93 research outputs found

    Dynamic generation of personalized hybrid recommender systems

    Get PDF

    Data Mining Algorithms for Internet Data: from Transport to Application Layer

    Get PDF
    Nowadays we live in a data-driven world. Advances in data generation, collection and storage technology have enabled organizations to gather data sets of massive size. Data mining is a discipline that blends traditional data analysis methods with sophisticated algorithms to handle the challenges posed by these new types of data sets. The Internet is a complex and dynamic system with new protocols and applications that arise at a constant pace. All these characteristics designate the Internet a valuable and challenging data source and application domain for a research activity, both looking at Transport layer, analyzing network tra c flows, and going up to Application layer, focusing on the ever-growing next generation web services: blogs, micro-blogs, on-line social networks, photo sharing services and many other applications (e.g., Twitter, Facebook, Flickr, etc.). In this thesis work we focus on the study, design and development of novel algorithms and frameworks to support large scale data mining activities over huge and heterogeneous data volumes, with a particular focus on Internet data as data source and targeting network tra c classification, on-line social network analysis, recommendation systems and cloud services and Big data

    Multilingual representations and models for improved low-resource language processing

    Get PDF
    Word representations are the cornerstone of modern NLP. Representing words or characters using real-valued vectors as static representations that can capture the Semantics and encode the meaning has been popular among researchers. In more recent years, Pretrained Language Models using large amounts of data and creating contextualized representations achieved great performance in various tasks such as Semantic Role Labeling. These large pretrained language models are capable of storing and generalizing information and can be used as knowledge bases. Language models can produce multilingual representations while only using monolingual data during training. These multilingual representations can be beneficial in many tasks such as Machine Translation. Further, knowledge extraction models that only relied on information extracted from English resources, can now benefit from extra resources in other languages. Although these results were achieved for high-resource languages, there are thousands of languages that do not have large corpora. Moreover, for other tasks such as machine translation, if large monolingual data is not available, the models need parallel data, which is scarce for most languages. Further, many languages lack tokenization models, and splitting the text into meaningful segments such as words is not trivial. Although using subwords helps the models to have better coverage over unseen data and new words in the vocabulary, generalizing over low-resource languages with different alphabets and grammars is still a challenge. This thesis investigates methods to overcome these issues for low-resource languages. In the first publication, we explore the degree of multilinguality in multilingual pretrained language models. We demonstrate that these language models can produce high-quality word alignments without using parallel training data, which is not available for many languages. In the second paper, we extract word alignments for all available language pairs in the public bible corpus (PBC). Further, we created a tool for exploring these alignments which are especially helpful in studying low-resource languages. The third paper investigates word alignment in multiparallel corpora and exploits graph algorithms for extracting new alignment edges. In the fourth publication, we propose a new model to iteratively generate cross-lingual word embeddings and extract word alignments when only small parallel corpora are available. Lastly, the fifth paper finds that aggregation of different granularities of text can improve word alignment quality. We propose using subword sampling to produce such granularities

