Medeiros, M. Song, and H.M.W. Verbeek. ”Business Proess Mining: An industrial applic-
ation”. ScienceDirect: Information Systems, 32:713–732, 2007.

[4] Wil M.P. van der Aalst and A.J.M.M. Weijters. ”Process mining: a research agenda”. Com-
puters in Industry, 53:231–244, 2004.

[5] Scott Barber. ”Beyond performance testing”. IBM DeveloperWorks, pages 1–18, 2004.

[6] Fatih Emre Boran, D. Akay, and R.R. Yager. ”An overview of methods for linguistic sum-
marization with fuzzy sets”. Expert Systems with Applications: An international Journal,
61:356–377, 2016.1710

[7] Bernadette Bouchon-Meunier, M. Dotoli, and B. Maione. ”On the choice of Membership
Functions in a Mamdani-type Fuzzy Controller”. 1996.

[8] Rita Castilla-Ortega, N. Marin, D. Sanchez, and A.G. Tettamanzi. ”Linguistic Summarization
of Time Series using Genetic Algorithms”. EUSLFAT Conference, pages 1–8, 2011.

[9] Soumen Chakrabarti, M. Ester, U. Fayyad, J. Gehrke, J. Han, S. Morishita, G. Piatetsky-
Shapiro, and W. Wang. ”Data Mining Curriculum: A Proposal”. Intensive Working Group
of ACM SIGKDD Curriculum Commmittee, pages 23–44, 2006.

[10] Hsinchun Chen, R.H.L. Chiang, and C. Storey. ”Business Intelligence and Analytics: From
Big Data to Big Impact”. MIS Quarterly, 36(4):1165–1188, 2012.

[11] Chen Chun-houh, W. Hrdle, and A. Unwin. ”Handbook of Data Visualization”. Springer,1720

2005.

[12] Christopher Clifton. ”Data Mining”. Encyclopedia Britannica, 2009.

[13] Jonathan E. Cook and A.L. Wolf. ”Event-Based Detection of Concurrency”. Proceedings of
the Sixth International Symposium of the Foundations of Software Engineering, pages 35–45,
1998.

[14] Miguel Delgado, D. Snchez, and MA. Vila. ”Fuzzy cardinality based evaluation of quantified
sentences”. International Journal of Approximate Reasoning, 23:23–66, 2000.

[15] Remco M. Dijkman and A.M. Wilbik. ”Linguistic Summarziation of Event Logs - A Practical
Approach”. Information Systems, 67:114–125, 2017.

A data-driven approach for generating insights into software development 61

BIBLIOGRAPHY

[16] Alan R. Hevner, S. March, J. Park, and S. Ram. ”Design science in Information Systems1730

Research”. MIS Quarterly, 28(1):75–105, 2004.

[17] Kaoru Hirota and W. Pedrycz. ”Fuzzy computing for data mining”. Proceedings of the IEEE,
87(9):1575–1600, 1999.

[18] Peter J Huber. ”Languages for Statistics and Data Analysis”. Journal of Computational and
Graphical Statistics, 9(3):600–620, 2000.

[19] Janusz Kacprzyk and P. Strykowski. ”Linguistic summaries of sales data at a computer
retailer - a case study”. Proceedings of IFSA, 1(99):29–33, 1999.

[20] Janusz Kacprzyk, A. Wilbik, and S. Zadrozny. ”Linguistic summarization of time series
using a fuzzy quantifier driven aggregation”. Systems Research Institute: Polish Academy of
Sciences, 159:1–9, 2008.1740

[21] Janusz Kacprzyk and R.R. Yager. ”Linguistic summaries of data using fuzzy logic”. Internat.
J. General Systems, 30:33–154, 2001.

[22] Janusz Kacprzyk, R.R. Yager, and S. Zadrozny. ”Fuzzy linguistic summaries of databases for
an efficient business data analysis and decision support”. Systems Research Institute: Polish
Academy of Sciences, Machine Intelligence Insitute: Iona College, 30:2–16, 2014.

[23] Janusz Kacprzyk and S. Zadrozny. ”Supporting Decision Making via Verbalization of Data
Analysis Results Using Linguistic Data Summaries”. Recent Advances in Decision Making,
pages 121–143, 2009.

[24] Daniel A. Keim. ”Information Visualization and Visual Data Mining”. IEEE Transactions
on Visualization and Computer Graphics, 8(1):23–25, 2002.1750

[25] Andreas Kerren, J.T. Stasko, J. Fekete, and C. North. ”Human-centered Issues and perspect-
ives”. Springer , 1998.

[26] Barbara Kitchenham. ”Guidelines for performing Systematic Literature Reviews in Software
Engineering”. Keele University, Dunham University, 2:33–53, 2007.

[27] Anne Laurent. ”A new approach for the generation of fuzzy summaries based on fuzzy
multidimensional databases”. Intell. Data Analytics, 7:155–177, 2003.

[28] Steve LaValle, E. Lesser, R. Shockley, M.S. Hopkins, and N. Kruschwitz. ”Special Report:
Analytics and the New Path to Value”. MIT Sloan Management Review, 52:22–32, 2011.

[29] Jan De Leeuw and G. Michailidies. ”Graph Layout Techniques and Multidimensional Data
Analysis”. Institute of Mathematical Statistics, 35:219–248, 2000.1760

[30] Gordon S. Linoff and M.J.A. Berry. ”Data Mining Techniques: For Marketing, Sales, and
Customer Relationship Management”. Encyclopedia Britannica, 3:60–100, 2011.

[31] Inderjeet Mani and M. Maybury. ”Advances in Automatic Text Summarization”. MIT Press,
pages 233–244, 1999.

[32] Laura Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch. ”Pro-
cess Mining: discovering direct successors in process logs”. Springer-Proceedings of the 5th
International Conference on Discovery Science, 2534:364–373, 2002.

[33] Tim Menzies. ”Software Analytics: So what?”. IEEE Software, pages 3–4, 2013.

[34] Florian Mlechert, R. Winter, and M. Klesse. ”Aligning Process Automation and Business
Intelligence to Support Corporate Performance Management”. Americas Conference on In-1770

formation Systems (AMCIS), 36(4):1165–1188, 2012.

62 A data-driven approach for generating insights into software development

BIBLIOGRAPHY

[35] Glenn J. Myatt and W.P. Johnson. ”Making Sense of Data I: A Practical Guide to Exploratory
Data Analysis and Data Mining”. John Wiley and Sons Inc., pages 13–30, 2014.

[36] Adam Niewiadomski. ”A Type-2 Fuzzy Approach to Linguistic Summarization of Data”.
IEEE Transactions on Fuzzy Systems, 16(1):198–212, 2008.

[37] Ken Peffers, T. Tuunanen, M.A. Rothenberger, and S. Chatterjee. ”A Design Science Re-
search Methodology for Information Systems Research”. Journal of Management Information
Systems, 24(3):45–77, 2007.

[38] Wouter Poncin, A. Serebrenik, and M.v.d. Brand. ”Process mining software repositories”.
15th European Conference on Software Maintenance and Reengineering, pages 5–14, 2011.1780

[39] William M. Pride and O.C. Ferrell. ”Foundations of Marketing”. Barnes and Noble, 6(1):36–
40, 2007.

[40] Marcus E. Raichle. ”A brief history of human functional brain mapping.”. Brain Mapping
The Systems, pages 33–75, 2000.

[41] Anne Rozinat. ”Disco Tour”. Fluxicon, pages 1–13, 2013.

[42] Connie U. Smith. ”Software Performance Engineering”. Encyclopedia of Software Engineer-
ing, 2002.

