

Systems for AutoML Research

Citation for published version (APA):
Gijsbers, P. (2022). Systems for AutoML Research. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 19/05/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/7c354f21-21b8-446e-bfa0-07072d1d08ea

Systems for AutoML Research

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op

donderdag 19 mei 2022 om 13:30 uur

door

Pieter Gijsbers

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof. dr. J.J. Lukkien
1e promotor: prof. dr. M. Pechenizkiy
copromotor: dr. ir. J. Vanschoren
leden: prof. dr. I. Tsamardinos (University of Crete)

prof. dr. T.H.W. Bäck (Universiteit Leiden)
dr. Y. Zhang

adviseurs: dr. M. Sebag (Centre national de la recherche scientifique)
dr. S.C. Hess

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Systems for AutoML Research by Pieter Gijsbers.
Eindhoven: Technische Universiteit Eindhoven, 2022. Proefschrift.

A catalogue record is available from the Eindhoven University of Technology
Library.
ISBN: 978-90-386-5510-9.

SIKS Dissertation Series No. 2022-16
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

iv

Acknowledgements

I have been very fortunate to have had the opportunity to spend the past four
years working with many brilliant and kind people, without whom I surely would
not have been able to produce the work presented in this thesis.

First, I would like to thank Joaquin Vanschoren, not just for providing ex-
cellent scientific guidance and equally good barbecues, but also for convincing
me to start this journey in the first place. He also assembled a terrific group
of researchers and engineers which has been a pleasure to work with. Joaquin
Vanschoren and everyone in his team, many of whom I have had the pleasure to
share an office with, have provided insight, fun conversations, and support, for
which I am grateful. Thank you, Joaquin, Bilge, Sahithya, Prabhant, Marcos,
Andrei, Israel, Juan, Onur, Ceren, Fangqin, and Jiarong.

I have had an amazing experience working as part of the DAI cluster, for
which I want to thank all of my colleagues. In particular, I would like to thank
Wouter Duivesteijn and Simon van der Zon for organizing lunch gatherings and
other social activities, the coffee people for providing an excellent environment
in which to have my tea breaks, Riet, Ine, and most of all José for helping me
find a way through university bureaucracy, and Mykola for his leadership in the
DM group and his support as my promotor.

I am grateful to Vlado, Anil, and Bilge for introducing me to bouldering
and our many bouldering sessions. The exercise as well as the discussions have
helped me stay healthy in both body and mind - and above all, it has just been
a lot of fun.

In the summer of 2018, I spent one month on a research visit to work on
what would ultimately become one of the main projects I have worked on for
the past four years. I would like to thank H2O.ai, in particular Erin LeDell, for
this opportunity and Janek Thomas for joining me on that venture.

It goes without saying that the OpenML community has been most influ-

v

ential in my work. The many workshops and discussions have been inspiring,
thought-provoking, and exhilarating. I extend my gratitude to the steering com-
mittee past and present: Bernd, Giuseppe, Heidi, Jan, Joaquin, and Matthias,
most of whom I have had the pleasure to get to know in person.

I would also like to thank my friends, family, and girlfriend who have been
understanding and provided support even if at times I got lost in my work. My
parents, for giving me every opportunity in my upbringing and always providing
a carefree environment to escape to. My friends from Gemert, Eindhoven, and
Otaniemi for all the fun times we shared. And my girlfriend, for always being
by my side.

Special thanks go out to my committee members, Ioannis Tsamardinos,
Thomas Bäck, and Yingqian Zhang and the committee advisors, Sibylle Hess
and Michèle Sebag for taking their time to partake in the defense ceremony and
providing valuable feedback on this manuscript.

I realize that many people remain unnamed that nevertheless have helped my
last four years be enjoyable and fruitful ones, people I have met at conferences,
workshops, the university, or other venues. Please know that I am grateful to
all of you.

Finally, I would like to acknowledge funding for my employment by AFRL
and DARPA (under contract FA8750-17-C-0141) and EU’s Horizon 2020 re-
search and innovation program (under grant agreement No. 952215 (TAILOR)).

Pieter Gijsbers
Eindhoven, April 2022

vi

Summary

Machine learning (ML) is used in many applications but creating a useful model
from data is a knowledge-intensive and laborious task. Automated machine
learning (AutoML) aims to automate the construction of machine learning
pipelines in a data-driven way, which allows novice users to create ML mod-
els and expert users to focus on other tasks. A diverse set of approaches for
AutoML have been proposed, however previous work largely compares frame-
works or techniques in an ad-hoc fashion. There is little consistency in the choice
of datasets, performance metrics, or hardware constraints. This makes it hard
to track the progress of the field or to compare new ideas published in separate
papers. Moreover, AutoML methods are often compared as a whole, as opposed
to evaluating the contribution of each component through ablation studies. This
stems from the difficulty of integrating new ideas in existing frameworks. Often,
novel methods are instead presented in new AutoML frameworks. This greatly
increases the amount of work required to develop and evaluate a novel method
and obfuscates its contributions.

In this thesis, we present the research and development of tools that facil-
itate novel, correct, and reproducible AutoML research. Our hope is that this
accelerates both the rate and quality of future research.

To address the difficulty of exploring novel ideas in AutoML, we present the
modular AutoML tool GAMA (a General Automated ML Assistant). It features a
modular design that allows for evaluating the contributions of individual com-
ponents in the AutoML pipelines by systematic ablation studies. GAMA features
several asynchronous optimization methods out-of-the-box to make efficient use
of compute resources during search, and new components may easily be de-
veloped independently of the rest of the AutoML pipeline. Additionally, GAMA
automatically tracks experiments and compiles data that researchers can use to
better understand the workings of individual components, e.g., by visualizing

vii

their optimization trace. The fact that GAMA has already been used in AutoML
research for online learning, clustering, and comparing optimization strategies
are early signs that the modular AutoML tool is valuable for research.

To allow for reproducible and comparable evaluations, we recognize the need
for curated and standardized benchmarks. To this end, we extend the OpenML
platform to enable creating, sharing and re-using benchmark suites. A bench-
mark suite is a collection of precise and machine-readable definitions of ma-
chine learning experiments, including information about the dataset, evaluation
strategy, and performance metric. A good benchmark suite, if used by the
community, allows not only for a thorough evaluation but also for the compar-
ison of results across papers. We propose a practical benchmarking suite for
ML algorithms, which has been used in several studies. Its use indicates that
benchmarking suites are useful but also that a continuous conversation with the
research community is essential to evolve the benchmarks over time to make
them better and more useful.

We propose the open source AutoML benchmark, and use it to conduct a
large-scale evaluation of AutoML frameworks. The benchmarking tool prepares
the experimental setup, and scripts developed together with authors of AutoML
frameworks ensure that the training and evaluation of each framework are done
correctly. The tool greatly reduces the effort required to produce reproducible
results and at the same time avoids issues one may encounter when using (and
installing) AutoML tools for experimental evaluation. The AutoML benchmark
has grown to be an accepted benchmark, as many AutoML researchers and
developers have proceeded to integrate their frameworks into the benchmark
and use it for their empirical evaluations in scientific studies.

Finally, we propose a meta-learning method to find symbolic hyperparam-
eter defaults, which may allow AutoML methods to find good models faster.
The usefulness of hyperparameter optimization on each separate dataset moti-
vates that there is a relationship between the dataset properties and the optimal
hyperparameter configuration, yet most hyperparameter defaults currently em-
ployed are independent of dataset properties. We propose a method based on
symbolic regression to automatically find such relationships, which we call sym-
bolic hyperparameter defaults, in a data-driven way. We show that our method
is capable of finding symbolic hyperparameter defaults which are as good as
hand-crafted ones, at least as good as constant hyperparameter defaults, and in
almost all cases better than current implementation defaults.

viii

Contents

Acknowledgements iv

Summary vii

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Automated Machine Learning . 3
1.2 Meta-learning . 5
1.3 Challenges and Research Questions 7
1.4 Thesis Outline and Contributions 9

2 Automated Machine Learning 13
2.1 Problem Definition . 14
2.2 Search Space Design . 16
2.3 Search Strategies . 17

2.3.1 Grid- and Random Search 18
2.3.2 Evolutionary Algorithms 19
2.3.3 Bayesian Optimization . 22
2.3.4 Successive Halving and Hyperband 24
2.3.5 Other Methods . 27

2.4 Post-Processing . 29
2.4.1 Weighted Voting . 29
2.4.2 Stacking . 29
2.4.3 Model Information . 30

ix

2.5 AutoML in Other Settings . 31
2.5.1 Online Learning . 31
2.5.2 Unsupervised AutoML . 32
2.5.3 Multi-Label Classification 32
2.5.4 Remaining Useful Life Estimation 33

3 GAMA - Modular AutoML 35
3.1 Related Work . 36
3.2 The Modular AutoML Pipeline 37

3.2.1 Search . 37
3.2.2 Post-processing . 43
3.2.3 Configuring an AutoML Pipeline 44

3.3 Accelerating Research . 45
3.3.1 Interface . 46
3.3.2 Artifacts . 46

3.4 Use in Research . 50
3.4.1 Online AutoML . 50
3.4.2 Multi-fidelity Evolution 50
3.4.3 Clustering . 51

3.5 Conclusion, Limitations, and Future Work 51

4 Reproducible Benchmarks 53
4.1 OpenML . 54
4.2 OpenML-Python . 55

4.2.1 Design and Development 56
4.2.2 Related Work . 57
4.2.3 Use Cases . 57

4.3 Benchmarking Suites . 62
4.3.1 OpenML Benchmarking Suites 62
4.3.2 How to Use OpenML Benchmarking Suites 64
4.3.3 OpenML-CC18 . 67

4.4 Conclusion and Future Work . 71

5 The AutoML Benchmark 73
5.1 Related Work . 74
5.2 AutoML Tools . 77

5.2.1 Integrated Frameworks . 77
5.2.2 Baselines . 81

5.3 Software . 81

x

5.3.1 Extensible Framework Structure 82
5.3.2 Extensible Benchmarks 83
5.3.3 Running the tool . 83

5.4 Benchmark Design . 84
5.4.1 Benchmark Suites . 85
5.4.2 Experimental Setup . 88
5.4.3 Limitations . 89
5.4.4 Overfitting the Benchmark 91

5.5 Results . 94
5.5.1 Performance . 94
5.5.2 BT-Trees . 96
5.5.3 Model Accuracy vs. Inference Time Trade-offs 99
5.5.4 Observed AutoML Failures 100

5.6 Conclusion and Future Work . 103

6 Meta-Learning for Symbolic Hyperparameter Defaults 105
6.1 A Motivating Example . 106
6.2 Related Work . 107
6.3 Problem Definition . 108

6.3.1 Supervised Learning and Risk of a Configuration 108
6.3.2 Learning an Optimal Configuration 109
6.3.3 Learning a Symbolic Configuration 109
6.3.4 Metadata and Surrogates 110

6.4 Finding Symbolic Defaults . 114
6.4.1 Grammar . 115
6.4.2 Algorithm . 115

6.5 Experimental Setup . 116
6.5.1 General setup . 116
6.5.2 Experiments for RQ1 & RQ2 118

6.6 Results . 120
6.6.1 Surrogates and Surrogate Quality 120
6.6.2 Experiment 1 - Benchmark on surrogates 121
6.6.3 Experiment 2 - Benchmark on real data 124

6.7 Conclusion and Future Work . 126

7 Conclusion and Future Work 129
7.1 Conclusions . 129
7.2 Limitations . 132
7.3 Future Work . 133

xi

7.3.1 Meta-learning for AutoML 133
7.3.2 Benchmark Design . 134
7.3.3 Trust in AutoML . 135

Bibliography 137

Appendices 167

List of Publications 195

SIKS Dissertations 197

xii

List of Figures

1.1 Visualization of models generated by different ML pipelines. . . . 3
1.2 An overview of the thesis. 10

2.1 Typical building blocks of AutoML approaches. 14
2.2 An illustration of grid search and random search. 18
2.3 An illustration of the (µ + λ)-algorithm. 20
2.4 Cross-over for two genetic programming trees. 21
2.5 Two steps of Bayesian optimization on a 1D function. 23
2.6 Illustration of successive halving. 25

3.1 The benefit of asynchronous evaluations. 38
3.2 Performance comparison of GAMA and TPOT 42
3.3 Critical difference plot of AutoML benchmark results. 46
3.4 Visualization of logs . 47
3.5 Evolutionary optimization on Higgs on a one hour time budget. . 49
3.6 ASHA on a one hour time budget with reduction factor 3. 49
3.7 Comparison of convergence for ASHA and EA on Higgs. 49

4.1 Schematic overview of OpenML building blocks. 55
4.2 Contour plot of SVM performance based on hyperparameter con-

figurations. 60
4.3 Website interface for OpenML benchmarking suites. 63
4.4 Distribution of scores of millions of experiments on OpenML-CC18. 68

5.1 Properties of the tasks in both benchmarking suites. 93
5.2 Critical difference plots for all experiments. 95
5.3 Aggregated scaled performance for all experiments. 97

xiii

5.4 Bradley-Terry tree for the one hour classification benchmark. . . 98
5.5 Prediction duration aggregated across all runs. 100
5.6 Pareto fronts of framework performance to prediction speed. . . . 101
5.7 An overview of framework errors in the benchmark. 102
5.8 Time spent during AutoML search by each framework. 103

6.1 SVM hyperparameter response before and after symbolic scaling. 107
6.2 Correlation between SVM surrogate predictions and real data. . 121
6.3 Comparison of found SVM defaults to static and implementation

defaults. 122
6.4 Comparison of defaults across learner algorithms. 123
6.5 Comparison of found symbolic hyperparameter defaults to con-

stants and random search. 124
6.6 Comparison of symbolic and implementation defaults with eval-

uations on datasets. 125

B.1 A BT tree generated with only ‘features’ and ‘instances’ for split
criteria, based on all results for one hour experiments. 180

B.2 A BT tree generated with only ‘features’ and ‘instances’ for split
criteria, based on all results for four hour experiments. 181

C.1 Results for the elastic net algorithm on surrogate data. 187
C.2 Results for the decision tree algorithm on surrogate data. 188
C.3 Results for the approximate k-nearest neighbours algorithm on

surrogate data. 189
C.4 Results for the random forest algorithm on surrogate data. . . . 190
C.5 Results for the XGBoost algorithm on surrogate data. 191
C.6 Results for the decision tree algorithm on real data. 192
C.7 Results for the Elastic Net algorithm on real data. 192

xiv

List of Tables

3.1 Comparison of most closely related AutoML work. 36

5.1 Used AutoML frameworks in the experiments. 78

6.1 BNF Grammar for symbolic defaults search. 112
6.2 Available meta-features with corresponding symbols 113
6.3 Fixed and optimizable hyperparameters for different algorithms. 117
6.4 Mean normalized log-loss (standard deviation) across all tasks

with baselines. 125

A.1 Tasks OpenML-CC18. 171
A.2 Tasks in the AutoML regression suite. 173
A.3 Tasks in the AutoML classification suite. 175

B.1 An overview of errors for framework (A-H). 183
B.2 An overview of errors for framework (I-Z). 184

C.1 Existing defaults for algorithm implementations. 186

xv

xvi

Chapter 1
Introduction

Data is used every day to make informed decisions or discover new insight. The
digitalization of our world has contributed greatly to the amount of data that
can be collected, which in turn greatly increased the demand to make sense of
that data. Machine Learning (ML) algorithms have been used to great effect
to rise to this demand since with them computers can identify patterns in the
data automatically. More formally, an often used definition of ML is given by
Mitchell [167]:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

For example, in disease diagnosis, the task T is determining whether or
not the patient has a certain disease, the performance P is the percentage of
correct diagnoses, and experience E is the experience with past patients. Pro-
vided with enough high quality and relevant data, ML can find useful models
across a wide range of domains automatically and is now used to make or assist
in decisions in various applications including medicine [137, 241], self-driving
cars [8], and reading recommendations [31], while new applications continue to
be explored [251].