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Systems for AutoML Research

    Get PDF

    Community Detection in Hypergraphen

    Get PDF
    Viele Datensätze können als Graphen aufgefasst werden, d.h. als Elemente (Knoten) und binäre Verbindungen zwischen ihnen (Kanten). Unter dem Begriff der "Complex Network Analysis" sammeln sich eine ganze Reihe von Verfahren, die die Untersuchung von Datensätzen allein aufgrund solcher struktureller Eigenschaften erlauben. "Community Detection" als Untergebiet beschäftigt sich mit der Identifikation besonders stark vernetzter Teilgraphen. Über den Nutzen hinaus, den eine Gruppierung verwandter Element direkt mit sich bringt, können derartige Gruppen zu einzelnen Knoten zusammengefasst werden, was einen neuen Graphen von reduzierter Komplexität hervorbringt, der die Makrostruktur des ursprünglichen Graphen unter Umständen besser hervortreten lässt. Fortschritte im Bereich der "Community Detection" verbessern daher auch das Verständnis komplexer Netzwerke im allgemeinen. Nicht jeder Datensatz lässt sich jedoch angemessen mit binären Relationen darstellen - Relationen höherer Ordnung führen zu sog. Hypergraphen. Gegenstand dieser Arbeit ist die Verallgemeinerung von Ansätzen zur "Community Detection" auf derartige Hypergraphen. Im Zentrum der Aufmerksamkeit stehen dabei "Social Bookmarking"-Datensätze, wie sie von Benutzern von "Bookmarking"-Diensten erzeugt werden. Dabei ordnen Benutzer Dokumenten frei gewählte Stichworte, sog. "Tags" zu. Dieses "Tagging" erzeugt, für jede Tag-Zuordnung, eine ternäre Verbindung zwischen Benutzer, Dokument und Tag, was zu Strukturen führt, die 3-partite, 3-uniforme (im folgenden 3,3-, oder allgemeiner k,k-) Hypergraphen genannt werden. Die Frage, der diese Arbeit nachgeht, ist wie diese Strukturen formal angemessen in "Communities" unterteilt werden können, und wie dies das Verständnis dieser Datensätze erleichtert, die potenziell sehr reich an latenten Informationen sind. Zunächst wird eine Verallgemeinerung der verbundenen Komponenten für k,k-Hypergraphen eingeführt. Die normale Definition verbundener Komponenten weist auf den untersuchten Datensätzen, recht uninformativ, alle Elemente einer einzelnen Riesenkomponente zu. Die verallgemeinerten, so genannten hyper-inzidenten verbundenen Komponenten hingegen zeigen auf den "Social Bookmarking"-Datensätzen eine charakteristische Größenverteilung, die jedoch bspw. von Spam-Verhalten zerstört wird - was eine Verbindung zwischen Verhaltensmustern und strukturellen Eigenschaften zeigt, der im folgenden weiter nachgegangen wird. Als nächstes wird das allgemeine Thema der "Community Detection" auf k,k-Hypergraphen eingeführt. Drei Herausforderungen werden definiert, die mit der naiven Anwendung bestehender Verfahren nicht gemeistert werden können. Außerdem werden drei Familien synthetischer Hypergraphen mit "Community"-Strukturen von steigender Komplexität eingeführt, die prototypisch für Situationen stehen, die ein erfolgreicher Detektionsansatz rekonstruieren können sollte. Der zentrale methodische Beitrag dieser Arbeit besteht aus der im folgenden dargestellten Entwicklung eines multipartiten (d.h. für k,k-Hypergraphen geeigneten) Verfahrens zur Erkennung von "Communities". Es basiert auf der Optimierung von Modularität, einem etablierten Verfahrung zur Erkennung von "Communities" auf nicht-partiten, d.h. "normalen" Graphen. Ausgehend vom einfachst möglichen Ansatz wird das Verfahren iterativ verfeinert, um den zuvor definierten sowie neuen, in der Praxis aufgetretenen Herausforderungen zu begegnen. Am Ende steht die Definition der "ausgeglichenen multi-partiten Modularität". Schließlich wird ein interaktives Werkzeug zur Untersuchung der so gewonnenen "Community"-Zuordnungen vorgestellt. Mithilfe dieses Werkzeugs können die Vorteile der zuvor eingeführten Modularität demonstriert werden: So können komplexe Zusammenhänge beobachtet werden, die den einfacheren Verfahren entgehen. Diese Ergebnisse werden von einer stärker quantitativ angelegten Untersuchung bestätigt: Unüberwachte Qualitätsmaße, die bspw. den Kompressionsgrad