[43] Robert Spence. ”Information Visualization”. Springer, 2001.

[44] Mitschele A. Thiel and B. Muller-Clostermann. ”Performance Engineering of SDL/measure-
ments”. Journal on Computer Networks and ISDN Systems, 31:1801–1815, 1999.1790

[45] Boudewijn F. van Dongen. ”Process Mining and Verification”. Eindhoven University of
Technology, pages 6–8, 2007.

[46] Don Vilsack. ”The Intersection of Big Data Analytics and Software Development: Why You
Should Be There”. Recent Advances in Decision Making, pages 121–143, 2009.

[47] G. Wedawatta, B. Ingirige, and D. Amaratunga. ”Case Study as a Research Strategy: Invest-
igating Extreme Weather Resilience of Construction SMEs in the UK”. Annual International
Conference of International Institute for Infrastructure, 7(1):1–9, 2011.

[48] A.J.M.M. Weijters and W.M.P. van der Aalst. ”Process mining: Discovering Workflow Models
from Event-Based Data”. Proceedings of the ECAI Workshop on Knowledge Discovery and
Spatial Data, pages 283–290, 2001.1800

[49] Elaine J. Weyuker and F.I. Vokolos. ”Experience with Performance Testing of Software
Systems: Issues, an Approach, and Case Study”. IEEE Trans. On software Engineering,
26:1147–1156, 2000.

[50] Anna Wilbik and U. Kaymak. ”Gradual linguistic summaries”. Information Processing and
Management of Uncertainty in Knowledge-Based systems, (15):2–3, 2014.

[51] Anna Wilbik and U. Kaymak. ”Linguistic Summarization of Processes - a research agenda”.
16th World Congress of the International Fuzzy Systems Association (IFSA), 9th Conference
of the European Society for Fuzzy Logic and Technology (EUSFLAT), ():1636–1640, 2015.

[52] Anna M. Wilbik and R.M. Dijkman. ”On the generation of useful linguistic summaries of
sequences”. Information Systems - School of Industrial Engineering, pages 555–562, 2016.1810

[53] Murray Woodside, G. Franks, and D.C. Petriu. ”The Future of Software Performance Engin-
eering. 2007 Future of Software Engineering, 17:171–187, 2007.

A data-driven approach for generating insights into software development 63

BIBLIOGRAPHY

[54] Dongrui Wu and M. Mendel. ”Linguistic summarization using IF-THEN rules”. IEEE Inter-
national Conference on Fuzzy Systems, pages 2–8, 2010.

[55] Jing Xu and M. Woodside. ”Performance Analysis of a Software Design using the UML
Profile for Schedulability, Performance and Time”. International Conference Modeling Tech-
niques and Tools for Computer Software Design using the UML Profile for Schedulability,
Performance and Time, 13, 2003.

[56] Ronald R. Yager. ”A New Approach to the Summarization of Data”. Information Sciences,
28:69–86, 1982.1820

[57] Ronald R. Yager. ”On linguistic summaries of data”. Knowledge discovery in databases, pages
347–363, 1991.

[58] Ronald R. Yager. ”Linguistic summaries as a tool for database discovery”. Proceedings of
FUZZ-IEEE’95/IFES’95, Workshop on Fuzzy Database Systems and Information Retrieval,
():79–82, 1995.

[59] Ronald R. Yager. ”Database discovery using fuzzy sets.”. International Journal of Intelligent
Systems, 11(9):691–712, 1996.

[60] Lotfi A. Zadeh. ”Fuzzy Sets”. Information and Control, pages 338–353, 1965.

[61] Lotfi A. Zadeh. ”A note on prototype theory and fuzzy sets”. University of California, 12,
1982.1830

64 A data-driven approach for generating insights into software development

Appendix A

Appendices

A.1 Questionnaires

A.1.1 Questionnaires for Managers

D1 Full name, Role/Position, Department

Q1 What is your role in the organization?

Q2 What is your team’s role in the organization?

Q3
Do you use the WMS to track and manage the issue resolution process? [IF NO, why
not?]

Q4 [IF YES] Have you ever submitted an issue through the WMS?

Q5
[IF YES] What steps do you usually take to ensure your submitted issue is resolved
effectively and in time?

Q6
How informed are you about the progress of issue resolution? From 1-to-10, where 1 is
”not informed at all” and 10 is ”fully informed”

Q7
How satisfied are you with the in-built reporting tool in the WMS? From 1-to-10, where
1 is ”not informed at all” and 10 is ”fully informed”

Q8
What kind of insights would be important for you? (Influx-outflux, diversity of case
handling, lead time, cycle time, team velocity etc.)

Q9
Would you rather see concise textual representations of such data or the traditional
visualization approach (charts, graphs)?

Q10

Below are some sentences generated using linguistic summarization method. Please rank
the following statements based on how true you perceive them from 1-to-10, where 1 is
”completely not true” and 10 is ”completely true”.

a Very few Problem Reports in premium which are Closed and are Critical are very long.

b Many Change Requests in maintenance which are Closed and Minor are very long.

c Most issues without project type information are very long.

d Few major severity issues are short.

e Few issues in transactions are very long

f Most issues in interface which are rejected and of Minor severity are very long.

g Most Change Requests in maintenance which are Rejected and are Minor are very long.

h Many issues in field are short.

i Many Change Requests in maintenance which are Closed and are Major are very long.

j Most Change Requests which are Rejected and of Critical severity are short.

k Many issues with no information on type are very long.

A data-driven approach for generating insights into software development 65

APPENDIX A. APPENDICES

l Very few issues are short.

m Most Problem Reports are short.

n Most Problem Reports which are Rejected and of Major severity are short.

o Most Change Requests which are Closed and of Critical severity are short.

p Many Rejected issues are short.

Q11
Judging by the summaries in tables 3 and 4, are there any surprising findings (interesting
insights)?

Q12
Are there any impossible findings (wrong or very surprising findings) that you see in
the statements?

Q13 Is there anything you would expect to see in the data summaries but you have not?

Q14 Additional comments/notes

A.1.2 Questionnaires for Developers/Testers

D1 Full name, Role/Position, Department/Team

Q1 What is your role in the organization?

Q2
Could you describe your duties in terms of steps and how much time each of them takes
(on average)? (IN DAYS: Planning, Analysis, Design, Development, Testing, Release)

Q3
Do you use the WMS to track and manage the issue resolution process? [IF NO, why
not?]

Q4
How informed are you about the progress of issue resolution? From 1-to-10, where 1 is
”not informed at all” and 10 is ”fully informed”

Q5
What is the main source of this information? (Team-leader, Sprint-meetings, WMS,
Other)

Q6 Are you aware of WMS’s in-built reporting/analytic tools?

Q7
Do you ever use WMS analytics tools to get additional information on issue resolution?
[Yes, all the time - Yes, sometimes - Rarely - Never]

Q8
What kind of insights would be important for you? (Influx-outflux, diversity of case
handling, throughput time etc.)

Q9
Would you rather see concise textual representations of such data or the traditional
visualization approach (charts, graphs)?

Q10

Below are some sentences generated using linguistic summarization method. Please rank
the following statements based on how true you perceive them from 1-to-10, where 1 is
”completely not true” and 10 is ”completely true”.

a Very few Problem Reports in premium which are Closed and are Critical are very long.

b Many Change Requests in maintenance which are Closed and Minor are very long.

c Most issues without project type information are very long.

d Few major severity issues are short.

e Few issues in transactions are very long

f Most issues in interface which are rejected and of Minor severity are very long.

g Most Change Requests in maintenance which are Rejected and are Minor are very long.

h Many issues in field are short.

i Many Change Requests in maintenance which are Closed and are Major are very long.

j Most Change Requests which are Rejected and of Critical severity are short.

k Many issues with no information on type are very long.

l Very few issues are short.

m Most Problem Reports are short.