Unfortunately, you can’t use any ML algorithm for any problem and expect
a useful outcome. Creating a good ML model requires many interdependent
steps, such as data cleaning (e.g., encoding of categorical variables or imputa-
tion of missing values), feature extraction (e.g., PCA), feature engineering (e.g.,
lag features in temporal problems), and choosing the learning algorithm (e.g.,

1

2 Introduction

SVM [32]). These steps are combined into an ML pipeline, a series of steps that
build an ML model from the original data. Each of those steps have hyperpa-
rameters to be tuned, and the effectiveness of a hyperparameter configuration
or algorithm choice depends both on the data and the other design choices in
the ML pipeline. All of these decisions affect not only model performance but
also other aspects like the model’s interpretability or the time it takes to make
predictions on new data.

Figure 1.1 demonstrates the importance of tuning hyperparameters and us-
ing appropriate preprocessing on a synthetic dataset, through visualizing the
models created by several ML pipelines for a binary classification problem.
The dataset is visualized through dots, whose color represents their class. The
model’s decision boundary is drawn, and the predicted class is indicated by the
background color. The accuracy of each model is computed through 5-fold cross-
validation (CV) [202]. Logistic regression [41] (top-middle) outperforms a badly
tuned decision tree [36] (bottom-left) but not a well tuned one (bottom-middle),
demonstrating the importance of both algorithm selection and hyperparameter
optimization. In this scenario, encoding the discrete feature (on the vertical
axis) with target encoding [164] (top-right) is detrimental to the performance of
the decision tree (bottom-right), but in general target based encoding is highly
effective for high cardinality features [180].

In conclusion, many algorithms can be used as components in ML pipelines
which all have their own hyperparameters to tune. Creating a useful model
requires expertise about the data, the algorithms, and how to tune them.

1.1. AUTOMATED MACHINE LEARNING 3

0 1 2
0

1

2

3

4
Original Dataset

0 1 2
0

1

2

3

4

Logistic Regression
 (accuracy:0.78)

0 1 2

0

1

Dataset with
 Target Encoding (TE)

0 1 2
0

1

2

3

4

Tree, max_depth=1
 (accuracy:0.65)

0 1 2
0

1

2

3

4

Tree, max_depth=10
(accuracy:0.99)

0 1 2

0

1

Tree on TE data,
 max_depth=10
 (accuracy:0.83)

Figure 1.1: A visualization of models generated by different ML pipelines, which
shows the importance of algorithm selection and hyperparameter optimization.
Each dot is a data point and the color represent their class. The background
color denotes the model’s class prediction.

1.1 Automated Machine Learning

The previous section highlighted some of the difficulties of creating an effective
ML pipeline. The complexity of creating good ML models is identified as a
hurdle for its application [264]. Automated Machine Learning (AutoML) aims
to take away this hurdle by automating the design decisions for creating an
ML pipeline in a data-driven way [120]. The first formal definition of AutoML
was, to the best of our knowledge, in 2009 by Escalante, Montes, and Sucar
[75] under the name full model selection. It was later re-introduced as combined
algorithm selection and hyperparameter optimization (CASH) [238], and finally
as AutoML for the first AutoML workshop at ICML in 20141.

Automating ML pipeline construction democratizes ML by providing an
easy-to-use interface with which novice users can create ML models without
needing an expert understanding of ML algorithms. For experts, AutoML frees
up time for other tasks e.g., it allows them to spend more time understanding

1https://sites.google.com/site/automlwsicml14/

https://sites.google.com/site/automlwsicml14/

4 Introduction

the data and models, or to scale up and develop more ML solutions [249].
AutoML has many characteristics which make it a difficult problem from both
an optimization and engineering perspective. Here follows a concise overview,
but a more in-depth review will be given in Chapter 2.

The difficulty starts with the data which may come from various domains
(semantic differences), from various sources (for example, human data-entry
results in different types of errors than sensor data), span orders of magni-
tude in size, and use different data types such as numerical or categorical data.
Moreover, depending on the application of the model, concerns for fairness or
interpretability may be even greater when the AutoML user may also lack the
knowledge to assess the model adequately. Because of these diverse require-
ments, some tools opt to profile themselves for specific domains e.g., for medical
data [3, 245] or finance applications [249], though they can still be used in other
contexts. Even when datasets used to develop the AutoML tool are similar to
those they are tested on, it can be difficult to create robust tools. In a Lifelong
Learning AutoML challenge [76] roughly 40% of submissions failed to produce
results on test datasets even though they were similar to train datasets and
evaluated under similar hardware constraints.

The optimization of ML pipelines is also difficult. To perform pipeline op-
timization, AutoML draws on a rich literature for algorithm selection and hy-
perparameter optimization [27]. Many optimization algorithms have been used
to optimize ML pipelines, for example particle swarm optimization [70] by Es-
calante, Montes, and Sucar [75], sequential model-based algorithm configuration
(SMAC) [119] in Auto-WEKA [238], genetic programming [10] in TPOT [179], hier-
archical planning [74] in ML-Plan [169], and random search in H2O AutoML [148].
Given a search space, which denotes the space of all allowed ML pipelines, and
a way to evaluate an ML pipeline, such as measuring model accuracy through
cross-validation, the optimization algorithm aims to find the best pipeline. The
optimization algorithm repeatedly selects one or more pipelines to evaluate
based on the evaluations that came before. Nonetheless, optimization remains
difficult because it is a black-box optimization problem, pipeline evaluations are
typically expensive, and the number of different hyperparameters leads to a com-
binatorial explosion. To lower the cost of evaluations, multi-fidelity approaches
have been explored through using less data [99] or using iterative algorithms
which may only fit a few iterations at a time [82]. Considerably smaller search
spaces from which to design ML pipelines are also considered e.g., containing
only iterative learners [82] or even a single learner [237]. After optimization
of ML pipelines, several post-processing techniques are available to combine
those pipelines into a combined model through e.g., weighted voting [48, 49]

1.2. META-LEARNING 5

and stacking [253].
A considerable amount of recent work in AutoML focuses on Neural Ar-

chitecture Search (NAS) [72], the automated design of neural networks. This
has mostly been a separate endeavor from automated ML pipeline construction,
both in approach and the tasks they currently aim to solve. Whereas Au-
toML for ML pipelines is typically used to solve tabular data problems, neural
networks tackle less structured problems such as computer vision or natural lan-
guage processing. NAS can design their search procedures around the properties
of neural networks e.g., the hierarchical structure by designing subcomponents
(cells) [283, 286] or the sharing of network weights [189]. In the remainder of
this thesis, we focus on automated ML pipeline construction, and ‘AutoML’ will
refer to that particular task.

1.2 Meta-learning

So far, we only considered finding good pipelines by performing only evaluations
on the dataset at hand. Human experts don’t work this way, but leverage
experience they have from creating models on other tasks and in this way learn
to optimize ML pipelines on new tasks faster. This is called meta-learning [257]:

The challenge in meta-learning is to learn from prior experience in a
systematic, data- driven way [. . .] to extract and transfer knowledge
that guides the search for optimal models for new tasks.

For example, Brazdil, Gama, and Henery [33] train a model that recom-
mends classification algorithms based on tabular dataset characteristics. They
achieve this through training a decision tree model on a meta-dataset, which
contains data about the performance of algorithms across datasets. In the meta-
dataset, each dataset is described through meta-features, such as the number
of rows or classes, and each algorithm’s performance as either applicable, if it
is within three standard deviations of the performance of the best classifier on
that dataset, or non-applicable otherwise. More generally, meta-datasets can
include hyperparameter configurations or entire ML pipelines definitions, and
their performance can be metric scores (e.g., accuracy) or other meta-data such
as training time.

Similar setups are explored where the produced predictions are generaliza-
tion estimates [14, 61, 108, 204], or rankings [34, 35, 226]. Sometimes the time
to train a model is taken into account [35, 226], or the meta-model discerns not
just algorithms, but also specific hyperparameter configurations [61, 108].

6 Introduction

Initially, meta-features were simple statistical and information-theoretic met-
rics such as described by Michie, Spiegelhalter, and Taylor [165], but later other
features were introduced, such as landmarking features which record the perfor-
mance of simple learners [187] and model-based features which describe prop-
erties of models induced by simple learners [185], and modern packages can
calculate hundreds of meta-features [5]. Recent work explores learning meta-
features automatically [63, 125, 132, 198]. One important consideration for
meta-features, in addition to their usefulness, is how efficiently they can be
computed. The time saved from using the meta-model should exceed the time
spent to compute the meta-features. How this translates to constraints depends
on the application.

Meta-learning can be used to speed-up AutoML through warm-starting,
where instead of starting optimization by sampling configurations at random,
a meta-model is employed to recommend pipelines based on the dataset. This
is employed in, for example, auto-sklearn through k-NN [85] and through
collaborative filtering in OBOE [279].

In auto-sklearn 2 [82], optimization is warm-started with a portfolio in-
stead. This portfolio is a static collection of pipelines that performed well on
previous tasks. Despite not taking into account dataset specific meta-features,
it still provides the same performance benefit while being simpler [82]. Ad-
ditionally, auto-sklearn 2 uses meta-learning to automatically configure Au-
toML hyperparameters, such as the evaluation procedure used (e.g., hold-out
or cross-validation), by learning over a meta-dataset which contains evaluation
data of auto-sklearn 2 itself [82]. Meta-models can also be used during the
optimization procedure, for example, to prohibit a pipeline candidate from be-
ing evaluated. Mohr et al. [170] and Laadan et al. [144] use meta-models to
prohibit pipelines evaluations that are expected to take too long or provide bad
results, respectively.

Instead of implicitly learning the importance of hyperparameter values for
the final model performance, it can also be made explicit through the vari-
ance they induce [118, 255] or the performance that can be gained by tuning
them [196, 267]. These types of studies can be used to inform the search space
design of AutoML systems.

Meta-learning can also be used to transfer information about parameters
instead of hyperparameters. While this is possible for several model classes,
much of the research focuses on transfer learning for neural networks which can
share weights or architectures [257]. Examples include using features extracted
by networks trained on one task to solve other tasks [221], learning weights
that generalize well to allow quick learning of other tasks [89], or using a neural

1.3. CHALLENGES AND RESEARCH QUESTIONS 7

network to train other neural networks [115].

1.3 Challenges and Research Questions

AutoML is a very active area of research, but exploring novel AutoML ideas
is very time-intensive and evaluating those ideas is error-prone. This thesis
focuses on the research and development of tools that facilitate novel, correct,
and reproducible AutoML research. We hope that this accelerates both the rate
and quality of future research. Finding the answers to the research questions
asked in this section contributes to this overarching goal.

Q1: How can we make implementing novel AutoML ideas easier?

To explore a novel AutoML idea, a researcher has to decide whether to
develop a new AutoML tool or use an existing one as a springboard. When
developing a new tool, the evaluation of the novel idea requires other aspects of
the AutoML pipeline, such as interpreting a search space, to be implemented as
well. Even then, implementing an AutoML tool from scratch to evaluate a new
search algorithm diminishes the capability to compare with other implemen-
tations, as it now also differs in implementation and potentially other design
decisions.

On the other hand, using an existing tool as a springboard to explore a novel
idea is hard too, as existing tools are not generally designed to be open to inte-
grating new algorithms. Including a novel optimization algorithm (or another
component) often involves a steep learning curve and may require considerable
alterations to the original AutoML tool. Additionally, if the original authors of
the AutoML tool are not convinced of the added value, the modifications may
never be absorbed into the tool.

Q2: How can we enable the use of common benchmark suites?

Every novel idea needs to be carefully evaluated. A thorough analysis re-
quires evaluations on multiple datasets to adequately assess its generalizability
and to identify the strengths and weaknesses of the new approach [219]. How-
ever, datasets used in evaluations are typically chosen in an ad-hoc manner.
This leads to evaluations across papers being performed on different datasets
making comparison impossible. For example, AutoML tools [68, 105, 199] were
all published at the same venue and evaluated on different datasets. The lack

8 Introduction

of common benchmarks can also lead to ill-suited benchmarks being propa-
gated. Roughly a third of the datasets for evaluation of tabular AutoML tools
by Thornton et al. [238], Feurer et al. [85], and Mohr, Wever, and Hüllermeier
[169] were image datasets, despite not being representative of the intended use
of the respective AutoML tools. Finally, it is not always clear how to reproduce
the results of AutoML evaluations, as the used datasets may be scattered across
repositories or are without clearly documented validation splits. There are clear
benefits to using a shared collection of curated tasks or, in other words, a bench-
mark suite. It allows for better comparison across papers, both for simultaneous
publications and over time. Ideally, it can also lead to fewer resources being re-
quired to conduct a study, since previous results can be compared to directly
without the need for additional evaluations.

Q3: How to evaluate AutoML tools in a correct and reproducible manner?

Being able to use common benchmark suites makes the experimental setup
easier. However, datasets with reproducible train-test splits alone are insuffi-
cient to produce a reproducible and correct setup. While AutoML frameworks
typically provide a simple interface, we still identify several issues in the evalu-
ations of AutoML frameworks in research [100]. These lead to incorrect conclu-
sions about the comparative performance of the frameworks. Errors are often
caused by incorrect installation or configuration, either because the hardware or
software stack deviates from the developers’ expectations, or because the tools
are used outside of their intended use.

In AutoML research the use of benchmark suites can only provide part of
the solution. Since AutoML tools often work with time budgets, their output is
heavily influenced by the resources they have available during that time (e.g.,
memory or CPU). For this reason, we still need a way to allow researchers to
evaluate the AutoML tools of other researchers on their own hardware, despite
the pitfalls mentioned above.

Q4: How can we speed up AutoML by learning from prior experiments?

In Section 1.2 we discussed how meta-learning is used to speed up opti-
mization by generating recommendations for algorithms, pipelines, and hyper-
parameter configurations. However, in all those settings a trained learner is
required. From a practical standpoint, this can be problematic when trying to
share the learned information, because the model can be of considerable size or
require specific software to generate new recommendations. This limits its use
in machine learning packages and across different AutoML tools. We observe

1.4. THESIS OUTLINE AND CONTRIBUTIONS 9

that for each dataset we have to tune the hyperparameters of learners because
there is a relationship between the dataset and the hyperparameter configu-
ration that produces the optimal model for that learner. The meta-model is
in effect a mapping that aims to transform the dataset characteristics to the
ideal hyperparameter configuration for a learner. We postulate that we can also
express this relationship explicitly for each hyperparameter by using symbolic
hyperparameter defaults, defaults that map dataset characteristics to a valid
hyperparameter value, and find them in a data-driven way.

Symbolic hyperparameters defaults should then only have to be found once
for a specific algorithm, and could ideally come packaged with that algorithm.
The symbolic hyperparameters defaults may also provide insight into the rela-
tionship between the hyperparameter and the dataset. While implementation
differences might influence the ideal symbolic hyperparameter default, it is still
likely that the default transfers reasonably well across implementations, e.g.,
from mlr3’s [145] to scikit-learn’s [184] decision tree. The model-free ap-
proach allows it to be used in all AutoML frameworks for e.g., warm-starting
search or transforming the search space, and with additional experiments, sym-
bolic hyperparameter defaults might even be learned for AutoML systems them-
selves.