berücksichtigen, können über eine größere Menge von Beispielen die Vorteile der ausgeglichenen multi-partiten Modularität gegenüber den anderen Verfahren belegen. Zusammenfassend lassen sich die Ergebnisse dieser Arbeit in zwei Bereiche einteilen: Auf der praktischen Seite werden Werkzeuge zur Erforschung von "Social Bookmarking"-Daten bereitgestellt. Demgegenüber stehen theoretische Beiträge, die für Graphen etablierte Konzepte - verbundene Komponenten und "Community Detection" - auf k,k-Hypergraphen übertragen.Many datasets can be interpreted as graphs, i.e. as elements (nodes) and binary relations between them (edges). Under the label of complex network analysis, a vast array of graph-based methods allows the exploration of datasets purely based on such structural properties. Community detection, as a subfield of network analysis, aims to identify well-connected subparts of graphs. While the grouping of related elements is useful in itself, these groups can furthermore be collapsed into single nodes, creating a new graph of reduced complexity which may better reveal the original graph's macrostructure. Therefore, advances in community detection improve the understanding of complex networks in general. However, not every dataset can be modelled properly with binary relations - higher-order relations give rise to so-called hypergraphs. This thesis explores the generalization of community detection approaches to hypergraphs. In the focus of attention are social bookmarking datasets, created by users of online bookmarking services who assign freely chosen keywords, so-called "tags", to documents. This "tagging" creates, for each tag assignment, a ternary connection between the user, the document, and the tag, inducing particular structures called 3-partite, 3-uniform hypergraphs (henceforth called 3,3- or more generally k,k-hypergraphs). The question pursued here is how to decompose these structures in a formally adequate manner, and how this improves the understanding of these rich datasets. First, a generalization of connected components to k,k-hypergraphs is proposed. The standard definition of connected components here rather uninformatively assigns almost all elements to a single giant component. The generalized so-called hyperincident connected components, however, show a characteristic size distribution on the social bookmarking datasets that is disrupted by, e.g., spamming activity - demonstrating a link between behavioural patterns and structural features that is further explored in the following. Next, the general topic of community detection in k,k-hypergraphs is introduced. Three challenges are posited that are not met by the naive application of standard techniques, and three families of synthetic hypergraphs are introduced containing increasingly complex community setups that a successful detection approach must be able to identify. The main methodical contribution of this thesis consists of the following development of a multi-partite (i.e. suitable for k,k-hypergraphs) community detection algorithm. It is based on modularity optimization, a well-established algorithm to detect communities in non-partite, i.e. "normal" graphs. Starting from the simplest approach possible, the method is successively refined to meet the previously defined as well as empirically encountered challenges, culminating in the definition of the "balanced multi-partite modularity". Finally, an interactive tool for exploring the obtained community assignments is introduced. Using this tool, the benefits of balanced multi-partite modularity can be shown: Intricate patters can be observed that are missed by the simpler approaches. These findings are confirmed by a more quantitative examination: Unsupervised quality measures considering, e.g., compression document the advantages of this approach on a larger number of samples. To conclude, the contributions of this thesis are twofold. It provides practical tools for the analysis of social bookmarking data, complemented with theoretical contributions, the generalization of connected components and modularity from graphs to k,k-hypergraphs