66 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

n Most Problem Reports which are Rejected and of Major severity are short.

o Most Change Requests which are Closed and of Critical severity are short.

p Many Rejected issues are short.

Q11
Judging by the summaries in tables 3 and 4, are there any surprising findings (interesting
insights)?

Q12
Are there any impossible findings (wrong or very surprising findings) that you see in
the statements?

Q13 Is there anything you would expect to see in the data summaries but you have not?

Q14 Additional comments/notes

A.2 Survey results - managers

A.2.1 Interview 1

• Q1. Management

• Q2. Deployment of software.

• Q3. Yes1840

• Q4. Yes

• Q5. Dispatch, prioritize and track

• Q6. 10

• Q7. 7

• Q8. Influx-outflux, lead-time

• Q9. Graph

• Q10.

– 3.75 - Average perceived truth for sentences 0-to-0.25

– 5.25 - Average perceived truth for sentences 0.25-to-0.5

– 7 - Average perceived truth for sentences 0.5-to-0.751850

– 8 - Average perceived truth for sentences 0.75-to-1

• Q11. Interesting that issues with no information on their type are so long.

• Q12. No

• Q13. I am not familiar with the method, so I am not sure what else could be extracted.

• Q14. This approach is very interesting, reveals patterns which are very difficult to see
otherwise.

A.2.2 Interview 2

• Q1. Management

• Q2.

• Q3. Yes1860

• Q4. Yes

A data-driven approach for generating insights into software development 67

APPENDIX A. APPENDICES

• Q5. I receive the Change Requests that are difficult to resolve. The BIG items that are not
resolved by others come to me. I communicate the information thoroughly with involved
parties to ensure that the resolution process is carried to the end, or that the value created
is justified.

• Q6. 1

• Q7. 5

• Q8. Influx-outflux, lead-time

• Q9. Influx-outflux, a potential link with source code

• Q10.1870

– 6.5 - Average perceived truth for sentences 0-to-0.25

– 6.25 - Average perceived truth for sentences 0.25-to-0.5

– 7.5 - Average perceived truth for sentences 0.5-to-0.75

– 7.5 - Average perceived truth for sentences 0.75-to-1

• Q11. Its an interesting approach to give the overall knowledge. Its interesting to see that
there are only a few issues that are solved quickly.

• Q12. No

• Q13. Information on outflux-influx would be interesting to see if this method allows.

• Q14. Maybe focus on other data sources to enrich the summaries.

A.2.3 Interview 31880

• Q1. Management

• Q2. Track and pursue long-resolutions with respective parties.

• Q3. Yes

• Q4. Yes

• Q5. Include as much detail as I can, so that if the resolving party needs data.

• Q6. 10

• Q7. 6

• Q8. Influx-outflux, info on time spent on issue, group issues based on features

• Q9. Graph

• Q10.1890

– 6.5 - Average perceived truth for sentences 0-to-0.25

– 5.75 - Average perceived truth for sentences 0.25-to-0.5

– 6.25 - Average perceived truth for sentences 0.5-to-0.75

– 7.75 - Average perceived truth for sentences 0.75-to-1

• Q11. That so many issues in maintenance take very long to close.

• Q12. I would disagree that Problem Reports take a short time (refers to low validity sen-
tence).

• Q13. No.

• Q14. No.

68 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

A.2.4 Interview 41900

• Q1. Management

• Q2.

• Q3. Yes

• Q4. Yes

• Q5. Keep list of submitted issues from our team, and directly contact the resolution party
to keep track of progress.

• Q6. 5

• Q7. 5

• Q8. Issue types statistics, planned date and progress

• Q9. Graph1910

• Q10.

– 4.5 - Average perceived truth for sentences 0-to-0.25

– 5.5 - Average perceived truth for sentences 0.25-to-0.5

– 7 - Average perceived truth for sentences 0.5-to-0.75

– 7.75 - Average perceived truth for sentences 0.75-to-1

• Q11. They provide very detailed breakdown of issue behavior. It is interesting because you
can then investigate these behaviors and fix them.

• Q12. Not that I can see.

• Q13. No.

• Q14. No.1920

A.2.5 Interview 5

• Q1. Management

• Q2. Review and lead the activities in software development, detail technical standards -
coding, tools and improve overall software efficiency.

• Q3. Yes

• Q4. Yes

• Q5. Managing issue resolution, tracking problems and aiding in resolution.

• Q6. 7

• Q7. 6

• Q8. Influx-outflux, lead-time1930

• Q9. Graph

• Q10.

– 6.25 - Average perceived truth for sentences 0-to-0.25

– 7 - Average perceived truth for sentences 0.25-to-0.5

A data-driven approach for generating insights into software development 69

APPENDIX A. APPENDICES

– 5.5 - Average perceived truth for sentences 0.5-to-0.75

– 8 - Average perceived truth for sentences 0.75-to-1

• Q11. That there are issues with no information on type. I would like to know if these are
of recent cases, or previous years. Because the process is always improving and such events
should not happen.

• Q12.1940

• Q13. I would expect that most issues fall into short resolution times. Apparently we take
too much time to resolve issues, and some of them take very long which is not acceptable.

• Q14. This is a very interesting project. It would be very useful if it can be applied in other
data.

A.2.6 Interview 6

• Q1. Management

• Q2. Managment of issues

• Q3. Yes

• Q4. Yes

• Q5.1950

• Q6.

• Q7.

• Q8. Influx-outflux, lead-time

• Q9. Graph

• Q10.

– 4.25 - Average perceived truth for sentences 0-to-0.25

– 4 - Average perceived truth for sentences 0.25-to-0.5

– 5 - Average perceived truth for sentences 0.5-to-0.75

– 8 - Average perceived truth for sentences 0.75-to-1

• Q11. A few of the attributes mentioned have mandatory fields, so it is very surprising that1960

there are issues with no type, or project information.

• Q12. Again, mandatory fields data different from what I expected.

• Q13. Not at this moment, need time to consume the data and validate.

• Q14.

70 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

A.3 Survey results - software engineers/testers

A.3.1 Interview 1

• Q1. Software development

• Q2.

– 1 - Planning

– 2-3 - Analysis1970

– 2-3 - Design

– 5 - Development

– 1 - Documentation

– 2 - Testing

– 2 - Release

• Q3. Yes

• Q4. 10

• Q5. Team-lead.

• Q6. No

• Q7. Never1980

• Q8. i.e. information missing, and sometimes deleted.

• Q9. Both graph and text.

• Q10.

– 5 - Average perceived truth for sentences 0-to-0.25

– 5.5 - Average perceived truth for sentences 0.25-to-0.5

– 7.75 - Average perceived truth for sentences 0.5-to-0.75

– 8 - Average perceived truth for sentences 0.75-to-1

• Q11. I am not familiar with the process details enough to provide an answer to this question.

• Q12. Don’t know.

• Q13. Even though the concept is interesting, I feel that graphs are easier to understand.1990

These summaries are rather complicated.

• Q14.

A.3.2 Interview 2

• Q1. Software development

• Q2.

– 1 - Planning

– 2-3 - Analysis

– 2-3 - Design

– 5 - Development

A data-driven approach for generating insights into software development 71

APPENDIX A. APPENDICES

– 1 - Documentation2000

– 2 - Testing

– 2 - Release

• Q3. Yes

• Q4. 10

• Q5. Team-lead, sprints.

• Q6. No

• Q7. Never

• Q8. Lead-time, details on issue.

• Q9. Both graph and text.