1.4 Thesis Outline and Contributions

In this section, we will detail our contributions chapter-by-chapter, illustrated
by the high-level overview of our contributing chapters in Figure 1.2. After
providing related background information in Chapter 2, we present our con-
tributions to answering research questions 1 through 4 in Chapters 3 through
6, respectively. The first three of those chapters directly contribute to correct
and reproducible AutoML research and come with software artifacts that may
be used for independent research: a modular AutoML tool, machine readable
benchmarking suites, and an AutoML benchmark, respectively. The work in
Chapter 6 details a meta-learning approach to finding symbolic hyperparameter
defaults, which may be used to speed up AutoML in future work.

First, we will provide a more in-depth overview of the AutoML literature
in Chapter 2. We first give a formal definition of the AutoML problem, which
is followed by a discussion of the different design axes of AutoML systems,
such as search space design, optimization algorithms, and post-processing used
in AutoML. Then, we briefly discuss some of the work outside of the typical
regression and single-label classification setting. The chapter’s aim is not only

10 Introduction

Make implementing novel
AutoML ideas easier (Q1)

Chapter 3: GAMA

Enabling the use of common
benchmark suites (Q2)

Chapter 4: OpenML Suites

Correct and reproducible
evaluation of AutoML (Q3)

Chapter 5: AutoML Benchmark

Algorithm Development Support

How to speed up AutoML by learning from
prior experiments?(Q4)

Chapter 6:

Meta-learning for Symbolic Defaults

Building Excellent Benchmarks to Measure Progress

Learning Better Algorithms

Figure 1.2: An overview of the thesis structure. Chapters 3 through 5 detail our
contributions to correct and reproducible AutoML research (Q1-Q3). Chapter
6 presents an approach to learn symbolic hyperparameter defaults, which may
be used to speed up AutoML in the future (Q4).

to provide a better understanding of the techniques currently employed but also
to provide a stronger context for the difficulty of development and research of
AutoML systems.

In Chapter 3, we introduce our answer to Q1 in the form of the General
Automated Machine learning Assistant (GAMA [103, 104]), a tool to address
the difficulty of exploring novel ideas in AutoML. As discussed in the last section,
developing a completely new AutoML tool just to evaluate a novel idea adds a lot
of overhead and additionally can lead to less informative experimental results.
Using an existing tool allows for better comparisons, but comes with a steep
learning curve and risks the new idea not being integrated by the original authors
for public releases. GAMA features a modular and flexible design, which allows
researchers to write or modify individual components of the AutoML pipeline
easily. This does not only allow much faster iterations over new ideas but also
allows for better comparison. We review other work built with GAMA and see

1.4. THESIS OUTLINE AND CONTRIBUTIONS 11

early signs that the modular AutoML tool is valuable for research.
In Chapter 4, we examine different platforms for sharing data and ma-

chine learning experiments, and motivate the choice to build on OpenML [258].
We build a programmatic interface to the platform called openml-python [87],
which enables further automation of downstream tasks which greatly increases
the ease with which reproducible experiments can be conducted. For exam-
ple, it is possible to automatically download datasets alongside meta-data to
conduct reproducible 10-fold cross-validation. By enabling the development of
comprehensive benchmarking suites on the platform [28], we allow researchers
to identify collections of interesting tasks and to share them. We believe that
the ease with which benchmarking suites can now be shared and reproduced
greatly contributes to the use of high-quality tasks in evaluations, and show
early signs that might confirm this (Q2).

Next, we build on that to address Q3 and create the AutoML benchmark [100]
which we present in Chapter 5. The AutoML benchmark introduces a bench-
marking tool for completely automated AutoML evaluations. To achieve this,
we work together with the authors of AutoML frameworks and integrate with
OpenML through openml-python. We present two benchmarking suites for
benchmarking AutoML frameworks, one classification and one regression suite,
and survey the current AutoML landscape through large-scale evaluation of Au-
toML frameworks. Since its initial presentation in 2019 [100], the AutoML com-
munity has used the benchmark extensively, both integrating AutoML frame-
works and using the suites for large-scale evaluations.

In Chapter 6, we develop a method for finding symbolic hyperparameter de-
faults using meta-learning [102]. We use symbolic regression to optimize sym-
bolic hyperparameter values for multiple hyperparameters of a learner jointly
and do so for 6 different learners. Because symbolic regression relies on many
evaluations, we use surrogate models to make optimization tractable. We com-
pare the performance of the found default values to implementation defaults
both on the surrogate models and through experiments on real data. The au-
tomatically designed symbolic hyperparameter defaults can match hand-crafted
symbolic hyperparameter defaults and outperform the current constant defaults.

We summarize the work and discuss open challenges and future work in
Chapter 7.

12 Introduction

Chapter 2
Automated Machine Learning

In this chapter we give a more thorough introduction to AutoML for tabular
datasets. We will first give a definition of the AutoML problem in Section 2.1.
The most common approach to tackle the problem is to iteratively explore the
search space and optionally perform a post-processing step, as is visualized
in Figure 2.1. For that reason, we structure the three sections following the
problem statement in that order. First, we review work on search space design,
then we cover search and evaluations strategies together, and finally we discuss
ways to use post-processing to create a final model.

In the remainder of the chapter we discuss the various settings in which
AutoML has been researched. Subsequent chapters will detail our contributions.
Each of those chapters will discuss additional literature that is relevant to that
chapter.

13

14 Automated Machine Learning

Search Space
(Section 2.2)

Search
(Section 2.3)

Evaluation
(Section 2.3)

Post-processing
(Section 2.4)

data

AutoML
Problem Definition (Section 2.1)

model

Figure 2.1: Typical building blocks of AutoML approaches.

2.1 Problem Definition

The AutoML problem has been (re)formulated many times. There are many
mathematical formulations which broadly have the same meaning as the follow-
ing definition of full model selection [75]:

Given a pool of preprocessing methods, feature selection and learn-
ing algorithms, select the combination of these that obtains the low-
est error for a given data set.

Mathematical definitions with a similar intent often define the problem as a
direct extension of the hyperparameter optimization problem by encoding the
choice of algorithms used as additional hyperparameters [27, 238], which is also
known as the Combined Algorithm Selection and Hyperparameter optimization
(CASH) problem [238]. In some cases authors explicitly make a distinction be-
tween preprocessing algorithms, which transform a dataset into another dataset,
and learners, which learn to predict labels for a dataset [3, 169]. However,
these definitions require a liberal interpretation to generalize across implemen-
tations. For example, the paper which introduced auto-sklearn [85] adopts
the CASH [238] formulation and uses sequential model-based algorithm con-
figuration (SMAC) [119] to tune pipelines. However, after optimizing over the
pipeline space the resulting models get combined into an ensemble as described
in [48, 49], which only fits the CASH definition by a very liberal interpretation
of the notion of an algorithm and indicator hyperparameters. For this reason,
as far as mathematical formulations go, we prefer the interpretation of AutoML
as optimizing a directed acyclic graph (DAG) of operations as given through

2.1. PROBLEM DEFINITION 15

a series of definitions by Zöller and Huber [285], which we will use in adapted
form:

Pipeline Creation Problem: Let a set of algorithms A with an
according domain of hyperparameters Λ(·), a set of valid pipeline
structures G and a dataset D be given. The pipeline creation problem
consists of finding a pipeline structure in combination with a joint
algorithm and hyperparameter selection that minimizes the loss

(g,A,λ)∗ ∈ arg min
g∈G,A∈A|g|,λ∈Λ

R(Pg,A,λ,D). (2.1)

within a given resource budget B.

where:

• g ∈ G is a graph from the set of all valid graphs,

• A ∈ A|g| is a vector which for each node in graph g specifies the algorithm
from the set of algorithms A,

• λ ∈ Λ is a vector specifying the hyperparameter configuration of each
algorithm from the set of all possible configurations,

• and B is a resource budget, which may be given as e.g., time or iterations.

R is the empirical risk of the pipeline Pg,A,λ according to some evaluation
procedure. For example, the root mean square error of the predictions of pipeline
Pg,A,λ for a validation set Dv ⊂ D after being trained on Dtrain = D \ Dv. R
may also be defined over multiple objectives in which case a Pareto optimal set
of pipelines is to be found.

We purposely do not define specific characteristics for D, so that the defini-
tion generalizes beyond single-label classification and regression to e.g., multi-
label classification and clustering. When we refer to the AutoML problem in
this work, we refer to the above definition.

Note that this definition is still quite narrow, specifically only formalizing
the automated optimization of machine learning pipelines, and geared towards
a quantitative assessment of final model performance. In a broader sense, Au-
toML systems may also be understood to automate other tasks in the ‘machine
learning engineering pipeline’ [206, 213, 276], including exploratory data analy-
sis, reports on model quality and interpretability, and model deployment. Santu
et al. [213] define multiple levels of AutoML based on which steps are automated

16 Automated Machine Learning

and consequently how much help a domain expert would need from an ML expert
in order to produce ML models. They reference current work that automates
some of these steps independently, and also provide additional directions for
research, such as computer-assisted task formulation (specifying exactly what
the ML model has to learn). In a qualitative comparison, Xanthopoulos et al.
[276] find that multiple AutoML frameworks automate more than just pipeline
design, for example, providing automated interpretability reports or data visual-
ization, but none of the systems cover full end-to-end automation. Additionally,
they define several qualities beyond automation, such as the quality of docu-
mentation and support, or the ability to integrate with other systems. While we
acknowledge that the automation of other parts of the ‘machine learning engi-
neering pipeline’ is interesting and important work, this work focuses primarily
on automated pipeline design.

2.2 Search Space Design

The search space is the space of all possible pipelines an AutoML system can
create, or in terms of the pipeline creation problem it is the set {(g,A,λ)| g ∈
G,A ∈ A|g|,λ ∈ Λ}. Search space design is then the act of picking G, A
and Λ. AutoML search spaces are very large and hard to optimize over, as
discussed in Section 1.1. A well designed search space should allow for (near)-
optimal pipelines on as wide a range of tasks as possible. On the other hand,
keeping the search space small makes it easier to explore the search space and
perform meaningful optimization. As an example of this, Sá et al. [212] showed
that statistically significant different results could be obtained by matching the
search space for their method to match that of another system being compared
to. Modifying the search space may also be used to enhance other aspects of the
final solution, such as inference time or interpretability. For example, it may be
desirable to use only linear models and decision trees.

The set of allowed pipelines G is often a subset of DAGs such as a lin-
ear pipeline of fixed length, e.g., Auto-WEKA [238], or of variable length, e.g.,
ML-Plan [169], or a tree, e.g., TPOT [179]. Most tools [73, 85, 103, 148, 249,
265] allow for a multi-phase approach where two subsets of G are explored in
succession, e.g., auto-sklearn [85] first optimizes fixed-length linear pipelines
and then builds an ensemble with a subset of the evaluated pipelines in a post-
search step, effectively creating a tree-graph model without considering the full
search space of all trees. In the above examples, G is only indirectly modifiable
by choosing whether or not to perform a post-search step. In some cases G is

2.3. SEARCH STRATEGIES 17

directly modifiable by the end user, for example by providing a template of the
desired ML pipeline [147].

The set of algorithmsA and their hyperparameters Λ are the other axes along
which the search space can be designed. This is one of the main parts where
ML experts can insert prior knowledge into the AutoML system, defining the
most useful algorithms and hyperparameter ranges. For example, to allow TPOT

to perform well on big biomedical data, a feature selector step was introduced
which allows the domain expert to identify meaningful subsets of the data [147],
e.g., specific genes in a gene expression analysis, and TPOT will then identify the
most appropriate subset in its AutoML process.

Wistuba, Schilling, and Schmidt-Thieme [270] use meta-learning to auto-
matically prune Λ for Bayesian optimization strategies, which are discussed in
Section 2.3.3. First, they create surrogate models to predict the performance
of hyperparameter configurations on a number of tasks. To prune the search
space for a new task a number of related tasks is first identified. Based on the
performance estimates of their surrogate models, the regions in the search space
which are expected to perform poorly are pruned. This method may even be
used to further prune the search space during search based on already evaluated
ML pipeline designs.

Hyperparameter defaults are also a part of the search space, and may be
used implicitly or explicitly. Implicitly, the hyperparameter defaults for hyper-
parameters which are not tuned, and thus left at their default value, may affect
which configurations are optimal and how good the optima are. Explicitly, the
knowledge embedded in the choice of hyperparameter default can be exploited,
for example by sampling around the default values [278]. Additionally, Anasta-
cio, Luo, and Hoos [6] show that some hyperparameter optimization strategies
are more sensitive to defaults than others, and using the default values to shrink
the search space may lead to better results.

2.3 Search Strategies

One of most distinct differences between AutoML systems is the optimization
algorithm they employ to perform pipeline search. Here we will briefly dis-
cuss a few frequently used optimization algorithms. For a more comprehensive
overview on hyperparameter optimization techniques see [27, 84].

18 Automated Machine Learning

λ1

λ2

λ1

λ2

Grid Search Random Search

Figure 2.2: An illustration of grid search (left) and random search (right). Ran-
dom search explores more values in each dimension which means that, unlike
grid search, it stays efficient even when the effective dimensionality is low. Fig-
ured based on Bergstra and Bengio [17].

2.3.1 Grid- and Random Search

One naive approach to finding the best pipeline is to perform an exhaustive
search. Continuous hyperparameters make a true exhaustive search impossible,
but after discretizing the search space it is possible create a grid containing
each pipeline and evaluate them all. However, the number of possible pipelines
grows exponentially with the number of hyperparameters and algorithms, so this
quickly becomes infeasible. Additionally, grid search’s anytime performance is
also influenced by the order in which they explore the different hyperparameters.

Bergstra and Bengio [17] showed that random search is better suited than
grid search for hyperparameter optimization. An illustrative example is given
in Figure 2.2, which shows grid search (on the left) and random search (on
the right) optimizing two hyperparameters (λ1 and λ2). The curves on the
respective axes show the effect the different hyperparameter values have on
the performance of the model. In practice, the effective dimensionality of the
optimization problem is smaller than its true dimensionality as not every hyper-
parameter has meaningful influence on the model performance on every dataset
(here, λ2). For these hyperparameters grid search then needlessly optimizes
their value, while random search at the same time also samples new values for
other hyperparameters, making it more effective in practice. The advantage of

2.3. SEARCH STRATEGIES 19

both methods is that they are trivially parallelizable since each evaluation is
independent of all others. They are also easily understood and they don’t have
many design decisions.

To the best of our knowledge, grid search is seldom used in AutoML tools,
and only to optimize parts of the ML pipeline [192, 245]. Random search is used
in e.g., H2O AutoML [148], though not as the only means to create pipelines. For
example, H2O AutoML evaluates a pipeline portfolio before performing random
search, and uses stacking afterwards.

2.3.2 Evolutionary Algorithms

Evolutionary algorithms are inspired by biological evolution, and simulate pop-
ulations which evolve over time to perform better at a specific objective (or
multiple objectives). In the context of AutoML, an evolutionary algorithm
maintains a collection of ML pipeline candidates, also called a population of
individuals. These individuals are assigned a fitness score based some evalua-
tion function f (e.g., accuracy from k-fold cross-validation), and through the
process of cross-over, mutation and selection the population changes over time.
Genetic programming (GP) [140] is often used in AutoML [77, 103, 179, 190,
212], where the individuals are typically GP trees with algorithms as nodes and
hyperparameter values as leaves.

Figure 2.3 illustrates the (µ+λ)-algorithm which is used in TPOT [179]. First,
an initial population P0 of size µ is generated (step 0). This can be done at
random but some form of warm-starting can also be used by creating an initial
population with ML pipelines that worked well on previous tasks [144]. This
initial population is evaluated, after which the following steps take place in a
loop (i starts at 0 and increments by 1 every iteration):

Step 1. λ new individuals, called offspring Oi, are generated by selecting parents
from the population Pi and applying cross-over and/or mutation. Parents
can be selected uniformly at random or (partially) based on their fitness.