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Artificial Intelligence for Online Review Platforms - Data Understanding, Enhanced Approaches and Explanations in Recommender Systems and Aspect-based Sentiment Analysis

    Get PDF
    The epoch-making and ever faster technological progress provokes disruptive changes and poses pivotal challenges for individuals and organizations. In particular, artificial intelligence (AI) is a disruptive technology that offers tremendous potential for many fields such as information systems and electronic commerce. Therefore, this dissertation contributes to AI for online review platforms aiming at enabling the future for consumers, businesses and platforms by unveiling the potential of AI. To achieve this goal, the dissertation investigates six major research questions embedded in the triad of data understanding of online consumer reviews, enhanced approaches and explanations in recommender systems and aspect-based sentiment analysis

    Network analysis of shared interests represented by social bookmarking behaviors

    Get PDF
    Social bookmarking is a new phenomenon characterized by a number of features including active user participation, open and collective discovery of resources, and user-generated metadata. Among others, this study pays particular attention to its nature of being at the intersection of personal information space and social information space. While users of a social bookmarking site create and maintain their own bookmark collections, the users' personal information spaces, in aggregate, build up the information space of the site as a whole. The overall goal of this study is to understand how social information space may emerge when personal information spaces of users intersect and overlap with shared interests. The main purpose of the study is two-fold: first, to see whether and how we can identify shared interest space(s) within the general information space of a social bookmarking site; and second, to evaluate the applicability of social network analysis to this end. Delicious.com, one of the most successful instances of social bookmarking, was chosen as the case. The study was carried out in three phases asking separate yet interrelated questions concerning the overall level of interest overlap, the structural patterns in the network of users connected by shared interests, and the communities of interest within the network. The results indicate that, while individual users of delicious.com have a broad range of diverse interests, there is a considerable level of overlap and commonality, providing a ground for creating implicit networks of users with shared interests. The networks constructed based on common bookmarks revealed intriguing structural patterns commonly found in well-established social systems, including a core periphery structure with a high level of connectivity, which form a basis for efficient information sharing and knowledge transfer. Furthermore, an exploratory analysis of the network communities showed that each community has a distinct theme defining the shared interests of its members, at a high level of coherence. Overall, the results suggest that networks of people with shared interests can be induced from their social bookmarking behaviors and such networks can provide a venue for investigating social mechanisms of information sharing in this new information environment. Future research can be built upon the methods and findings of this study to further explore the implication of the emergent and implicit network of shared interests

    A framework for understanding and predicting the take up and use of social networking tools in a collaborative envionment

    Get PDF
    Online collaborative environments, such as social networking environments, enable users to work together to create, modify, and share media collaboratively. However, as users can be autonomous in their actions the ability to create and form a shared understanding of the people, purpose, and process of the collaborative effort can be complex. This complexity is compounded by the natural implicit social and collaborative structure of these environments, a structure that can be modified by users dynamically and asynchronously. Some have tried to make this implicitness explicit through data mining, and allocation of user roles. However such methods can fail to adapt to the changing nature of an environment's structure relating to habits of users and their social connectedness. As a result, existing methods generally provide only a snapshot of the environment at a point in time. In addition, existing methods focus on whole user bases and the underlying social context of the environment. This makes them unsuitable for situations where the context of collaboration can change rapidly, for example the tools and widgets available for collaborative action and the users available for collaborative interactions. There is a pre-existing model for understanding the dynamic structure of these environments called the “Group Socialisation Model". This model has been used to understand how social group roles form and change over time as they go through a life cycle. This model also contains a concept of characteristic behaviours or descriptors of behaviour that an individual can use to make judgement about another individual and to create an understanding of a role or social norm that may or may not be explicit. Although studies have used components of this model to provide a means of role identification or role composition within online collaborative environments, they have not managed to provide a higher level method or framework that can replicate the entire life cycle continuously over time within these environments. Using the constructive research methodology this thesis presents a research construct in the form of a framework for replicating the social group role life cycle within online collaborative environments. The framework uses an artificial neural network with a unique capability of taking snapshots of its network structure. In conjunction with fuzzy logic inference, collaborative role signatures composed of characteristic behaviours can then be determined. In this work, three characteristic behaviours were identified from the literature for characterisation of stereotypical online behaviour to be used within a role signature: these were publisher, annotator, and lurker. The use of the framework was demonstrated on three case studies. Two of the case studies were custom built mobile applications specifically for this study, and one was the Walk 2.0 website from a National Health and Medical Research Council project. All three case studies allowed for collaborative actions where users could interact with each other to create an dynamic and diverse environment. For the use of these case studies, ethics was approved by the Western Sydney University Human Research Ethic Committee and consistent strategies for recruitment were carried out. The framework was thereby demonstrated to be capable of successfully determining role signatures composed of the above characteristic behaviours, for a range of contexts and individual users. Also, comparison of participant usage of case studies was carried out and it was established that the role signatures determined by the framework matched usage. In addition, the top contributors within the case studies were analysed to demonstrate the framework's capability of handling the dynamic and continual changing structure of an online collaborative environment. The major contribution of this thesis is a framework construct developed to propose and demonstrate a new framework approach to successfully automate and carry out the social group role model life cycle within online collaborative environments. This is a significant component of foundational work towards providing designers of online collaborative environments with the capacity of understanding the various implicit roles and their characteristic behaviours for individual users. Such a capability could enable more specific individual personalisation or resource allocation, which could in turn improve the suitability of environments developed for collaboration online
    • …
    corecore