• Q10.2010

– 6.5 - Average perceived truth for sentences 0-to-0.25

– 6.25 - Average perceived truth for sentences 0.25-to-0.5

– 7.25 - Average perceived truth for sentences 0.5-to-0.75

– 7.5 - Average perceived truth for sentences 0.75-to-1

• Q11. Yes they are very interesting insights, very detailed.

• Q12. No.

• Q13. No.

• Q14.

A.3.3 Interview 3

• Q1. Software development2020

• Q2.

– 1 - Planning

– 3 - Analysis

– 1 - Design

– 3 - Development

– 8 - Documentation

– 1 - Testing

– 3 - Release

• Q3. Yes

• Q4. 52030

• Q5. WMS

• Q6. Yes

• Q7. Yes, sometimes.

• Q8. Current state of issue.

72 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

• Q9. Graph

• Q10.

– 5 - Average perceived truth for sentences 0-to-0.25

– 6.25 - Average perceived truth for sentences 0.25-to-0.5

– 7.25 - Average perceived truth for sentences 0.5-to-0.75

– 7.25 - Average perceived truth for sentences 0.75-to-12040

• Q11. Yes, why are there issues that take so long? I’d like to know more about the reasons
behind that.

• Q12. Not very well informed about the distribution among different teams. Regarding my
issues, I expect some issues to take less time than what the summaries say.

• Q13. I would expect more information on the reasons why issues are rejected or closed.

• Q14. I like the approach and maybe more information could be revealed if you apply it in
other data.

A.3.4 Interview 4

• Q1. Software development

• Q2.2050

– 0 - Planning

– 0 - Analysis

– 2 - Design

– 7 - Development

– 1 - Documentation

– 0 - Testing

– 0 - Release

• Q3. No

• Q4. 3

• Q5. Email updates.2060

• Q6. No

• Q7. Never

• Q8. Time to resolution, current state of issue

• Q9. Both graph and text.

• Q10.

– 5.75 - Average perceived truth for sentences 0-to-0.25

– 6 - Average perceived truth for sentences 0.25-to-0.5

– 5.75 - Average perceived truth for sentences 0.5-to-0.75

– 6.25 - Average perceived truth for sentences 0.75-to-1

A data-driven approach for generating insights into software development 73

APPENDIX A. APPENDICES

• Q11. The sentences definitely seem to provide some very detailed insights into projects and2070

types of issues. These may be very useful in investigating and improving some aspects of
our issue resolving.

• Q12. My job is not directly related to the process itself, so I can not say.

• Q13. No.

• Q14. There are issues that have not been solved for many years. Maybe that is also something
to clear with the responsible submitters.

A.3.5 Interview 5

• Q1. Software development

• Q2.

– 1 - Planning2080

– 3 - Analysis

– 2 - Design

– 5 - Development

– 3 - Documentation

– 1 - Testing

– 2 - Release

• Q3. No

• Q4. 1

• Q5. Team-lead, Sprint-meetings

• Q6. No2090

• Q7. Never

• Q8. Missing information, unable to re-create environment.

• Q9. Graph.

• Q10.

– 6.25 - Average perceived truth for sentences 0-to-0.25

– 5.75 - Average perceived truth for sentences 0.25-to-0.5

– 5.5 - Average perceived truth for sentences 0.5-to-0.75

– 7.5 - Average perceived truth for sentences 0.75-to-1

• Q11. We use another system.

• Q12. No2100

• Q13. Not well-informed about WMS.

• Q14.

A.4 Dataset linguistic summaries

A.4.1 Basic linguistic summaries

Due to large number of results, we only show summaries with T larger than 0.7.

74 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

Summary Predicate Summary Attribute T

B1 very few are short IssueType:(None) 1.0
B4 very few are very long IssueType:(None) 1.0
B8 few are very long IssueType:(None) 1.0
B12 many are very long IssueType:(None) 1.0
IT17 very few are short IssueType:Change Request 1.0
IT18 very few are average IssueType:Change Request 1.0
IT19 very few are long IssueType:Change Request 1.0
IT20 very few are very long IssueType:Change Request 1.0
IT33 very few are short IssueType:Problem Report 1.0
IT34 very few are average IssueType:Problem Report 1.0
IT35 very few are long IssueType:Problem Report 1.0
IT36 very few are very long IssueType:Problem Report 1.0
TM49 very few are short ProjectType: field 1.0
TM50 very few are average ProjectType: field 1.0
TM51 very few are long ProjectType: field 0.8
TM52 very few are very long ProjectType: field 1.0
TM53 few are short ProjectType: field 1.0
TM65 very few are short ProjectType: maintenance 1.0
TM66 very few are average ProjectType: maintenance 1.0
TM67 very few are long ProjectType: maintenance 1.0
TM68 very few are very long ProjectType: maintenance 1.0
TM81 very few are short ProjectType: maintenance 1.0
TM82 very few are average ProjectType: maintenance 1.0
TM83 very few are long ProjectType: maintenance 1.0
TM84 very few are very long ProjectType: maintenance 1.0
TM97 very few are short ProjectType: premium 1.0
TM98 very few are average ProjectType: premium 1.0
TM99 very few are long ProjectType: premium 1.0
TM100 very few are very long ProjectType: premium 1.0
TM113 very few are short ProjectType: legacy 1.0
TM114 very few are average ProjectType: legacy 1.0
TM115 very few are long ProjectType: legacy 1.0
TM116 very few are very long ProjectType: legacy 1.0
TM129 very few are short ProjectType: delivery 1.0
TM130 very few are average ProjectType: delivery 1.0
TM131 very few are long ProjectType: delivery 1.0
TM132 very few are very long ProjectType: delivery 1.0
TM145 very few are short ProjectType: storage 1.0
TM146 very few are average ProjectType: storage 1.0
TM147 very few are long ProjectType: storage 1.0
TM148 very few are very long ProjectType: storage 1.0
TM161 very few are short ProjectType: linux 1.0
TM162 very few are average ProjectType: linux 1.0
TM163 very few are long ProjectType: linux 1.0
TM164 very few are very long ProjectType: linux 1.0
TM177 very few are short ProjectType: MS windows 1.0
TM178 very few are average ProjectType: MS windows 1.0
TM179 very few are long ProjectType: MS windows 1.0
TM180 very few are very long ProjectType: MS windows 1.0
TM193 very few are short ProjectType: transactions 1.0
TM194 very few are average ProjectType: transactions 1.0

A data-driven approach for generating insights into software development 75

APPENDIX A. APPENDICES

TM195 very few are long ProjectType: transactions 1.0
TM196 very few are very long ProjectType: transactions 1.0
TM209 very few are short ProjectType: interface 1.0
TM210 very few are average ProjectType: interface 1.0
TM211 very few are long ProjectType: interface 1.0
TM212 very few are very long ProjectType: interface 1.0
TM216 few are very long ProjectType: interface 1.0
TM225 very few are short ProjectType: cloud 1.0
TM227 very few are long ProjectType: cloud 1.0
TM228 very few are very long ProjectType: cloud 1.0
TM231 few are long ProjectType: cloud 1.0
TM241 very few are short ProjectType: nominal 1.0
TM242 very few are average ProjectType: nominal 1.0
TM243 very few are long ProjectType: nominal 1.0
TM244 very few are very long ProjectType: nominal 1.0
ST257 very few are short State: Closed 1.0
ST258 very few are average State: Closed 1.0
ST259 very few are long State: Closed 1.0
ST260 very few are very long State: Closed 1.0
ST273 very few are short State: Rejected 1.0
ST274 very few are average State: Rejected 1.0
ST275 very few are long State: Rejected 0.8
ST276 very few are very long State: Rejected 1.0
ST277 few are short State: Rejected 1.0
SV289 very few are short Severity: Critical 1.0
SV290 very few are average Severity: Critical 1.0
SV291 very few are long Severity: Critical 1.0
SV292 very few are very long Severity: Critical 1.0
SV293 few are short Severity: Critical 0.8
SV305 very few are short Severity: Major 1.0
SV306 very few are average Severity: Major 1.0
SV307 very few are long Severity: Major 1.0
SV308 very few are very long Severity: Major 1.0
SV321 very few are short Severity: Minor 1.0
SV322 very few are average Severity: Minor 1.0
SV323 very few are long Severity: Minor 1.0
SV324 very few are very long Severity: Minor 1.0

A.4.2 Complex linguistic summaries

Due to large number of results, we only show summaries with T larger than 0.7 and with quantifiers
few, many and most (not ”very few”).