Step 2. Offspring Oi is evaluated on function f , e.g., accuracy from k-fold CV.

Step 3. µ individuals are selected based on their fitness from the total population
of parents and offspring (Pi ∪ Oi) to be the new parent population Pi+1.
In the case of the (µ, λ) strategy, individuals are selected only from Oi.

20 Automated Machine Learning

Initial Generate offspring

EvaluateSelect from

+
cross-over

and/or mutation
0.8

0.7

0.9

0.6

0.8

0.7

0.9

0.6

for

individuals from

Figure 2.3: An illustration of the (µ + λ)-algorithm.

Fitness Evaluations

To evaluate the fitness of a candidate, k-fold cross-validation is used where
typically k = 5 and splits are fixed throughout the optimization procedure
(TPOT [179], GAMA [103], GP-ML [190]). One deviation is found in RECIPE [212]
where k = 3 and the splits are resampled every 5 generations to avoid overfitting.
However, it is possible this is not required as Pilát et al. [190] report that even
after re-evaluating their best solutions on resampled splits, even with different
k, they did not find any performance drop that would indicate overfit solutions.
In TPOT and GAMA the pipeline length is also computed as part of the fitness
score for their multi-objective optimization. Křen, Pilát, and Neruda [142]
report that using time as a secondary objective instead results in much faster
pipelines, as expected, but may make optimization more susceptible to local
optima, ultimately leading to worse results.

Selection, Mutation, and Cross-over

There are several design choices left open, such as the choice of selection strate-
gies. Here we make a distinction between survival selection, which determines

2.3. SEARCH STRATEGIES 21

SVM

Normalization

Feature Selection

kNN

PCA
C=1 γ=1 k=3

components=5

data

data

SVM

C=1 γ=1
PCA

components=5data

Figure 2.4: Cross-over for two genetic programming trees which represent ML
pipelines. Nodes are algorithms, leave are hyperparameters or data.

how individuals from Pi and Oi are selected to form Pi+1 (step 3), and parent
selection which determines how individuals are selected to generate offspring
(step 1). Survival selection is typically elitist (TPOT, GAMA, RECIPE, GP-ML),
carrying over the best solutions from Pi ∪ Oi in deterministic fashion. TPOT

uses multi-objective NSGA-II [64] selection to maximize performance and min-
imize pipeline length, i.e., the number of algorithms in the ML pipeline which
the individual represents. Varying parent selection schemes are used, including
tournament selection in RECIPE and GAMA and uniform at random selection in
TPOT. GAMA’s tournament selection uses the crowded comparison operator from
NSGA-II, taking into account pipeline performance and length.

The mutation and cross-over operators govern how offspring is created from
parents. Cross-over operators exchange subtrees in parents as shown in Fig-
ure 2.4. Here, the subtree exchanged includes the entire preprocessing pipeline,
but more generally the subtree can be as small as the configuration for a single
hyperparameter. Common mutation operators include changing hyperparame-
ter values of one or more hyperparameters, growing or shrinking a subtree or
replacing a node, i.e., an algorithm in the pipeline.

Asynchronous Evolution

The algorithm outlined above denotes synchronous evolution, where all offspring
is evaluated before performing survival selection. In the context of AutoML,
where different ML pipelines can have wildly varying runtimes spanning orders
of magnitude [170, 279], this can lead to situation were resources are idle when
waiting for stragglers when there are resources to parallelize the evaluation
of ML pipelines. For this reason, GP-ML [190] and GAMA use an asynchronous
evolutionary algorithm [218] which generates new offspring from the population

22 Automated Machine Learning

one at a time as resources are available. If the offspring outperforms the worst
individual in the population it replaces it, otherwise it is discarded. Chapter 3
will discuss this variant of evolutionary optimization in more detail.

2.3.3 Bayesian Optimization

Bayesian optimization is an iterative optimization algorithm that is sample effi-
cient, which makes it suitable for optimizing expensive functions such as finding
the optimal ML pipeline design through empirical evaluations [223]. Bayesian
optimization achieves its sample efficiency by building a surrogate model , which
models the effect of the pipeline configuration on the model performance and the
uncertainty of that estimate, and an acquisition function, which recommends
the next configuration to sample based on the posterior distribution. Pseudo-
code for this procedure is given in Listing 1. Every iteration the acquisition
function is used to find the next configuration to sample based on the posterior
distribution (line 3). To build a useful surrogate model at least a few evalu-
ated sample points are required, so early on random sampling or configurations
recommended through meta-learning may be used instead [82, 88]. After a
configuration is evaluated, results are stored and used to update the surrogate
model (lines 4-6). This repeats until some stopping criterion is met.

Figure 2.5 illustrates this procedure. The dotted line is the true function
we aim to optimize (maximize), the surrogate model response is shown in solid
black with blue uncertainty bounds. In the first panel we see the initial surrogate
model being fit to the first two observations (shown as black dots), and the
subsequent panel displays an iteration of optimization.

Algorithm 1 Bayesian optimization

Require: Search space Λ, surrogate model algorithm A, acquisition function α
1: H ← ∅
2: for i = 0, . . . , n do
3: λi ← arg minλ∈Λ α(M, λ) ▷ First iterations sample at random instead
4: si ←evaluate(λi)

5: H ← H∪ {(λi, si)}
6: M←A(H) ▷ Update the surrogate model
7: end for

In Figure 2.5 we see that the acquisition function determines the trade-
off between exploration and exploitation of Bayesian optimization. Here, the
acquisition function favors sampling not where the posterior mean is highest, but

2.3. SEARCH STRATEGIES 23

Observation

True Function

Surrogate Function

Uncertainty

Acquisition Function

Acquisition Max

new sample

updated estimates

Figure 2.5: An illustration of two steps of Bayesian optimization on a 1D func-
tion. The top panel shows the initial surrogate model based on the first two
sample points indicated by black dots. The bottom panel shows the updated
surrogate model after sampling the point which maximized the acquisition func-
tion (in red).

24 Automated Machine Learning

around potentially good solutions which still have a relatively large uncertainty.
The choice of acquisition function and its configuration will determine exactly
how the posterior mean and uncertainty are used to determine the next sample
point. Expected Improvement [127] is the most commonly used acquisition
function and it also has an extension which takes into account the evaluation
time [223], but many more acquisition functions are available [62, 126].

Recent methods allow human experts to provide a prior which is used to
adjust the model estimates [229] or acquisition function [122] to leverage that
knowledge. It is also possible to transfer surrogate models from earlier tasks [3,
86]. Both of these techniques may be used to overcome the need to start with
random sampling.

Gaussian processes [200] were traditionally used to model the target func-
tion because of their expressiveness, smooth and well-calibrated uncertainty es-
timates, and closed-form computability of the predictive distribution [84]. How-
ever they scale poorly which results in considerable overhead when it is possible
to sample many configurations. Additionally, Gaussian processes scale poorly
to high dimensional search spaces, such as the search space for ML pipelines.
Extensions, such as using additive kernels [3] or cylindrical kernels [176], may
be used to mitigate this issue.

An alternative is to use a different approach altogether to model the ob-
jective function. In AutoML the best known example is SMAC [119] which is
used by auto-sklearn and Auto-WEKA. Random Forests scale much better and
natively work with non-continuous objective functions and a hierarchical search
space [71], and a slight modification allows for approximating the uncertainty
of the prediction [121]. Other ML algorithms to create surrogate models have
also been explored, such as neural networks [224] and gradient boosting [116].

2.3.4 Successive Halving and Hyperband

Jamieson and Talwalkar [123] identified the hyperparameter optimization prob-
lem as a non-stochastic1 best arm problem for multi-armed bandits and proposed
to use Successive Halving2 (SH) to find the best hyperparameter configuration
from a set of configurations. The idea is succinctly explained by Jamieson and
Talwalkar [123]:

Given an input budget, uniformly allocate the budget to a set of
arms [hyperparameter configurations] for a predefined amount of

1Meaning no assumptions are made about the generation of rewards.
2Originally called Sequential Halving [128].

2.3. SEARCH STRATEGIES 25

1 3 7 15
Iterations trained

0.6

0.8

Pe
rfo

rm
an

ce

Successive Halving
 (n=8, B=8, =2)

(a) SH with an iterative algorithm.

100 200 400 800
Samples Used

0.60

0.65

0.70

0.75

Pe
rfo

rm
an

ce

Successive Halving
 (n=8, B=800, =2)

(b) SH using dataset subsamples.

Figure 2.6: Illustrations of successive halving with n = 8 configurations. On
the left learning iterations are used as a budget, and on the right subsets of
the dataset are used instead. Each iteration of SH the same budget is evenly
distributed across the considered configurations. Only 1

η= 1
2 of the configurations

pass to the next iteration.

iterations [or samples], evaluate their performance, throw out the
worst half, and repeat until just one arm remains.

More generally, you can extend the definition to keep a fraction of only 1
η

at each iteration3 instead of 1
2 . At iteration i, starting from 0 with n configura-

tions, SH evaluates n
ηi configurations and the entire algorithm requires ⌊logη n⌋

iterations. This introduces three hyperparameters to the algorithm: the number
of initial configurations n, the resource budget for a single iteration B (e.g., the
number of iterations of the learning algorithm), and the reduction factor η.

Figure 2.6a visualizes SH for an iterative algorithm, where at each rung each
remaining candidate is trained for a number of iterations. For non-iterative algo-
rithms, the resource budget can be specified as number of samples used during
evaluations, which is visualized in Figure 2.6b. Note that with non-iterative
algorithms, computation from earlier rungs does not carry over, whereas it is
possible to resume training the same models with iterative algorithms.

Efficient parallelization of this optimization procedure is non-trivial, because
identifying the final best configuration ultimately requires completing all previ-
ous iterations. In the context of hyperparameter optimization, the time required
for evaluations of different configurations may differ orders of magnitude, which

3Here and for the remainder of the subsection iteration refers to an iteration of SH, not of
the learner algorithm (e.g., epoch). This is also called a rung in [151].

26 Automated Machine Learning

makes waiting for stragglers very inefficient. Li et al. [151] propose an adaptation
for the parallel setting called the Asynchronous Successive Halving Algorithm
(ASHA). The adaptation does not wait for all evaluations to be completed, but
greedily promotes the top ⌊ 1η ⌋ configurations of currently evaluated configura-
tions to the next iteration. Despite potentially transferring some configurations
erroneously, they empirically demonstrate that this leads to faster optimization
than a synchronous approach.

There is a risk that a good hyperparameter configuration is discarded early.
To combat this, one might start with fewer configurations and dedicate a larger
budget for them, which has the downside that fewer hyperparameter configu-
rations are considered. A priori it is not generally known whether it is best to
consider many hyperparameter configurations and use low-fidelity estimates, or
to start with fewer configurations that allow for higher-fidelity estimates with
the same resources.

Hyperband [153] addresses this problem by using SH as a subroutine. It
starts SH multiple times with different n dividing the total resource budget
evenly. Each instantiation of SH within HB is also called a bracket. Through
brackets with high n a large part of the search space can be explored, but
brackets with low n still allow a chance to find configurations which converge
slowly yet ultimately have a good performance.

Hyperband and successive halving have also been combined with other op-
timization methods. To generalize to non-iterative learning algorithms, some-
times a subset of the data is used instead to obtain low-fidelity estimates [99,
181]. BOHB [80] has been integrated in auto-sklearn 2 [82] and combines
Bayesian optimization with Hyperband by replacing the random selection of
pipelines in Hyperband with ones recommended by Bayesian optimization. Lay-
ered TPOT (LTPOT) [99]4 and TPOT-SH [181] combine TPOT’s evolutionary
algorithm with multi-fidelity estimates. In LTPOT evolution takes place in
multiple populations across different rungs (resource budgets) and individuals
may be promoted to higher fidelity rungs. In TPOT-SH a single population is
maintained and the evaluations across generations become of increasingly higher
fidelity by training and evaluating the pipelines on more data. DEHB [7] com-
bines hyperband with differential evolution [194] in a similar way to LTPOT,
though they decrease the population size for higher fidelity estimates. DEHB
has not yet been included in an AutoML tool.

4Research carried out during my master’s thesis.

2.3. SEARCH STRATEGIES 27

2.3.5 Other Methods

There are many more methods through which pipelines may be constructed
automatically, this subsection highlights a few of them.

Particle Swarm Optimization

Escalante, Montes, and Sucar [75] use Particle Swarm Optimization (PSO) [70]
to optimize complete pipelines. In this population based approach, each pipeline
is encoded as a vector that represents both the hyperparameter configurations
of each algorithm and indicator variables that denote which algorithms are in-
cluded in the pipeline. A random swarm of particles is first generated, these par-
ticles have a location in the search space that corresponds to a ML pipeline con-
figuration. After evaluating each particle’s location (i.e., evaluating the model
induced by the ML pipeline according to some metric), they each traverse the
search space taking into account both the best configuration that the individ-
ual particle encountered and the global best known configuration among all
particles.

Planning

Hierarchical task network planning [98] is used in ML-Plan [169] to search for
ML pipelines. A directed acyclic graph is maintained where each edge denotes a
design decision for the ML pipeline, these decisions can be either abstract (e.g.,
add a preprocessor) or concrete (e.g., set k neighbours to 8), and the nodes
denote a partially-planned pipeline. There is one source node in the graph,
corresponding to the high level concept of building a pipeline, and many sink
nodes, which represent concrete pipelines. A two-tiered search is then performed
by first expanding all algorithm selection decisions, and then performing random
completions for their hyperparameter configurations. Nodes get assigned a score
based on all evaluations reachable from that node, and these scores are used to
guide the search. A similar strategy is used in Mosaic [199], which uses Monte
Carlo Tree Search [135] to optimize a pipeline with a fixed ‘plan’: select a
preprocessor, configure its hyperparameters, select the learner, and configure
the learner’s hyperparameters.

Active Learning

OBOE [279] runs a set of fast but informative algorithms to profile a dataset, and
subsequently uses collaborative filtering to recommend pipelines. Afterwards,

28 Automated Machine Learning

an iterative active learning process evaluates pipelines that are most likely to
result in better recommendations. Active testing [149] similarly uses a history
of algorithm performance on previous tasks. It maintains an incumbent algo-
rithm configuration and use the history to predict a configuration which is most
likely to outperform it. The best of the two configurations as evaluated in a
tournament is then set to be the new incumbent algorithm and the procedure
repeats. In contrast to OBOE, active testing only recommend single algorithm
configurations instead of pipelines.

Heuristic Search

FLAML [265] has a portfolio of algorithms and a decision process based on the
estimated cost for improvement that decides which algorithm to tune and with
which evaluation budget. The hyperparameter tuning step is performed with
Cost-Frugal Optimization (CFO) [273] which is based on randomized direct
search.

Racing

Maron and Moore [161] proposed racing, an algorithm that iteratively evaluates
a set of models (for example, one cross-validation fold at a time) and discards
bad configurations early as determined by statistical tests to efficiently find the
best models in the set. While Maron and Moore [161] proposed to use Hoeffding
bounds to discern the quality of models, Birattari et al. [25] instead proposed
to use the Friedman test because it allows for a blocking design, comparing
the mean performance difference as opposed to their bounds, which reduces
the number of evaluations needed to discern between similar models [161]. In
iterated racing [156], used in AutoML framework iSklearn [261], this proce-
dure is executed multiple times in a row, each time starting with a new set of
configurations that are sampled based on the winners of the last races.

Predefined Pipelines

There are also AutoML methods where a specific optimization algorithm is not
central to the ML pipeline creation process. AutoGluon [73] defines a fixed
model architecture that uses stacked pipelines and scales in size depending on
the given computational constraints. Mohr and Wever [168] propose a naive Au-
toML process that simulates a data scientist’s workflow and breaks the pipeline
construction down into six steps, only one of which requires a non-exhaustive
search.

2.4. POST-PROCESSING 29

2.4 Post-Processing

After the search stage additional computation may be performed, which we refer
to as post-processing, to enhance model performance or provide the user with
additional information. The search stage often evaluates many pipelines which
results in a diverse set of trained models, but also makes it prone to overfitting.
One common post-processing step is to learn how to map the predictions of
individual models to a single combined prediction, which reduces the variance
and can exhibit better performance than any individual model. However, for
practical applications, model performance is not the only consideration. When
a model has been trained by the AutoML system, additional techniques may
be used to give additional insight in the model, for example, to provide inter-
pretability or to provide a generalization estimate. Below, we will first discuss
different methods for combining model predictions, and then cover some of the
methods that may provide the users with more information about the produced
model.

2.4.1 Weighted Voting

auto-sklearn [85] and GAMA [103] implement an ensemble construction proce-
dure from Caruana, Munson, and Niculescu-Mizil [48] and Caruana et al. [49],
which describes a hill-climbing algorithm that iteratively constructs an ensem-
ble. Each pipeline in the ensemble has a weight, and the ensemble’s prediction
is the weighted sum of the pipeline predictions. The ensemble construction
algorithm first creates an initial ensemble with the n best pipelines. It then
adds pipelines one at a time, by picking with replacement from all evaluated
pipelines. To decide which pipeline to add, the performance of the ensemble
is evaluated with that pipeline included, or with its weight increased if it was
already included. The change which leads to the best performance is made
permanent, and then this procedure repeats until the ensemble has a predeter-
mined size. Instead of finding the weights for pipelines through hill-climbing,
AutoPrognosis [3] uses Bayesian model averaging to determine the weights.
Their weighing scheme automatically favors the use of “diverse” pipelines based
on their learnt search space decomposition.

2.4.2 Stacking

H2O AutoML [148] instead uses the stacking procedure from [253] where another
learner is used to learn how to combine predictions of base-learners into one. The

30 Automated Machine Learning

advantage of this method is that it can also use non-linear models. Note that in
some approaches, e.g., TPOT, Auto-WEKA and ML-Plan, stacking ensembles are
included in the search space and are directly optimized over in the search step.

A different application of post-processing is that of the interpreter module of
AutoPrognosis [3]. They learn a model using a Bayesian associative classifier
that gives explanations for the predictions of the generated ensemble model.
These explanations are expressed as logical rules e.g., age ≥ 40 ∧ diabetic

→ high risk, which makes them interpretable by clinicians. This makes the
models more likely to be used [260], and in some cases may even be a legal
requirement [21].

2.4.3 Model Information

After producing a model, the user of the AutoML system has to consider whether
they want to deploy it. For this, it is useful to have additional information, such
as the generalization estimate or visualizations to aid model interpretability.

Generalization Estimates

Providing a generalization estimate is not straightforward. Reporting the inter-
nal estimate that was found during optimization, and used to select the model,
will be optimistically biased [259]. Tsamardinos, Rakhshani, and Lagani [247]
empirically demonstrate this effect on real-world data, which is predominantly
present with small datasets (containing fewer than 1000 rows), and find that
nested cross-validation or a method proposed by Tibshirani and Tibshirani [239]
may be used to generate less biased generalization estimates. Bootstrap Bias
Corrected Cross-Validation (BBC-CV) [246] was later proposed to efficiently ob-
tain unbiased estimates in the model selection setting. It repeats model selection
multiple times on bootstrapped matrices with model predictions, computes their
performance on the respective bootstrapped predictions, and reports the mean
generalization estimate which has less bias than previous methods.

Most AutoML frameworks do not provide unbiased performance estimates
out-of-the-box, but require that the user perform an evaluation procedure to
obtain a generalization estimate. However, JADBio [245] uses BBC-CV for less
biased generalization estimates, which is especially relevant since it is developed
for biomedical datasets which are typically small.

2.5. AUTOML IN OTHER SETTINGS 31

Interpretability

Several AutoML frameworks provide reports which help the user interpret what
the model learned and how different features affect it. Many techniques for
general interpretability and explainability in ML may be applied directly as they
are designed to work with black-box models. This includes training interpretable
models to mimic complex ones found by AutoML [3, 133] or post-hoc model-
agnostic explanation methods such as LIME [205], partial dependence plots [93],
or individual conditional expectation plots [106]. Interpretability reports are
currently available with most commercial AutoML frameworks (for example,
mljar [192] and JADbio [245]).

2.5 AutoML in Other Settings

Most work in AutoML research is focused around finding ML pipelines that
maximize the performance for offline classification and regression problems. Re-
cently, we see work starting to focus on applying AutoML techniques in other
settings, e.g., semi-supervised learning [150], time series [277]. In this section
we briefly discuss some of this relatively unexplored work.

2.5.1 Online Learning

In the offline setting, a single batch of data is used to train a model and it is eval-
uated on a test set. By contrast, in the online setting data is provided in batches
(possibly of size 1) and the models need to be maintained over time. This can
be further complicated by the presence of concept drift [95], i.e., changes in the
underlying data distributions, which can make old knowledge either temporar-
ily or permanently obsolete. In this setting, prequential evaluation is used to
evaluate models i.e., when a new data batch comes in, it is first used to evaluate
the model and is only then used to update the model.

The simple idea to train a few different models and use the best performing
one with respect to a recent window w, dubbed BLAST (for Best Last), proved
very effective [208]. Champion-Challengers (ChaCha) [274] performs online al-
gorithm configuration by maintaining a champion and a set of challengers. It
repeats the process of identifying a new champion by evaluating the challengers
on increasingly larger budgets until one is statistically significantly better. That
challenger then replaces the champion and a new set of challengers is generated
based on the new champion, and the process repeats. In [52] several adapta-
tion strategies are evaluated on a variety of AutoML approaches. The proposed

32 Automated Machine Learning

adaptation strategies successfully allow AutoML tools to handle concept drift,
though the best type of adaptation changes both depends on type of concept
drift and the optimization methods. While those adapted systems still used
offline learners, [51] introduces an AutoML framework which, in contrast to
ChaCha, uses multiple online learning algorithms such as Hoeffding Adaptive
Trees [24] and Adaptive Random Forests [107], and designs pipelines including
preprocessing algorithms. Additionally they evaluate multiple strategies to keep
models up-to-date, e.g., storing a set of models which worked well in the past or
creating an ensemble and updating its weights, and trigger additional pipeline
searches after detecting concept drift.

2.5.2 Unsupervised AutoML

AutoML for clustering is heavily focused around algorithm selection through
meta-learning [191, 228]. Recently, new work has explored AutoML beyond
just algorithm selection. Both AutoClust [193] and AutoCluster [155] still use
meta-learning for algorithm selection. AutoClust subsequently uses Bayesian
optimization for hyperparameter configuration, whereas AutoCluster uses grid
search and an ensembling post-processing step.

It is the very nature of clustering, the lack of ground truth labels, which
makes automated clustering especially hard. Automated approaches often con-
sider multiple internal metrics, i.e., metrics that don’t require ground truth,
when optimizing pipelines. Which metric is most appropriate is subjective, and
for this reason we see that they are either combined into one objective func-
tion [193] or separately optimized and the resulting pipelines combined in an
ensemble [155]. By contrast, Ditton et al. instead proposed a semi-automated
approach where bad configurations are discarded automatically and present the
remaining cluster sets, with rich meta-data, to a domain expert [67].

2.5.3 Multi-Label Classification

In a multi-label classification setting each sample can have multiple target labels.
This setting can be modeled as multiple single-label classification tasks, where
a single model is trained for each label independently, or as a joint modeling
problem. To tackle multi-label classification, ML2-Plan [268] restricts search
to algorithm selection only, though several algorithms are included for which
they also consider the selection of base learner algorithms. They argue that in
this setting it is common for multiple models to be trained in a single evalua-
tion, making even just algorithm selection a hard problem. De Sá et al. [211]

2.5. AUTOML IN OTHER SETTINGS 33

use genetic programming for algorithm selection and hyperparameter optimiza-
tion, but they find that their method often selects base level learners which are
cheaper to evaluate.

2.5.4 Remaining Useful Life Estimation

In remaining useful life (RUL) estimation, the task is to predict how long an
asset is still useful for (e.g., safe to use), based on historic data. The historical
data contains variable length time series data and thus can not be directly
used in existing AutoML tools. For this reason, the data is transformed into
a regression problem either by a predefined pipeline [129], by including the
transformation as part of the ML pipeline design [243], or by coevolving a data
transformation pipeline and a regression pipeline [242].

34 Automated Machine Learning

Chapter 3
GAMA - Modular AutoML

In this chapter, we introduce an AutoML framework developed for AutoML
research called the General Automated Machine Learning Assistant (GAMA [103,
104]). As described in more detail in Chapter 2, there are a myriad of design
decisions when building AutoML tools. This includes the type of ML pipeline
(e.g., fixed or variable length), the optimization algorithm (e.g., evolutionary
or Bayesian optimization), and whether or how to employ meta-learning (e.g.,
warm-starting) or post-processing (e.g., ensembling or stacking).

After coming up with a novel addition or improvement on any one of those
AutoML components, a researcher has to make a decision: integrate it with
an existing tool or develop an entirely new tool. Developing the new method
within the framework of an existing tool can incur a lot of overhead because
the frameworks are typically not designed to accommodate new ideas, which
requires considerable time spent understanding the existing code base and pos-
sibly refactoring it. Additionally, there is the risk that even after the idea is
implemented, the original authors will not integrate it with the tool, which
hinders future work and adoption. On the other hand, developing an entirely
new tool also brings considerable overhead, and any comparison to previous ap-
proaches is now obfuscated by other design decisions and even implementation
details, which makes it impossible to attribute measured improvements to the
novel idea.

This chapter is derived from: Pieter Gijsbers and Joaquin Vanschoren. “GAMA: A
General Automated Machine Learning Assistant”. In: Machine Learning and Knowledge
Discovery in Databases. Applied Data Science and Demo Track. Ed. by Yuxiao Dong et al.
Cham: Springer International Publishing, 2021, pp. 560–564. isbn: 978-3-030-67670-4

35

36 GAMA - Modular AutoML

GAMA is an open-source AutoML framework1 which distinguishes itself by ab-
stracting the AutoML process through its modularity, allowing users to compose
AutoML systems from components, extensibility, allowing new components to
be added, and transparency, tracking and visualizing the search process to bet-
ter understand what the AutoML framework is doing. These properties make it
an ideal tool for researchers to perform systematic AutoML research, especially
when evaluating novel ideas.

3.1 Related Work

Chapter 2 discussed many different AutoML frameworks, many of which opti-
mize scikit-learn [184] pipelines. Table 3.1 provides a small summary of the
frameworks most similar to GAMA’s default configuration. While GP-ML [141] is
most similar as they both perform multi-objective optimization using an asyn-
chronous (µ+1)-algorithm [218] with NSGA-II [64] selection2, there are two big
differences. First, GAMA uses models found during search in a post-processing
ensembling step to improve performance and reduce the chance to overfit, simi-
lar to auto-sklearn [85]. Second, GAMA optimizes linear ML pipelines, whereas
GP-ML structures pipelines as directed acyclic graphs (DAGs)s [141], and TPOT

structures pipelines as trees [179].

Framework Algorithm Multi-objective Post-processing

GAMA [103, 104] µ + 1 [218] NSGA-II [64] Ensemble [48, 49]
GP-ML [141, 142, 190] µ + 1 [218] NSGA-II [64] No
TPOT [179] µ + λ [20] NSGA-II [64] No
RECIPE [212] µ + λ [20] No No
auto-sklearn 1 [85] SMBO [119] No Ensemble [48, 49]

Table 3.1: Comparison of most closely related AutoML work.

While asynchronous evolution is GAMA’s default search algorithm, it can also
be configured to use the asynchronous successive halving algorithm (ASHA) [151],
and others may be easily added. We are not aware of any other AutoML frame-
work using ASHA, however, multiple approaches have been proposed with some

1Code and documentation can be found at https://github.com/openml-labs/gama/
2This work was developed independently of GP-ML.

https://github.com/openml-labs/gama/

3.2. THE MODULAR AUTOML PIPELINE 37

form of multi-fidelity optimization [58, 82, 99, 181].

While the other methods allow modifications to their search space, they
do have a fixed AutoML pipeline. To the best of our knowledge, GAMA is the
only AutoML framework that offers a modular and extensible composition of
AutoML systems, and extensive support for AutoML research.

3.2 The Modular AutoML Pipeline

Rather than prescribing a specific combination of AutoML techniques, GAMA

allows users to combine different search and post-processing algorithms into a
flexible AutoML ‘pipeline’. The types of AutoML pipeline that GAMA allows to be
designed matches those of the prototype AutoML pipeline shown in Figure 2.1.
This design fits, e.g., TPOT (evolutionary optimization), H2O AutoML (random
search followed by stacking), and auto-sklearn (Bayesian optimization followed
by ensemble construction). However, designs that do not fit this prototypical
pipeline already exist, e.g., AutoGluon does not employ search, and many more
designs are conceivable.

The configurability of the prototypical AutoML pipeline allows for easy ab-
lation studies by changing one specific step in the pipeline, but may also be used
to tune the AutoML framework to the problem at hand. This section gives an
overview of the currently implemented methods and shows how to configure a
custom AutoML pipeline with GAMA.

3.2.1 Search

There are three types of optimization algorithms currently implemented in GAMA

to search for optimal machine learning pipelines: random search, the bandit-
based asynchronous successive halving algorithm, and an asynchronous evo-
lutionary algorithm. We first give a brief motivation for using asynchronous
algorithms and then discuss the different implemented methods in more detail
below.

Asynchronous Optimization

In GAMA, we chose to incorporate asynchronous algorithms because they paral-
lelize more efficiently than their synchronous counterparts. This is illustrated in
Figure 3.1, where the two methods are compared and jobs, visualized as bars,

38 GAMA - Modular AutoML

As
yn
ch
ro
no
us

Time

Sy
nc
hr
on
ou
s

sync sync

0 ts s'

Figure 3.1: A visual example of sync points (e.g., generations in evolution)
causing idle workers in synchronous methods. Bars represent jobs distributed
over 4 workers for each method. For comparison purposes, their color represents
the batch and the same total compute time is used in both methods.

are distributed over 4 workers for each method. The figure shows that syn-
chronous algorithms need to wait until all jobs in a batch are finished, e.g., all
individuals of a generation or in a rung are evaluated, which leaves time gaps
where workers are idle. By contrast, asynchronous methods define new jobs
whenever resources are available, allowing them to parallelize more effectively.
ML pipelines can vary dramatically in running time [170, 279], which means
synchronous approaches may spend a lot of time waiting for stragglers to finish.

In the example, each job is given a color to represent the batch and the
same total compute time is used in both methods. In reality, the asynchronous
method will need to generate jobs with different information than the syn-
chronous method, so the results would differ. Evaluating the effect of these
differences on convergence time and final model quality would be interesting
future work.

Interestingly, there hasn’t been much work evaluating asynchronous opti-
mization for AutoML. While the resource utilization is higher for asynchronous

3.2. THE MODULAR AUTOML PIPELINE 39

algorithms, new candidate solutions are generated with different information
which means it might alter the end result. This has been studied outside of the
AutoML context, but very little within [151, 190]. Using asynchronous evolu-
tion has been proposed before independently by Pilát, Křen, and Neruda [190]
though their evaluation is small-scale and also introduces caching of machine
learning pipelines. To the best of our knowledge, none of the systems that use
bandit-based optimization include their asynchronous version.