Summary Predicate Summary Attribute T

CM5 few are short
IssueType: Change Request and ProjectType: field and
State: Closed and Severity: Critical

0.8

CM38 few are average
IssueType: Change Request and ProjectType: field and
State: Closed and Severity: Minor

1.0

CM53 few are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Critical

1.0

CM57 many are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Critical

1.0

CM61 most are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Critical

1.0

76 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

CM69 few are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Major

1.0

CM73 many are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Major

1.0

CM85 few are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Minor

1.0

CM89 many are short
IssueType: Change Request and ProjectType: field and
State: Rejected and Severity: Minor

1.0

CM103 few are long
IssueType: Change Request and ProjectType: mainten-
ance and State: Closed and Severity: Critical

0.7

CM120 few are very long
IssueType: Change Request and ProjectType: mainten-
ance and State: Closed and Severity: Major

0.9

CM136 few are very long
IssueType: Change Request and ProjectType: mainten-
ance and State: Closed and Severity: Minor

1.0

CM149 few are short
IssueType: Change Request and ProjectType: mainten-
ance and State: Rejected and Severity: Major

0.8

CM152 few are very long
IssueType: Change Request and ProjectType: mainten-
ance and State: Rejected and Severity: Major

0.8

CM168 few are very long
IssueType: Change Request and ProjectType: mainten-
ance and State: Rejected and Severity: Minor

1.0

CM172 many are very long
IssueType: Change Request and ProjectType: mainten-
ance and State: Rejected and Severity: Minor

1.0

CM183 few are long
IssueType: Change Request and ProjectType: mainten-
ance and State: Closed and Severity: Major

1.0

CM187 many are long
IssueType: Change Request and ProjectType: mainten-
ance and State: Closed and Severity: Major

1.0

CM198 few are average
IssueType: Change Request and ProjectType: mainten-
ance and State: Rejected and Severity: Major

1.0

CM202 many are average
IssueType: Change Request and ProjectType: mainten-
ance and State: Rejected and Severity: Major

0.8

CM230 few are average
IssueType: Change Request and ProjectType: premium
and State: Closed and Severity: Minor

1.0

CM261 few are short
IssueType: Change Request and ProjectType: premium
and State: Rejected and Severity: Minor

1.0

CM312 few are very long
IssueType: Change Request and ProjectType: legacy and
State: Closed and Severity: Minor

1.0

CM328 few are very long
IssueType: Change Request and ProjectType: legacy and
State: Rejected and Severity: Major

1.0

CM344 few are very long
IssueType: Change Request and ProjectType: delivery and
State: Closed and Severity: (None)

1.0

CM348 many are very long
IssueType: Change Request and ProjectType: delivery and
State: Closed and Severity: (None)

1.0

CM352 most are very long
IssueType: Change Request and ProjectType: delivery and
State: Closed and Severity: (None)

1.0

CM360 few are very long
IssueType: Change Request and ProjectType: delivery and
State: Closed and Severity: Critical

1.0

CM391 few are long
IssueType: Change Request and ProjectType: delivery and
State: Closed and Severity: Minor

1.0

CM424 few are very long
IssueType: Change Request and ProjectType: delivery and
State: Rejected and Severity: Minor

1.0

CM428 many are very long
IssueType: Change Request and ProjectType: delivery and
State: Rejected and Severity: Minor

0.8

CM485 few are short
IssueType: Change Request and ProjectType: storage and
State: Rejected and Severity: Major

1.0

A data-driven approach for generating insights into software development 77

APPENDIX A. APPENDICES

CM501 few are short
IssueType: Change Request and ProjectType: linux and
State: Closed and Severity: Major

1.0

CM502 few are average
IssueType: Change Request and ProjectType: linux and
State: Closed and Severity: Major

1.0

CM520 few are very long
IssueType: Change Request and ProjectType: linux and
State: Closed and Severity: Minor

1.0

CM524 many are very long
IssueType: Change Request and ProjectType: linux and
State: Closed and Severity: Minor

0.8

CM582 few are average
IssueType: Change Request and ProjectType: MS win-
dows and State: Rejected and Severity: Critical

1.0

CM600 few are very long
IssueType: Change Request and ProjectType: MS win-
dows and State: Rejected and Severity: Major

1.0

CM604 many are very long
IssueType: Change Request and ProjectType: MS win-
dows and State: Rejected and Severity: Major

0.8

CM616 few are very long
IssueType: Change Request and ProjectType: MS win-
dows and State: Rejected and Severity: Minor

1.0

CM620 many are very long
IssueType: Change Request and ProjectType: MS win-
dows and State: Rejected and Severity: Minor

1.0

CM629 few are short
IssueType: Change Request and ProjectType: nominal and
State: Closed and Severity: Critical

1.0

CM661 few are short
IssueType: Change Request and ProjectType: nominal and
State: Closed and Severity: Minor

1.0

CM678 few are average
IssueType: Change Request and ProjectType: nominal and
State: Rejected and Severity: Major

1.0

CM693 few are short
IssueType: Problem Report and ProjectType: field and
State: Closed and Severity: Critical

0.8

CM741 few are short
IssueType: Problem Report and ProjectType: field and
State: Rejected and Severity: Critical

1.0

CM745 many are short
IssueType: Problem Report and ProjectType: field and
State: Rejected and Severity: Critical

1.0

CM757 few are short
IssueType: Problem Report and ProjectType: field and
State: Rejected and Severity: Major

1.0

CM761 many are short
IssueType: Problem Report and ProjectType: field and
State: Rejected and Severity: Major

1.0

CM773 few are short
IssueType: Problem Report and ProjectType: field and
State: Rejected and Severity: Minor

1.0

CM777 many are short
IssueType: Problem Report and ProjectType: field and
State: Rejected and Severity: Minor

1.0

CM837 few are short
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Critical

1.0

CM872 few are very long
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Minor

1.0

CM886 few are average
IssueType: Problem Report and ProjectType: mainten-
ance and State: Closed and Severity: Critical

0.8

CM902 few are average
IssueType: Problem Report and ProjectType: mainten-
ance and State: Closed and Severity: Major

1.0

CM933 few are short
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Critical

1.0

CM937 many are short
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Critical

1.0

CM949 few are short
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Major

1.0

CM965 few are short
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Minor

1.0

78 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

CM969 many are short
IssueType: Problem Report and ProjectType: mainten-
ance and State: Rejected and Severity: Minor

1.0

CM981 few are short
IssueType: Problem Report and ProjectType: premium
and State: Closed and Severity: Critical

1.0

CM998 few are average
IssueType: Problem Report and ProjectType: premium
and State: Closed and Severity: Major

0.8

CM1015 few are long
IssueType: Problem Report and ProjectType: premium
and State: Closed and Severity: Minor

1.0

CM1045 few are short
IssueType: Problem Report and ProjectType: premium
and State: Rejected and Severity: Major

1.0

CM1063 few are long
IssueType: Problem Report and ProjectType: premium
and State: Rejected and Severity: Minor

0.7

CM1125 few are short
IssueType: Problem Report and ProjectType: legacy and
State: Rejected and Severity: Critical

1.0

CM1221 few are short
IssueType: Problem Report and ProjectType: delivery and
State: Rejected and Severity: Critical

1.0

CM1237 few are short
IssueType: Problem Report and ProjectType: delivery and
State: Rejected and Severity: Major

1.0

CM1253 few are short
IssueType: Problem Report and ProjectType: delivery and
State: Rejected and Severity: Minor

0.8

CM1318 few are average
IssueType: Problem Report and ProjectType: storage and
State: Rejected and Severity: Critical

0.8

CM1352 few are very long
IssueType: Problem Report and ProjectType: storage and
State: Rejected and Severity: Minor

1.0

CM1356 many are very long
IssueType: Problem Report and ProjectType: storage and
State: Rejected and Severity: Minor

0.8

CM1381 few are short
IssueType: Problem Report and ProjectType: linux and
State: Rejected and Severity: Critical

1.0

CM1414 few are average
IssueType: Problem Report and ProjectType: MS windows
and State: Closed and Severity: Critical

0.7

CM1461 few are short
IssueType: Problem Report and ProjectType: MS windows
and State: Rejected and Severity: Critical

1.0

CM1509 few are short
IssueType: Problem Report and ProjectType: transactions
and State: Closed and Severity: Critical

1.0

CM1526 few are average
IssueType: Problem Report and ProjectType: transactions
and State: Closed and Severity: Major

1.0

CM1544 few are very long
IssueType: Problem Report and ProjectType: transactions
and State: Closed and Severity: Minor

1.0

CM1548 many are very long
IssueType: Problem Report and ProjectType: transactions
and State: Closed and Severity: Minor

0.8

CM1559 few are long
IssueType: Problem Report and ProjectType: transactions
and State: Rejected and Severity: Critical

1.0

CM1576 few are very long
IssueType: Problem Report and ProjectType: transactions
and State: Rejected and Severity: Major

0.9

CM1592 few are very long
IssueType: Problem Report and ProjectType: transactions
and State: Rejected and Severity: Minor

1.0

CM1596 many are very long
IssueType: Problem Report and ProjectType: transactions
and State: Rejected and Severity: Minor

1.0

CM1600 most are very long
IssueType: Problem Report and ProjectType: transactions
and State: Rejected and Severity: Minor

1.0

CM1640 few are very long
IssueType: Problem Report and ProjectType: interface
and State: Closed and Severity: Minor

1.0

CM1644 many are very long
IssueType: Problem Report and ProjectType: interface
and State: Closed and Severity: Minor

1.0

A data-driven approach for generating insights into software development 79

APPENDIX A. APPENDICES

CM1656 few are very long
IssueType: Problem Report and ProjectType: interface
and State: Rejected and Severity: Critical

1.0

CM1660 many are very long
IssueType: Problem Report and ProjectType: interface
and State: Rejected and Severity: Critical

1.0

CM1672 few are very long
IssueType: Problem Report and ProjectType: interface
and State: Rejected and Severity: Major

1.0

CM1688 few are very long
IssueType: Problem Report and ProjectType: interface
and State: Rejected and Severity: Minor

1.0

CM1692 many are very long
IssueType: Problem Report and ProjectType: interface
and State: Rejected and Severity: Minor

1.0

CM1717 few are short
IssueType: Problem Report and ProjectType: nominal and
State: Closed and Severity: Major

1.0

CM1736 few are very long
IssueType: Problem Report and ProjectType: nominal and
State: Closed and Severity: Minor

0.8

CM1749 few are short
IssueType: Problem Report and ProjectType: nominal and
State: Rejected and Severity: Critical

1.0

A.5 All event log sequences

Freq. Sequence

1237 Initiated Registered Investigated Assigned Fixed Verified Closed
449 Initiated Rejected
380 Initiated Registered Initiated Rejected
329 Initiated Registered Investigated Rejected
224 Initiated Registered Investigated Registered Investigated Assigned Fixed Verified Closed
121 Initiated Registered Investigated Assigned Fixed Assigned Fixed Verified Closed
117 Initiated Assigned Fixed Verified Closed
60 Initiated Registered Investigated Registered Initiated Rejected
58 Initiated Registered Investigated Registered Investigated Rejected

43
Initiated Registered Investigated Registered Investigated Registered Investigated Assigned
Fixed Verified Closed

40 Initiated Registered Initiated Registered Initiated Rejected
40 Initiated Registered Initiated Registered Investigated Assigned Fixed Verified Closed
31 Initiated Registered Investigated Assigned Investigated Rejected
27 Initiated Fixed Verified Closed

23
Initiated Registered Investigated Assigned Fixed Assigned Fixed Assigned Fixed Verified
Closed

23
Initiated Registered Investigated Registered Investigated Assigned Fixed Assigned Fixed
Verified Closed

18 Initiated Registered Initiated Registered Investigated Rejected
15 Initiated Registered Investigated Assigned Fixed Verified Assigned Fixed Verified Closed
8 Initiated Registered Investigated Registered Investigated Registered Initiated Rejected

8
Initiated Registered Initiated Registered Investigated Registered Investigated Assigned
Fixed Verified Closed

8
Initiated Registered Investigated Registered Initiated Registered Investigated Assigned
Fixed Verified Closed

8 Initiated Registered Investigated Registered Investigated Registered Investigated Rejected

8
Initiated Registered Investigated Assigned Investigated Registered Investigated Assigned
Fixed Verified Closed

6
Initiated Registered Investigated Registered Investigated Registered Investigated Registered
Investigated Registered Investigated Assigned Fixed Verified Closed

80 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

6
Initiated Registered Investigated Registered Investigated Assigned Fixed Assigned Fixed
Assigned Fixed Verified Closed

5 Initiated Registered Initiated Fixed Verified Closed
5 Initiated Registered Initiated Rejected Initiated Rejected

5
Initiated Registered Investigated Rejected Initiated Registered Investigated Assigned Fixed
Verified Closed

5 Initiated Registered Investigated Registered Initiated Registered Initiated Rejected
5 Initiated Rejected Initiated Rejected

4
Initiated Registered Investigated Registered Investigated Registered Investigated Assigned
Fixed Assigned Fixed Verified Closed

4 Initiated Registered Investigated Registered Initiated Registered Investigated Rejected
4 Initiated Registered Investigated Assigned Investigated Registered Investigated Rejected

4
Initiated Registered Investigated Assigned Fixed Assigned Investigated Assigned Fixed Veri-
fied Closed

4
Initiated Registered Investigated Registered Investigated Registered Initiated Registered
Initiated Rejected

4 Initiated Registered Investigated Assigned Fixed Assigned Investigated Rejected

4
Initiated Registered Investigated Registered Investigated Registered Investigated Registered
Investigated Assigned Fixed Verified Closed

4 Initiated Registered Investigated Rejected Initiated Rejected
4 Initiated Assigned Fixed Assigned Fixed Verified Closed
3 Initiated Registered Investigated Assigned Investigated Assigned Fixed Verified Closed

3
Initiated Registered Investigated Registered Investigated Assigned Fixed Verified Assigned
Fixed Verified Closed

3 Initiated Registered Initiated Registered Investigated Registered Initiated Rejected

3
Initiated Registered Investigated Assigned Investigated Registered Investigated Registered
Investigated Assigned Fixed Verified Closed