Random Search

Random search is more effective than grid search for hyperparameter optimiza-
tion [17] and may prove to be a strong baseline given a well-designed search
space (as it is for certain types of Neural Architecture Search [152]). GAMA’s
random search creates pipelines in three steps. First, the pipeline length is cho-
sen uniformly at random (containing a maximum of 3 steps, by default). Then,
for each step, an algorithm is chosen uniformly at random. Finally, for each
algorithm, the hyperparameter configuration is chosen uniformly at random.3

Asynchronous Successive Halving Algorithm

ASHA [151] uses multi-fidelity estimates to filter out bad pipelines early as
shown in Algorithm 2. In short, given a reduction factor η and budget pa-
rameters (b, B, s), configurations are first evaluated on bηs budget. The top 1

η

configurations in rung k, corresponding to resource budget b · ηs+k, get pro-
moted to the next rung with a larger resource budget per pipeline b · ηs+k+1.
In ASHA, new configurations are added to the lowest rung anytime no evalu-
ations are scheduled for higher rungs, and all pipelines in the top 1

η of their
rungs have already been promoted. The minimum early stopping rate s can
be used to increase the budget of the bottom rung. Because GAMA includes
non-iterative algorithms in the search space, these multi-fidelity estimates are
obtained by subsampling the dataset. For example, on a dataset with 1 million
rows, pipelines would first be evaluated with cross-validation on 10,000 rows,
the top configurations are subsequently evaluated on 100,000 rows, and the best
of those pipelines are evaluated on the full dataset. Pipeline candidates are
generated at random, similar to random search.

3Continuous hyperparameters are currently discretized in GAMA’s search space.

40 GAMA - Modular AutoML

Algorithm 2 Asynchronous Successive Halving Algorithm [151]

Require: minimum resource b, maximum resource B, reduction factor η,
minimum early stopping rate s

1: while not stop do ▷ e.g., time, iterations
2: for each free worker do
3: (θ, k)← get job() ▷ In AutoML, θ is a ML pipeline
4: queue evaluation(θ, bηs+k)
5: end for
6: for each completed job (θ, k) with loss l do
7: Update configuration θ in rung k with loss l.
8: end for
9: end while

10:

11: function get job()
12: for k = ⌊logη(B/b)⌋ − s, . . . , 1, 0 do ▷ Promote in high rungs first

13: candidates ← top k(rung k, |rung k|
η)

14: promotable ← {t for t ∈ candidates if t not already promoted}
15: if | promotable | > 0 then
16: return promotable[0], k + 1 ▷ Always promote if possible
17: end if
18: end for
19: Draw random configuration θ ▷ But grow bottom rung otherwise
20: return θ, 0
21: end function

3.2. THE MODULAR AUTOML PIPELINE 41

Asynchronous Multi-Objective Evolutionary Algorithm

The evolutionary algorithm in GAMA is identical to the one described in [218]
for which pseudo-code is presented in Algorithm 3. The queue evaluation(p)
function submits pipeline p to a queue to be evaluated on one of the worker
nodes, and the get next evaluation() function returns whichever evaluation is
done first. The algorithm maintains a single population and generates offspring
from the population whenever a worker is available.

Algorithm 3 Asynchronous Evolution

Require: Pstart initial pipeline designs, Nmax > 0
1: for all p ∈ Pstart do
2: queue evaluation(p) ▷ To be evaluated on a worker
3: end for
4:

5: P ← ∅
6: while not stop do ▷ E.g., time, iterations
7: P ← P ∪ { get next evaluation() } ▷ Whichever is done first
8: if |P | > Nmax then
9: P ← P \ {eliminate(P)} ▷ Remove the worst fitness

10: end if
11: if worker is available then
12: queue evaluation(create one(P)) ▷ Create new pipeline
13: end if
14: end while

While the pseudo-code presented here only differs in form from [218], there
are differences in the selection, mutation, cross-over and representation of indi-
viduals. GAMA uses genetic programming trees to represent linear ML pipelines
(see Section 2.3.2), and uses the following operators to optimize them:

Elimination (line 9): Remove an individual from the worst rank pareto front.

Pipeline Creation (line 12):

– Parent Selection Binary tournament selection based on pareto rank and
crowding distance as in NSGA-II [64].

– Cross-over Exchange subtrees (e.g., a preprocessing pipeline).

– Mutation One of the following mutations with equal probability4:

4Considering only valid mutations, e.g., you can’t shrink a tree with only a root node.

42 GAMA - Modular AutoML

0.5 0.6 0.7 0.8 0.9 1.0
AUC

Higgs

porto-seguro

airlines

APSFailure

kick

numerai28_6

TPOT
GAMA
Best

Figure 3.2: A comparison of TPOT and GAMA without ensembling on six binary
classification tasks from the benchmark. The best observed score per fold across
all frameworks in the benchmark (see Chapter 5) is also shown for reference.

Point Replace a terminal

Point Replace a primitive and its connected terminals

Insert Extend a ‘data‘ terminal with a preprocessing subtree.

Shrink Remove (part of) a subprocessing subtree.

Figure 3.2 shows a small scale comparison on six tasks from the AutoML
benchmark (see Chapter 5) between TPOT, which uses a synchronous (µ + λ)
algorithm, and GAMA, using asynchronous evolution. The top and bottom three
tasks are the biggest three binary classification tasks under one million and
under 100 thousand rows, respectively. The best observed score for each fold
across all frameworks is also shown for reference. GAMA’s search space is very
similar to that of TPOT, but TPOT allows stacking in the pipeline design by
using any learner as a preprocessing step and appending its predictions to the
data. While we can’t draw any conclusions because of these multiple design
differences, we think it is a promising indication that asynchronous methods
also lead to better pipelines being discovered in the same time budget, as GAMA
improves over TPOT on tasks where a substantial improvement was shown to
be possible. In the future we hope to do a principled comparison by adding
synchronous evolution to GAMA.

3.2. THE MODULAR AUTOML PIPELINE 43

Algorithm 4 Ensemble selection from libraries of models [49]

Require: P a set of pipelines with given loss lp and out-of-fold predicted prob-
abilities ŷp, initial ensemble size k, final ensemble size K

1: w← [0 | p ∈ P] ▷ Initialize weight of each pipeline
2: for all p ∈ top k(P, k) do ▷ Add k pipelines with the least loss
3: wp ← 1
4: end for
5:

6: for 1, . . . ,K − k do
7: L← [Evaluate(P,w′), w′ is w but with wp increased by 1 | p ∈ P]
8: Increase wp by 1 where p := arg minp∈P Lp

9: end for
10:

11: function Evaluate(P,w′)
12: return Loss incurred by prediction 1

|w′|1
∑

p∈P w′
p · ŷp

13: end function

3.2.2 Post-processing

After the pipeline search has been completed, a post-processing technique may
be executed to construct the final model. It is currently possible to either train
the single best pipeline on all training data or to create an ensemble out of
pipelines evaluated during search. The latter is done using the hillclimbing
ensemble algorithm described in [49] and shown in Algorithm 4, including some
refinements proposed in [48]. First, an initial ensemble is constructed with the
best k pipelines found during search. Then, pipelines are added one by one to the
ensemble based on the ensemble performance with that pipeline included until
the desired ensemble size is reached. Using an ensemble of pipelines increases
the performance and is less prone to overfitting than selecting the best single
pipeline.

Later work described a few modifications which are particularly interest-
ing for practical AutoML. First, Caruana, Munson, and Niculescu-Mizil [48]
observed that using the all models trained during cross-validation directly in
an ensemble led to increased performance over retraining a model on all avail-
able data. This is particularly convenient from an engineering perspective, as
AutoML systems typically need to adhere to time constraints and the lack of
additional (unpredictable) fit procedures makes the ensembling procedure much
faster and at the same time more predictable.

44 GAMA - Modular AutoML

Second, they find that pruning the model library (P) by removing its worst
models decreases the risk for ensemble overfitting and subsequently improves
the performance. In practice, this means we do not need to store all trained
pipelines and generated predictions, but only a subset of them. In their work,
they define a fraction to keep relative to the total amount of evaluated models,
in GAMA we use a set amount of pipelines since the amount of evaluated models
will vary greatly depending on the optimization problem. This might introduce
the risk of only keeping too similar models since generated pipelines are derived
from well performing pipelines (when using evolutionary optimization), but we
leave studying whether or not this effect occurs in practice for future work.

Finally, while the original publication recommends repeating the procedure
several times with subsets of the model library (P) to create bagged ensembles,
later work showed that the benefits of bagged ensembles vanish when the eval-
uation dataset is sufficiently large. In their experiments, hillclimb evaluation
datasets as small as a few hundred samples saw only marginal benefits and
no benefits were observed with a hillclimb set of 10.000 samples. Especially
when using hillclimbing sets generated with cross-validation, almost all modern
datasets meet this size criterion so we forgo bagging.

3.2.3 Configuring an AutoML Pipeline

Listing 3.1 shows how to configure GAMA with non-default search and postpro-
cessing methods and use it as a drop-in replacement for scikit-learn estima-
tors.5 New AutoML algorithms or variations to existing ones can be included
and tested with relative ease. For instance, each of the search algorithms de-
scribed above has been implemented and integrated into GAMA with less than
170 lines of code, and they can all make use of shared functions for logging,
parallel pipeline evaluation, and adhering to runtime constraints.

While this flexibility does raise the question of how to best configure GAMA

to obtain the best model, the summarized benchmark results shown in the
next section, and in more detail in Chapter 5, show that the out-of-the-box
performance is similar to that of fixed AutoML frameworks.

5An always up-to-date version of this listing can be found at https://openml-labs.github.
io/gama/master/citing.html

https://openml-labs.github.io/gama/master/citing.html
https://openml-labs.github.io/gama/master/citing.html

3.3. ACCELERATING RESEARCH 45

Listing 3.1: Configuring an AutoML pipeline with GAMA

1 from GAMA import GAMAClassifier

2 from GAMA.search_methods import AsynchronousSuccessiveHalving

3 from GAMA.postprocessing import EnsemblePostProcessing

4
5 automl = GAMAClassifier(

6 search=AsynchronousSuccessiveHalving (),

7 post_processing=EnsemblePostProcessing ()

8)

9 automl.fit(X_train , y_train)

10 automl.predict(X_test)

11 automl.score(X_test , y_test)

3.3 Accelerating Research

GAMA is integrated in the AutoML Benchmark to be introduced in Chapter 5.
That chapter will also provide a detailed report of the experimental evaluation
of GAMA and many other AutoML frameworks, but some results can be seen
in Figure 3.3. The results in this figure are computed by aggregating over all
four-hour results of both classification and regression tasks, with GAMA using
its evolutionary search and ensemble post-processing. Figure 3.3a shows the
critical difference diagram [65] of the average ranks, where missing values are
first imputed with the worst observed performance for the same task and fold
across all frameworks. In Figure 3.3b we see the trade-off between the median
prediction speed and performance. To commensurate the different scales of the
different metrics and tasks, results are first scaled relative to random forest
performance (0) and the best observed performance out of any framework (1).
We see that auto-sklearn performs very similar to GAMA, which is likely because
they use approximately the same search space and the same ensemble post-
processing algorithm. It should be noted, however, that the focus of GAMA is not
to be the best performing AutoML framework or provide the fastest inference
times, but to allow for easy but principled AutoML research. To this end,
GAMA provides the researcher with artifacts and a visualization tool which are
presented below.

46 GAMA - Modular AutoML

1 2 3 4 5 6 7 8 9 10

AutoGluon
H2OAutoML
lightautoml

mljarsupervised
flaml GAMA

autosklearn
TPOT
TunedRandomForest
RandomForest

CD

(a) Mean ranks with a Nemenyi post-
hoc test.

0.0 0.2 0.4 0.6 0.8
Median Scaled Performance

10 1

100

101

102

M
ed

ia
n

In
fe

re
nc

e
Ti

m
e

(s
) Performance to Prediction Speed

AutoGluon
GAMA
H2OAutoML
RandomForest
TPOT
TunedRandomForest
autosklearn
flaml
lightautoml
mljarsupervised

(b) Trade-off between performance and
inference time.

Figure 3.3: Benchmark results aggregated across all tasks of both suites with a
four-hour time budget. Here, GAMA uses asynchronous evolutionary search and
ensemble post-processing.

3.3.1 Interface

GAMA comes with a graphical web interface which allows novice users to start and
configure GAMA. Moreover, it visualizes the AutoML process to enable researchers
to easily monitor and analyze the behavior of specific AutoML configurations.

One can also compare multiple logs at once, creating figures such as Fig-
ure 3.4 that shows the convergence rate of five different GAMA runs over time on
the airline dataset6.

3.3.2 Artifacts

GAMA automatically creates logs with information about the pipeline optimiza-
tion for analysis. It’s easy to extend this logging with optimizer specific in-
formation. For example, pipelines created through evolution will also keep a
reference to their parent(s), and pipelines evaluated in ASHA come with in-
formation about their resource budgets. Additionally, other artifacts may be
stored as well, such as memory usage logs or evaluated pipelines and their pre-
dictions. In this section, we will show a few examples of visualizations created
from these logs of a 10-fold cross-validation experiment with a one hour time
budget on the Higgs task7. This Higgs task is a fairly balanced binary classifi-
cation problem with 28 numeric features and is subsampled down to one million
rows. We evaluated both ASHA and EA.

6For more information, see: https://www.openml.org/d/1169
7For more information, see: https://www.openml.org/t/360114

https://www.openml.org/d/1169
https://www.openml.org/t/360114

3.3. ACCELERATING RESEARCH 47

Figure 3.4: Visualization of logs

Figure 3.5 visualizes the evolution history for one fold. Each marker repre-
sents an ML pipeline evaluated during search. The x-axis denotes the creation
order, though for legibility the initial population of 50 individuals is plotted
as though they were generated in sequence (denoted with circles). The y-axis
denotes its rank (here, higher is better). As expected, we see that over time
we find better pipelines and gradually generate fewer pipelines which fail to
evaluate (e.g., due to the time constraints).

The shape of the marker indicates how the pipeline was generated (e.g.,
cross-over or mutation) and its color shows how much offspring it has. Some
individuals generate much offspring despite their lower performance rank, which
can be explained by the multi-objective selection that also takes into account
the number of steps in the pipeline. The best found pipeline is denoted with an
orange marker, and its lineage is visualized through dashed lines that connect to
its ancestors. This tells us the pipeline was generated from the initial population
and a total of three mutations and one cross-over step.

Figure 3.6 shows an optimization trace for a single fold for ASHA. The
resources used at each rung are shown on the x-axis, and the y-axis denotes
the pipeline performance. Despite only evaluating a fraction of the pipelines
on a full budget compared to the evolutionary approach, more than twice the
pipelines were evaluated on the lowest rung.

Finally, the convergence of both methods is compared in Figure 3.7 and we
see in this scenario that ASHA finds good solutions more quickly. While these
traces are based on internal evaluation scores, the out-of-fold scores are similar

48 GAMA - Modular AutoML

with a mean AUC of 0.791 and 0.776 for ASHA and evolution, respectively. This
is to be expected as the Higgs dataset is rather large for a one hour budget, so
the benefit of multi-fidelity optimization is emphasized.

3.3. ACCELERATING RESEARCH 49

0 25 50 75 100 125 150 175
Order of Creation

60

80

100

120

140

160

180

Ra
nk

 (g
re

at
er

 is
 b

et
te

r)

ML Pipeline Design through Evolution

Shape: Change from Parent
Randomly Generated
Extend Pipeline
Shrink Pipeline
Replace Terminal
Replace Primitive
Cross-over

 Color: Child Count
0
1-2
3-4
5-8

 Lineage of Best Pipeline
Parent to Child

 Lineage of Best Pipeline
Parent to Child

Figure 3.5: Evolutionary optimization on Higgs on a one hour time budget.

0.0 0.2 0.4 0.6 0.8 1.0
Subsample Size (fraction of 1M rows)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

ASHA on Higgs (1M rows)

Classifier
RandomForestClassifier
LogisticRegression
MultinomialNB
GaussianNB
ExtraTreesClassifier
BernoulliNB
KNeighborsClassifier
GradientBoostingClassifier
DecisionTreeClassifier

Classifier
RandomForestClassifier
LogisticRegression
MultinomialNB
GaussianNB
ExtraTreesClassifier
BernoulliNB
KNeighborsClassifier
GradientBoostingClassifier
DecisionTreeClassifier

Figure 3.6: ASHA on a one hour time
budget with reduction factor 3.

0 1000 2000 3000
Time (s)

0.60

0.65

0.70

0.75

0.80

Be
st

 A
UC

Comparison of ASHA and EA on Higgs

Method
asha
evolution

Figure 3.7: Comparison of conver-
gence for ASHA and EA on a one
hour time budget across 10 folds.

50 GAMA - Modular AutoML

3.4 Use in Research

In this section, we have a closer look at work that uses GAMA in novel AutoML
research.8

3.4.1 Online AutoML

Celik, Singh, and Vanschoren [51] adapted GAMA for online AutoML, because of
earlier findings that evolutionary optimization adapts well to concept drift [52].
Because the online setting differs significantly from the offline setting, the pro-
posed approach only uses AutoML pipeline design after detecting concept drift.
They experiment with three different methods to keep models up-to-date: keep-
ing a single best pipeline, maintaining and reweighing ensembles, or using a
model store with recent good pipelines. Additionally, they defined a search
space with online learners from River [172] and used prequential evaluation to
take into account the temporal relationship in the data. Despite those differ-
ences, they still maintained the flexible AutoML procedure and were able to
compare different search methods that were provided out-of-the-box.

3.4.2 Multi-fidelity Evolution

Campero Jurado and Vanschoren [45] explored a novel application of the gen-
eralized island model in AutoML and combined it with successive halving. The
proposed solution evolves a population on each of N islands, and periodically
exchanges individuals in the population through migration. This optimization
procedure is repeated several times with different resource budgets, using the
best individuals from the previous rung as starting populations. The islands
each have distinct optimization algorithms, such as differential evolution [194],
particle swarm optimization [70] and a (µ+1) evolutionary strategy [20]. Three
island topologies are explored: a fully disconnected topology, where no migra-
tion takes place, a fully connected topology, where individuals migrate to and

8Additionally, GAMA was used as an out-of-the-box AutoML tool to perform protein abun-
dance prediction [81] and general biomedical applications [245]. Unfortunately, the compari-
son by Ferreira et al. [81] assigned very different budgets to TPOT [179] and H2O AutoML [148]
which makes it hard to draw any meaningful conclusions about their relative performance.
Tsamardinos et al. [245] showed that GAMA’s performance did not statistically significantly
differ from JADBio (the introduced framework) on a large set of biomedical datasets. How-
ever, the work mainly focused on AutoML beyond pipeline design, for example, by providing
accurate model generalization estimates and identifying interesting feature subsets.

3.5. CONCLUSION, LIMITATIONS, AND FUTURE WORK 51

from all islands, and a ring topology, where the islands form a ring and indi-
viduals only migrate to and from two adjacent islands. They find that a ring
topology provides the best results, and postulate that this is because it allows
for a good balance between evolution on each island (exploration) and sharing
information through migration (exploitation).

3.4.3 Clustering

In the unsupervised setting, optimization is more subjective as different metrics
characterize different properties of clusters. Nevertheless, multiple AutoML
for clustering approaches have been proposed [155, 193]. Yildirim et al. [280]
adapted GAMA to work in the unsupervised setting by defining a search space
with scikit-learn’s [184] clustering algorithms. In clustering, labeled datasets
are typically used to make evaluation more objective. Clusters are generated
without knowledge of the class labels but the final evaluation does use the
class labels for evaluating the generated clusters. For this reason, the Caliński-
Harabasz index [43] is optimized during optimization because it does not require
class labels, but the final results are evaluated on the adjusted rand index [232]
and adjusted mutual information [262] which take into account the true class
labels. They compared GAMA’s out-of-the-box search methods of asynchronous
evolution and random search and found that evolution outperforms random
search, especially for higher resource budgets.

3.5 Conclusion, Limitations, and Future Work

In this chapter, we presented GAMA, an open-source AutoML tool that facilitates
AutoML research and skillful use through its modular design and built-in log-
ging and visualization. Novice users can make use of the graphical interface to
start GAMA, or simply use the default configuration which is shown to generate
models of similar performance to other AutoML frameworks. Researchers can
leverage GAMA’s modularity to integrate and test new AutoML search proce-
dures in combination with other readily available building blocks, and then log,
visualize, and analyze their behavior, or run extensive benchmarks.

GAMA allows for a more principled evaluation of novel AutoML ideas through
ablation studies, comparing design decisions across only one axis of change. It
should be noted that when comparing two different optimization methods, any
found performance difference is only valid under the other fixed design decisions,
e.g., results may differ when considering a different search space. However, this

52 GAMA - Modular AutoML

limitation is not inherent to GAMA’s design but holds for any experiment with
sufficiently many design decisions.

The modular AutoML pipeline in GAMA currently only allows the design of
the prototypical pipeline shown in Figure 2.1. However, many other designs
are conceivable, e.g., using multiple search algorithms with their own separate
search spaces. In general, the AutoML pipeline could be expressed as a directed
acyclic graph and contain additional types of steps, e.g., search space design.

In the future, we aim to integrate additional search techniques and additional
steps, such as warm-starting the pipeline search with meta-data, so that more
pipeline designs are available out-of-the-box. Additionally, we plan to allow for
more flexibility in the design of the AutoML pipeline itself. Finally, we aim
to greatly increase the tools available to researchers to analyze their AutoML
idea. Beyond providing more visualizations and artifacts, we want to provide
programmatic hooks to allow researchers for easier real-time interaction and
visualizations.

Chapter 4
Reproducible Benchmarks

In this chapter we present work that extends the OpenML platform [258] to
enable to use of common benchmarking suites. In this introduction we will first
provide a brief overview of other dataset repositories. We subsequently provide
a short but comprehensive description of the OpenML platform in Section 4.1.
The two sections thereafter detail our contributions, the programmatic inter-
face to the platform called openml-python (section 4.2), and the addition of
reproducible OpenML benchmarking suites (section 4.3).

Related Work

Evaluating novel (automated) machine learning ideas requires experimental
evaluation on datasets. For this purpose, the machine learning field has long
recognized the importance of dataset repositories. The UCI repository [66] and
LIBSVM [53] offer a wide range of datasets. Many more focused repositories
also exist, such as UCR [56] for time series data and Mulan [248] for multilabel
datasets. Some repositories also provide programmatic access. Kaggle.com

and PMLB [178] offer a Python API for downloading datasets, skdata [15] and

The work described in this chapter was largely carried out concurrently through an iter-
ative development process.
Section 4.2 is derived from Matthias Feurer et al. “Openml-python: an extensible python api
for openml”. In: Journal of Machine Learning Research 22.100 (2021), pp. 1–5.
Section 4.3 is derived from Bernd Bischl et al. “OpenML Benchmarking Suites”. In: Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2). 2021.
Both works were used in making this chapter introduction and Section 4.1.

53

https://www.kaggle.com/

54 Reproducible Benchmarks

tensorflow [1] offer a Python API for downloading computer vision and natu-
ral language processing datasets, and KEEL [4] offers a Java and R API for
imbalanced classification and datasets with missing values.

Several platforms can also link datasets to reproducible experiments. Rein-
forcement learning environments such as the OpenAI Gym [39] run and evaluate
reinforcement learning experiments, the COCO suite standardizes benchmark-
ing for blackbox optimization [112] and ASLib provides a benchmarking protocol
for algorithm selection [30]. The Ludwig Benchmarking Toolkit orchestrates the
use of datasets, tasks and models for personalized benchmarking and so far in-
tegrates the Ludwig deep learning toolbox [174]. PapersWithCode maintains a
manually updated overview of model evaluations linked to datasets.

4.1 OpenML

OpenML is a collaborative online machine learning platform [258]. More than
just linking datasets to reproducible experiments, it is meant for sharing re-
sults and building on prior empirical machine learning research. OpenML goes
beyond the platforms mentioned above, as it includes extensive programmatic
access to all experiment data and automated analyses of datasets and experi-
ments, which have enabled the collection of millions of publicly shared and re-
producible experiments, linked to the exact datasets, machine learning pipelines
and hyperparameter settings.

OpenML organizes everything based on four fundamental, machine-readable
building blocks. These four blocks are shown in Figure 4.1 together with the
new blocks we introduce in this chapter. The four blocks on which we built are:

• The dataset, tabular datasets that are annotated with rich meta-data such
as automatically computed meta-features.

• The machine learning task to be solved, specifying the dataset, the task
type (e.g., classification or regression), the target feature (in the case of
supervised problems), the evaluation procedure (e.g., k-fold CV, hold-out),
the specific splits for that procedure, and the target performance metric.

• The flow which specifies a machine learning pipeline that solves the task,
e.g., an ML pipeline that first performs imputation of missing values and
encoding of categorical features, followed by training a Random Forest
model.

https://paperswithcode.com/

4.2. OPENML-PYTHON 55

Dataset

iris

Task

10-fold CV
 Flow

Random Forest

Run

Collection of Tasks

Benchmark StudyBenchmark Suite

Collection of Runs

new

results

Figure 4.1: Schematic overview of OpenML building blocks, highlighting the
new contributions.

• The run that contains experiment results (i.e., predictions and perfor-
mance evaluations) when a flow is executed on a task.

Each of these are accessible in machine-readable formats, with packages in
the Java, Python and R ecosystems [50, 87, 207] to provide easy integration in
common machine learning tools, workflows, and environments1.

OpenML also features a web interface2 which allows access and exploration
of all the artifacts stored on the platform. It allows finding datasets through a
direct search or by filtering based on dataset qualities, and each dataset page
features interactive plots and automated exploratory data analysis. For each
flow or task, an overview of the stored runs is provided and for each run an
analysis of the produced predictions is provided.

4.2 OpenML-Python

openml-python is a seamless integration of OpenML into the popular Python
ML ecosystem3, that provides easy programmatic access to all OpenML data

1See https://docs.openml.org for more information.
2https://new.openml.org
3https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/

https://docs.openml.org
https://new.openml.org
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/

56 Reproducible Benchmarks

and automates the sharing of new experiments. In this section, we introduce
openml-python’s core design, showcase its extensibility to new ML libraries,
and give code examples for several common research tasks.

4.2.1 Design and Development

The OpenML platform is organized around several entity types which describe
different aspects of a machine learning study. For instance, an experiment
(run) shared on OpenML can show how a random forest (flow) performs on
‘Iris’ (dataset) if evaluated with 10-fold cross-validation (task), and how to
reproduce that result. OpenML makes this information available through a
REST API, and openml-python wraps the complexity of communication with
this REST API by providing easy-to-use helper functions and Python objects.
openml-python closely follows the design of OpenML entities and represents
each with separate classes in their own submodules which makes for a natural
mapping.

A number of list functions allow light-weight access to data stored on
OpenML. For example, it is possible to use the list datasets function to query
for datasets with specific characteristics, list tasks related to that dataset (using
list tasks), and query experimental results for that task (using list runs).
To upload new data to OpenML, entities can be created with create functions
which create the Python objects which may be uploaded through a publish

method.

To allow users to automatically run and share machine learning experiments
with different libraries through the same openml-python interface, we designed
an extension interface that standardizes the interaction between openml-python

and machine learning library code. An extension’s responsibility is to convert
between the libraries’ models and OpenML flows, interact with its training
interface and format predictions.

We created an extension for scikit-learn [184], as it is one of the most popular
Python machine learning libraries. This extension can be used for any library
which follows the scikit-learn API [40]. Concretely, the scikit-learn extension
can convert an OpenMLFlow to an scikit-learn Estimator (including hyper-
parameter settings), train models and produce predictions for a task, and create
an OpenMLRun object to upload the predictions to the OpenML server. The ex-
tension also handles advanced procedures, such as scikit-learn’s random search
or grid search and uploading its traces (hyperparameters and scores of each
model evaluated during search).

4.2. OPENML-PYTHON 57

While openml-python is best used with an internet connection, it does fa-
cilitate offline usage to a degree. All downloaded entities are cached locally,
which makes it faster when e.g., fetching the same dataset across multiple ses-
sions and allows subsequent loading of the same datasets without a connection
to OpenML. For example, when running large scale experiments it is possible
to first download all the required entities (e.g., datasets, tasks and flows), then
conduct experiments offline on cached data, and later upload results when a
connection is available again.

The package is developed publicly on Github, uses continuous integration,
and features documentation with a mix of tutorials, examples and API docu-
mentation. It builds on standard open-source packages for scientific computing
such as numpy [114], scipy [263], and pandas [235], which means it integrates
well with ML in Python. The package is written in Python3 and open-sourced
with a 3-Clause BSD License.4

4.2.2 Related Work

There are other Python packages for importing datasets, such as PMLB [178],
and submodules of both scikit-learn [184] and tensorflow [1], but these offer no
support for reproducible experiments such as provided train/test splits. On the
other hand, Kaggle.com, an online platform mostly known for its company-
sponsored competitions, provides a versatile platform to share and collabora-
tively work with datasets. Kaggle.com itself is closed source and cannot be
extended and developed by the research community. Their Python API pro-
vides functionality to up- and download datasets and so-called kernels to their
webserver. However, datasets are neither required to adhere to the same format
and can therefore not be automatically ingested. Similarly, there is no central
and consistently formatted storage of the experiments, which makes it hard to
build on previous results and conduct large scale analyses.

4.2.3 Use Cases

Here follow a few of the use cases of OpenML and code examples of how to
perform them with openml-python. Further information, including advanced
examples on how OpenML-Python was used in previous publications, can be

4Source: http://github.com/openml/openml-python

https://www.kaggle.com/
http://github.com/openml/openml-python

58 Reproducible Benchmarks

found in the online documentation.5

Finding and downloading datasets. openml-python can retrieve the thou-
sands of datasets on OpenML (all of them, or specific subsets) in a unified
format, retrieve meta-data describing them, and search through them with fil-
ters. Datasets are converted from OpenML’s internal format into numpy [114],
scipy [263] or pandas [235] data structures, which are standard for ML in
Python. To facilitate contributions from the community, it allows people to
upload new datasets in only two function calls, and to define new tasks on
them.

Listing 4.1 shows how to query for datasets with specific characteristics and
download one.6 Here we use list datasets to query datasets that have between
100 and 200 instances (rows), more than 2 classes and no missing values, and
request at most 5 results. If we are interesting in any one particular dataset, for
example ‘iris’, we can download it with the get dataset function and inspect
the data.

Performing reproducible ML experiments OpenML tasks and flows to-
gether describe all aspects of an experimental setup. This can be used to con-
duct reproducible ML experiments, but it can be tedious (and error-prone)
to initialize the models and setup the data splits through the basic building
blocks. openml-python provides a simplified interface which automates much
of this process. Listing 4.2 shows how to conduct a reproducible experiment
which evaluates the predictive accuracy of a decision tree using 10-fold cross-
validation on the ‘Iris’ dataset and upload the results to OpenML. To achieve
this simple interface, run model on task interally uses the scikit-learn ex-
tension to convert the DecisionTreeClassifier to a flow, reads the task to
split the dataset, and use the DecisionTreeClassifier’s fit and predict

functions.