3 Initiated Registered Initiated Assigned Fixed Verified Closed
3 Initiated Registered Initiated Registered Investigated Registered Investigated Rejected
3 Initiated Registered Investigated Assigned Investigated Registered Initiated Rejected

3
Initiated Registered Investigated Registered Initiated Registered Investigated Registered
Investigated Assigned Fixed Verified Closed

3
Initiated Registered Investigated Assigned Fixed Assigned Fixed Assigned Fixed Assigned
Fixed Verified Closed

3 Initiated Assigned Investigated Rejected

3
Initiated Registered Initiated Registered Investigated Assigned Fixed Assigned Fixed Veri-
fied Closed

2
Initiated Registered Investigated Registered Investigated Assigned Investigated Registered
Investigated Assigned Fixed Verified Closed

2 Initiated Registered Investigated Registered Investigated Rejected Initiated Rejected

2
Initiated Registered Initiated Registered Investigated Registered Investigated Registered
Investigated Assigned Fixed Verified Closed

2 Initiated Registered Initiated Rejected Initiated Assigned Fixed Verified Closed

2
Initiated Rejected Initiated Registered Investigated Registered Investigated Assigned Fixed
Verified Closed

2
Initiated Registered Initiated Rejected Initiated Registered Investigated Assigned Fixed
Verified Closed

2 Initiated Registered Investigated Registered Investigated Assigned Investigated Rejected

2
Initiated Registered Investigated Assigned Investigated Registered Investigated Registered
Investigated Assigned Fixed Assigned Fixed Verified Closed

2
Initiated Registered Initiated Registered Initiated Registered Initiated Registered Investig-
ated Rejected

2 Initiated Registered Investigated Registered Initiated Fixed Verified Closed

A data-driven approach for generating insights into software development 81

APPENDIX A. APPENDICES

2
Initiated Registered Initiated Registered Initiated Registered Investigated Registered Invest-
igated Assigned Fixed Verified Closed

2
Initiated Registered Investigated Registered Investigated Assigned Fixed Assigned Investig-
ated Registered Investigated Assigned Fixed Verified Closed

2
Initiated Registered Investigated Registered Investigated Assigned Investigated Registered
Initiated Rejected

2 Initiated Registered Investigated Registered Initiated Rejected Initiated Rejected

1
Initiated Registered Investigated Assigned Fixed Assigned Fixed Assigned Investigated Re-
jected

1
Initiated Registered Investigated Registered Investigated Registered Investigated Assigned
Fixed Assigned Investigated Rejected

1
Initiated Registered Investigated Registered Investigated Assigned Investigated Registered
Investigated Registered Initiated Rejected

1
Initiated Registered Investigated Assigned Investigated Registered Initiated Registered In-
vestigated Rejected

1
Initiated Registered Investigated Registered Investigated Registered Investigated Registered
Investigated Rejected

1
Initiated Registered Initiated Rejected Initiated Registered Investigated Assigned Fixed As-
signed Fixed Verified Closed

1
Initiated Registered Investigated Assigned Investigated Assigned Investigated Registered
Initiated Rejected

1
Initiated Registered Investigated Assigned Investigated Registered Investigated Assigned
Fixed Assigned Fixed Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Investigated Registered Initiated Registered
Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Assigned Investigated Registered Investigated Assigned
Fixed Assigned Investigated Registered Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Assigned Fixed Assigned Fixed Assigned Investigated Re-
gistered Investigated Rejected

1
Initiated Registered Investigated Assigned Fixed Assigned Investigated Registered Initiated
Fixed Verified Closed

1
Initiated Registered Initiated Registered Initiated Registered Investigated Registered Initi-
ated Rejected

1
Initiated Registered Investigated Assigned Investigated Registered Investigated Assigned
Investigated Registered Investigated Assigned Fixed Verified Closed

1 Initiated Registered Initiated Rejected Initiated Registered Initiated Rejected

1
Initiated Registered Investigated Assigned Investigated Registered Investigated Registered
Initiated Rejected

1 Initiated Fixed Assigned Fixed Verified Closed

1
Initiated Registered Investigated Assigned Fixed Assigned Investigated Registered Initiated
Registered Investigated Assigned Fixed Assigned Fixed Assigned Fixed Verified Closed

1 Initiated Registered Investigated Assigned Fixed Verified Assigned Investigated Rejected

1
Initiated Registered Initiated Rejected Initiated Registered Investigated Registered Initiated
Registered Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Investigated Registered Investigated Assigned
Fixed Assigned Fixed Assigned Fixed Verified Closed

1
Initiated Registered Investigated Assigned Investigated Registered Investigated Registered
Investigated Registered Investigated Registered Investigated Registered Investigated As-
signed Fixed Assigned Fixed Verified Closed

1
Initiated Registered Initiated Registered Investigated Registered Investigated Registered
Investigated Assigned Investigated Rejected

1
Initiated Registered Initiated Rejected Initiated Registered Investigated Registered Invest-
igated Registered Investigated Assigned Fixed Verified Closed

1 Initiated Registered Initiated Registered Investigated Assigned Investigated Rejected

82 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

1
Initiated Registered Initiated Fixed Assigned Investigated Registered Investigated Assigned
Fixed Verified Closed

1
Initiated Registered Initiated Registered Initiated Registered Investigated Assigned Fixed
Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Initiated Fixed Assigned Investigated Assigned
Fixed Verified Closed

1 Initiated Registered Investigated Rejected Initiated Registered Initiated Rejected

1
Initiated Registered Investigated Assigned Fixed Assigned Investigated Registered Initiated
Rejected

1 Initiated Registered Investigated Rejected Initiated Registered Investigated Rejected
1 Initiated Rejected Initiated Registered Investigated Rejected
1 Initiated Rejected Initiated Registered Initiated Rejected

1
Initiated Rejected Initiated Rejected Initiated Registered Investigated Assigned Fixed Veri-
fied Closed

1
Initiated Registered Investigated Registered Investigated Assigned Investigated Assigned
Investigated Rejected

1
Initiated Assigned Fixed Verified Assigned Fixed Assigned Fixed Assigned Fixed Verified
Closed

1 Initiated Assigned Fixed Verified Assigned Fixed Verified Closed
1 Initiated Assigned Investigated Registered Initiated Rejected

1
Initiated Registered Investigated Registered Investigated Assigned Investigated Registered
Investigated Registered Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Initiated Registered Investigated Assigned
Fixed Assigned Fixed Verified Closed

1 Initiated Registered Investigated Assigned Fixed Verified Closed

1
Initiated Registered Initiated Registered Investigated Assigned Fixed Assigned Investigated
Rejected

1
Initiated Registered Initiated Registered Initiated Registered Initiated Registered Investig-
ated Registered Investigated Registered Investigated Assigned Fixed Verified Assigned Fixed
Verified Closed

1
Initiated Registered Investigated Registered Initiated Registered Investigated Registered
Initiated Fixed Verified Closed

1 Initiated Fixed Assigned Investigated Rejected

1
Initiated Registered Initiated Registered Investigated Assigned Fixed Assigned Fixed As-
signed Fixed Verified Closed

1
Initiated Registered Investigated Registered Investigated Registered Investigated Assigned
Fixed Verified Assigned Investigated Rejected

1
Initiated Registered Investigated Registered Initiated Registered Investigated Registered
Investigated Assigned Investigated Rejected

1
Initiated Registered Investigated Registered Investigated Registered Investigated Assigned
Investigated Rejected

1
Initiated Registered Initiated Rejected Initiated Rejected Initiated Registered Investigated
Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Investigated Registered Investigated Registered
Investigated Assigned Investigated Rejected

1 Initiated Registered Initiated Registered Initiated Fixed Assigned Investigated Rejected

1
Initiated Registered Investigated Registered Investigated Registered Investigated Registered
Investigated Registered Investigated Registered Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Initiated Rejected Initiated Registered Invest-
igated Assigned Fixed Verified Closed

1 Initiated Registered Initiated Registered Initiated Registered Initiated Rejected

1
Initiated Registered Investigated Registered Initiated Rejected Initiated Registered Invest-
igated Rejected

A data-driven approach for generating insights into software development 83

APPENDIX A. APPENDICES

1
Initiated Registered Investigated Assigned Investigated Assigned Fixed Assigned Fixed Veri-
fied Closed

1
Initiated Fixed Verified Assigned Investigated Registered Investigated Assigned Fixed Veri-
fied Closed

1
Initiated Registered Investigated Rejected Initiated Assigned Fixed Assigned Fixed Verified
Closed

1 Initiated Assigned Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Rejected Initiated Registered Investigated Assigned Fixed
Assigned Fixed Verified Closed

1 Initiated Registered Initiated Registered Initiated Fixed Verified Closed

1
Initiated Registered Investigated Rejected Initiated Registered Investigated Registered In-
vestigated Rejected

1
Initiated Registered Investigated Assigned Fixed Assigned Investigated Registered Investig-
ated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Assigned Fixed Assigned Fixed Verified Assigned Fixed
Verified Closed

1
Initiated Registered Investigated Registered Investigated Assigned Fixed Verified Assigned
Fixed Assigned Fixed Verified Closed

1 Initiated Rejected Initiated Assigned Investigated Rejected

1
Initiated Registered Investigated Assigned Fixed Assigned Fixed Assigned Fixed Assigned
Fixed Assigned Fixed Verified Closed

1 Initiated Rejected Initiated Registered Investigated Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Investigated Assigned Fixed Verified Assigned
Investigated Registered Initiated Fixed Verified Closed

1
Initiated Registered Investigated Assigned Investigated Registered Initiated Registered Ini-
tiated Registered Initiated Rejected

1
Initiated Registered Initiated Registered Initiated Registered Initiated Registered Initiated
Registered Initiated Rejected

1
Initiated Registered Investigated Registered Initiated Registered Initiated Registered Initi-
ated Rejected

1
Initiated Registered Investigated Registered Initiated Registered Initiated Registered Invest-
igated Assigned Fixed Verified Assigned Fixed Verified Closed

1
Initiated Registered Investigated Registered Initiated Registered Initiated Registered Invest-
igated Assigned Fixed Verified Closed

A.6 Literature Study Methodology2110

The systematic literature review (SLR) guidelines by Kitchenham [26] are used to obtain and
present available literature relevant to the research area. The aim is to present a substantial series
of suitable data summarization approaches that help generate insights from data. The methods
of focus for these study are visual summarization, process mining and linguistic summarization
methodologies, trends and practices. All relevant material is collected with respect to the proposed
research question and area of interest. A series of quality control measures are taken while accessing
and collecting the relevant literature.

The following section describes the undertaken steps of the review process. Firstly, the delin-
eation of the research topic is evaluated to ensure broadness of topic and originality. Next, the
literature document assessment and collection process is described. The relevant pool of studies2120

is introduced, analyzed and grouped to describe common approaches in data visualization, pro-
cess mining and linguistic summarization. Lastly, the key concepts of the area are summarized
along with the research gap, followed by a closing chapter to show future potential in business
application.

In the preliminary stage of the research, a set of keywords was identified to ensure that success-
ful search results could be obtained. These keywords were motivated by the current terminology in

84 A data-driven approach for generating insights into software development

APPENDIX A. APPENDICES

popular literature on data analysis, process mining and linguistic summarization. Though the field
of interest is broad, the practical business application focus of the study requires content-specific
search strings, and advanced searches in specific credible domains. As per the research questions
and area of interest, the following keyword queries were used to generate search content:2130

• (Data) AND (Analysis OR Mining OR Linguistic Summarization)

• (Information) AND (Analysis OR Mining OR Linguistic Summarization)

• (Process) AND (Analysis OR Mining OR Linguistic Summarization)

The search process is aimed at collecting credible information during two main stages. The
first one is a broad-scope exploration process followed by a topic-specific examination applied in
the following online glossaries:

A.6.1 Broad-scope exploration

• Scientific literature: digital access to TU/e library, full-text articles, electronic books and
journals.

• JSTOR: digital library for more than 2,000 academic journals, full-text articles.2140

• Google Scholar: peer-reviewed online academic journals, books, and other scholarly literat-
ure.

• Scopus: abstracts of journal articles from 15,000 peer-reviewed journals from 4,000 publish-
ers.

A.6.2 Topic-specific investigation

• CiteSeerX: scientific literature digital library with focus on computer and information sys-
tems.

• IEEEXplore: highly cited publications in electrical engineering, computer science and elec-
tronics.

• ScienceDirect: large database of scientific and medical research with over 12 million docu-2150

ments.

• ACM Digital Library: academic and scholarly knowledge in computer science.

A.6.3 Study selection

During the first stage — broad scope exploration — numerous search results were produced which
did not fully pertain to the characteristics of the research area. Therefore, a primary skimming
approach was used to ensure that relevant articles elaborate on the area of interest, followed by a
thorough reading of the selected articles for analysis. Afterwards, during topic-specific investiga-
tion, concrete material was extracted locally and analyzed in detail.

From the analyzed documents in this stage, many entries were removed due to inconsistency
with research area, or different study scope. Lastly, as per the SLR schema [26] articles were2160

filtered using inclusion/exclusion criteria.
During the initial delineation stage, the area of research and criteria of content in data visual-

ization, process mining and linguistic summarization was aligned with stakeholders in the organ-
ization and academia. Criteria were refined using SLR schema [26] and were also actively revised
based on the study field content and research focus.

A data-driven approach for generating insights into software development 85

	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Problem Statement
	Research Goal
	Research Questions
	Methodology overview
	Orientation
	Analysis
	Design
	Validation
	Implementation

	Report Outline

	Literature Review
	Data analysis in Information Technologies
	Use of analytics in organizations

	Why data analysis, process mining and linguistic summarization?
	Descriptive Statistics
	Process Mining
	Linguistic Summarization
	Basic concept
	Applications of linguistic summarization

	Software development metrics
	Why we measure time and process workflow?

	Conclusion

	Methodology
	Research Methodology
	Define objectives
	Define research questions
	Select data analysis methods
	Determine relevant case study
	Explore case study data sources
	Collect data
	Pre-process data
	Analyze data
	Validate results
	Evaluate approaches
	Present final results

	Results
	Descriptive statistics and visualization
	Process Mining
	Constructing process maps
	Simulating in Bizagi environment

	Linguistic summarization
	Interesting findings
	Surprising findings
	Wrong or very surprising findings
	Missed insights
	Event log summaries

	Comparison of aproaches

	Validation and user evaluation
	Validation
	Evaluation

	Conclusion
	Reccomendations
	Limitations of the study
	Future research

	Bibliography
	Appendices
	Questionnaires
	Questionnaires for Managers
	Questionnaires for Developers/Testers

	Survey results - managers
	Interview 1
	Interview 2
	Interview 3
	Interview 4
	Interview 5
	Interview 6

	Survey results - software engineers/testers
	Interview 1
	Interview 2
	Interview 3
	Interview 4
	Interview 5

	Dataset linguistic summaries
	Basic linguistic summaries
	Complex linguistic summaries

	All event log sequences
	Literature Study Methodology
	Broad-scope exploration
	Topic-specific investigation
	Study selection