Using published results Experiment data on OpenML is plentiful and allows
interesting analysis of e.g., hyperparameter importance [255] or algorithm per-
formance [233]. In Listing 4.3 we show how to produce a contour plot, as shown
in Figure 4.2, which shows the effect of hyperparameters C and γ of an SVM
on its accuracy for the letter dataset using experiment data already available on
OpenML. In particular, lines 5-8 retrieve all experiment data for an SVM flow
on a 10-fold cross-validation task on the ‘letter’ dataset with openml-python.

5Documentation, extensions and examples: https://openml.github.io/openml-python
6The example specifies the dataset by name for convenience. To guarantee the exact same

version of the dataset is downloaded, a numeric identifier should be used.

https://openml.github.io/openml-python

4.2. OPENML-PYTHON 59

Listing 4.1: Code for listing and retrieving datasets.In this listing only, the code
(prefix: >>>) and output are interleaved. Output is abridged and formatted for
display in this document.

1 >>> import openml

2 >>> openml.datasets.list_datasets(

3 output_format="dataframe",

4 number_instances="100..200",

5 number_missing_values="0",

6 size=5,

7)

8
9 did name NumberOfFeatures NumberOfInstances ...

10 10 lymph 19.0 148.0 ...

11 48 tae 6.0 151.0 ...

12 61 iris 5.0 150.0 ...

13 62 zoo 17.0 101.0 ...

14 164 mol 58.0 106.0 ...

15
16 >>> iris = openml.datasets.get_dataset("iris")

17 >>> iris.get_data ()

18
19 SEPALLENGTH SEPALWIDTH PETALLENGTH PETALWIDTH CLASS

20 5.1 3.5 1.4 0.2 setosa

21 4.9 3.0 1.4 0.2 setosa

22

23 6.2 3.4 5.4 2.3 virginica

24 5.9 3.0 5.1 1.8 virginica

Listing 4.2: Automatically performing 10-fold cross-validation with a decision
tree on ‘iris’ (task 59) and uploading the results (requires an API key).

1 import sklearn.metrics , sklearn.tree , openml

2
3 iris_task = openml.tasks.get_task (59)

4 model = sklearn.tree.DecisionTreeClassifier ()

5 run = openml.runs.run_model_on_task(model , iris_task)

6 run.publish ()

60 Reproducible Benchmarks

The remainder, lines 9-17, only processes and visualizes the obtained data.

2 0 2 4 6 8 10
C (log10)

10

8

6

4

2

0

2

ga
m

m
a

(lo
g1

0)

SVM performance landscape

0.00

0.16

0.32

0.48

0.64

0.80

0.96

ac
cu

ra
cy

Figure 4.2: SVM hyperparameter contour plot generated by the code in List-
ing 4.3.

4.2. OPENML-PYTHON 61

Listing 4.3: Code for retrieving the predictive accuracy of an SVM classifier on
the ‘letter’ dataset and creating a contour plot with the results.

1 import openml

2 import numpy as np

3 import matplotlib.pyplot as plt

4
5 # Choose an SVM flow (e.g. 8353) ,

6 # and the dataset ’letter ’ (task 6).

7 df = openml.evaluations.list_evaluations_setups(

8 ’predictive_accuracy ’, flows =[8353] , tasks =[6],

9 output_format=’dataframe ’,

10 parameters_in_separate_columns=True ,

11)

12 hp_names = [

13 ’sklearn.svm.classes.SVC (16)_C’,

14 ’sklearn.svm.classes.SVC (16) _gamma ’

15]

16 df[hp_names] = df[hp_names]. astype(float).apply(np.log)

17 C, gamma , score = df[hp_names [0]], df[hp_names [1]], df[’value ’]

18
19 cntr = plt.tricontourf(

20 C, gamma , score , levels =12, cmap=’RdBu_r ’

21)

22 plt.colorbar(cntr , label=’accuracy ’)

23 plt.xlim((min(C), max(C)))

24 plt.ylim((min(gamma), max(gamma)))

25 plt.xlabel(’C (log10)’, size =16)

26 plt.ylabel(’gamma (log10)’, size =16)

27 plt.title(’SVM performance landscape ’, size =20)

62 Reproducible Benchmarks

4.3 Benchmarking Suites

Algorithm benchmarks shine a beacon for machine learning research. They al-
low us, as a community, to track progress over time, identify challenging issues,
to raise the bar and learn how to do better. To learn as much as possible from
them, they must include well-designed, challenging sets of tasks, be easily ac-
cessible and practical to use. Evaluations of algorithms on these tasks should be
performed in standardized ways to support a rigorous analysis and clear conclu-
sions. And above all, these evaluations must be easy to find, easily interpretable,
reproducible, and directly comparable to evaluations run by other scientists.

However, in practice machine learning researchers have benchmarked their
algorithms on often ad-hoc subsets of dataset repositories such as UCI [66] or
LivSVM [53]. This has not yet led to standardized benchmarks that can be
easily compared between individual studies. This often results in suboptimal
shortcuts in study design, producing rather small-scale experiments that should
be interpreted with caution [2], are hard to reproduce [117, 183], and even
lead to contradictory results [130]. An often criticized aspect is the competitive
mindset in benchmarking which focuses too much on dominating the state-of-art
on a few datasets, instead of a rigorous and informative analysis of large-scale
studies, including negative results where popular algorithms fail [219].

OpenML provides all the building blocks for creating curated benchmarks,
such as meta-data rich datasets, tasks, flows and runs. However, OpenML did
not yet facilitate the simple creation and sharing of well-designed benchmark
suites and results of experiments ran on them. In this last part of the chapter
we introduce a novel benchmarking layer on top of OpenML, fully integrated
into the platform and its APIs, that streamlines the creation of benchmark-
ing suites, i.e., collections of tasks designed to thoroughly evaluate algorithms.
These suites can then be easily imported, used in systematic benchmarking ex-
periments, and the results can be automatically shared and organized on the
OpenML platform, where they can be easily searched, reused and compared
to the results of others. We develop tools that allow for creating a well-defined
benchmark suite, and propose a new benchmark suite designed with these tools:
the Curated Classification benchmarking suite 2018 (OpenML-CC18)

4.3.1 OpenML Benchmarking Suites

As with any platform where people can upload new datasets, an overwhelming
amount and variety of datasets is available, and it can be unclear how well they
are curated. We designed OpenML benchmarking suites as a remedy to al-

4.3. BENCHMARKING SUITES 63

Figure 4.3: OpenML website showing a list of benchmark studies on the left, and
interactive exploration of the results of the AutoML Benchmark (see Chapter 5)
on the right. Can be viewed online at https://www.openml.org/s/226.

low researchers to compile and publish well-defined collections of curated tasks
and datasets, and collect benchmarking results from many scientists in a single
place. More precisely, we define:

An OpenML benchmarking suite is a set of OpenML tasks carefully selected
to evaluate algorithms under a precise set of conditions.

Using a set of tasks instead of a set of datasets makes experiments performed
on them comparable and reproducible. Compared to other (static) collections of
datasets, the use of OpenML benchmarking suites has the following advantages:

• Easy creation of benchmarks (see Section 4.3.2): OpenML hosts thousands
of datasets, and scientists can easily filter them down to those needed for
their benchmarks.

• Convenient access and sharing of suites: Each suite receives a unique ID,
which can be used to retrieve the suite via APIs, and via its own webpage.
Figure 4.3 illustrates how results collected on these suites can be explored
online.

• Permanence and provenance: Because benchmarking suites are its own

https://www.openml.org/s/226

64 Reproducible Benchmarks

entity on OpenML, it is clear who created them (provenance). It also
guarantees no one but the original creator can edit or remove the suite
(permanence), this is an advantage over the previously used community
tagging mechanism which allowed any user to add tasks to a suite.

• Community of practice: Curated benchmark suites allow scientists to
thoroughly benchmark their machine learning methods without having
to worry about finding and selecting datasets for their benchmarks.

• Building on existing suites: Scientists can extend, subset, or adapt existing
benchmarking suites to correct issues, raise the bar, or run personalized
benchmarks.

• Reproducibility of benchmarks: Based on machine-readable OpenML tasks,
with detailed instructions for evaluation procedures and train-test splits,
shared results are comparable and reproducible.

• Conducting benchmark studies: After creating an OpenML benchmarking
suite, existing and new experiments (runs) on the underlying tasks can
be associated with the suite. This is also illustrated in Figure 4.4. Such
data reuse bootstraps the creation of new benchmark studies that can
analyze existing machine learning algorithms in new ways, or to design
new challenging benchmark suites.

• Collaborative work: OpenML benchmarking suites benefit from the OpenML
community, where users can help to identify and report bugs and errors
in the contained datasets.

• Dynamic benchmarks: Benchmarks are never perfect, and when used for
a long time, scientists may overfit on specific sets of tasks. However,
benchmarking suites can be easily corrected and extended over time (e.g.,
on a yearly basis), leading to dynamic benchmarks that respond to novel
concerns, and evaluate methods on new and ever more challenging tasks.
More than providing a snapshot, this allows longitudinal studies that truly
track progress over time.

4.3.2 How to Use OpenML Benchmarking Suites

To realize all these benefits, we have developed a series of extensions to the
OpenML platform:7

7All code is open, BSD-3 licenced, and available on https://github.com/openml

https://github.com/openml

4.3. BENCHMARKING SUITES 65

• We added the concepts of a ‘benchmark suite’ as a collection of tasks, and
a ‘benchmark study’ as a collection of benchmark results (runs) obtained
on them.

• We added data filtering procedures to the APIs and website that allow
researchers to exactly specify the constraints for tasks to be included in a
benchmark suite.

• We provide scripts and notebooks that facilitate the creation and quality
assessment of benchmark suites. For instance, they filter out datasets that
are modeled too easily, and hence cannot be used to differentiate between
most algorithms.

• Certain types of datasets, such as multilabel, time series, or artificial
datasets, may require additional care. We added collaborative and au-
tomated annotation (tagging) to filter such datasets accordingly.

In the following, we discuss the three main use cases for benchmarking suites,
i.e., creating new suites, retrieving existing suites, and running benchmarks. We
provide a code example on how to retrieve, iterate the contents of a benchmark
suite and run machine learning algorithms on it in Listing 4.4.8

Creating New Suites

To collect data sets for a new suite, one usually starts by determining a list
of constraints that datasets or tasks should adhere to (e.g., have a minimal
size, a limited amount of class imbalance, and not be a time series). This
is often an iterative refinement process, during which the distribution of cur-
rently selected tasks can be visualized, and any existing benchmarking results
on these tasks can be retrieved. An example of this workflow is illustrated
in the provided notebook.9 The final selection of tasks can then be used to
create a new benchmark suite. Each benchmark suite is assigned a unique id
and an overview webpage with a description and an analysis dashboard (e.g.,
https://www.openml.org/s/99). The description text can be used to describe
the goals and design criteria, provide links to external resources, and address
any ethical concerns that should be taken into consideration when using the
benchmark suite. We give an exemplary curation protocol in Appendix A.2.

8https://docs.openml.org/benchmark has up-to-date instructions for Python, Java and R.
9Notebooks can be found at https://github.com/openml/benchmark-suites

https://www.openml.org/s/99
https://docs.openml.org/benchmark
https://github.com/openml/benchmark-suites

66 Reproducible Benchmarks

Listing 4.4: Running a large scale benchmark study with openml-python

1 from sklearn import compose , impute , metrics , pipeline , tree

2 from sklearn.preprocessing import OneHotEncoder

3 from openml import config , study , tasks , runs , extensions

4 from openml.extensions.sklearn import cat , cont

5
6 var imputer = (impute.SimpleImputer (), cont)

7 var encoder = (OneHotEncoder(handle_unknown=’ignore ’), cat)

8 clf = pipeline.make_pipeline(

9 compose.make_column_transformer(imputer , encoder),

10 tree.DecisionTreeClassifier(max_depth =1)

11)

12
13 benchmark_suite = study.get_suite(’OpenML -CC18’)

14 # config.apikey = ’OPENML_API_KEY ’ # For uploads

15
16 run_ids = []

17
18 for task_id in benchmark_suite.tasks:

19 task = tasks.get_task(task_id)

20 run = runs.run_model_on_task(clf , task)

21 score = run.get_metric_fn(metrics.accuracy_score)

22 print(f’{task.get_dataset (). name}: {score.mean ():.2} acc’)

23 run.publish () # Requires API -Key

24 run_ids.append(run.id)

25
26 benchmark_study = study.create_study(

27 name="CC18 -Example",

28 description="An example decision stump study.",

29 run_ids=run_ids ,

30 benchmark_suite=benchmark_suite.id

31)

32
33 benchmark_study.publish () # Requires API -key

34 print(f"Results stored at {benchmark_study.openml_url}")

4.3. BENCHMARKING SUITES 67

Retrieving Existing Suites

Existing benchmark suites can be easily downloaded via any of the OpenML
client libraries using its unique id or alias (see Listing 4.4). The tasks and
datasets are all uniformly formatted, and come with extensive meta-data to
streamline the execution of benchmarks on them. For instance, if a dataset
contains missing values, this is indicated in a machine-readable way so that
researchers can automatically adjust for this when running their algorithms.
Datasets can be investigated using exploratory data analysis tools, and existing
runs on these tasks can be downloaded and analyzed.

Running Benchmarks

After retrieving the tasks from a suite, new experiments can be conducted lo-
cally. As illustrated in Figure 4.4, this is easiest with the readily integrated
machine learning libraries. We provide support for running experiments with
scikit-learn [184] in Python, mlr [26] or its successor mlr3 [145] in R, and
Weka [111] in Java. Integrations for deep learning libraries are under develop-
ment, and we welcome further open source integrations.10 Custom code can
often be wrapped, e.g., using the scikit-learn interface.

The results of these experiments (runs) can also (optionally) be bundled
in a benchmark study and published on OpenML, as illustrated in Figure 4.4.
Runs include all experiment details, including hyperparameter configurations,
in a structured way. This allows entire communities of scientists to bring to-
gether benchmarks of a wide range of algorithms, all evaluated uniformly on the
same tasks, in a single place where they can be directly compared on predictive
performance and analysed in novel ways. Figure 4.4 visualizes the results of
3.8 million runs collected on a single benchmarking suite, which we will discuss
next.

4.3.3 OpenML-CC18

To demonstrate the functionality of OpenML benchmarking suites, we created
a first standard of 72 classification tasks built on a carefully curated selection of
datasets from the many thousands available on OpenML: the OpenML-CC18.
It can be used as a drop-in replacement for many typical benchmarking setups.
These datasets are deliberately medium-sized for practical reasons. An overview
of the benchmark suite can be found at https://www.openml.org/s/99 and in

10Development is carried out on GitHub, see: https://docs.openml.org.

https://www.openml.org/s/99
https://docs.openml.org

68 Reproducible Benchmarks

Figure 4.4: Distribution of the scores (average area under ROC curve, weighted
by class support) of 3.8 million experiments with thousands of machine learning
pipelines, shared on the CC18 benchmark tasks. Some tasks prove harder than
others, some have wide score ranges, and for all there exist models that perform
poorly (0.5 AUC). Code to reproduce this figure (for any metric) is available on
GitHub.9

Table A.1 in the appendix. We first describe the design criteria of the OpenML-
CC18 before discussing uses of the benchmark and success stories.

Design Criteria

The OpenML-CC18 contains all verified and publicly licenced OpenML datasets
until mid-2018 that satisfy a large set of clear requirements for thorough yet
practical benchmarking. The selected datasets must be annotated with their
source, contain data that is not artificially generated or derived from another
dataset, and be small enough to allow for models to be trained on almost any
computing hardware (i.e., 500 - 100k samples and less than 5000 features after
one-hot encoding categorical variables). From the remaining datasets we select

4.3. BENCHMARKING SUITES 69

only reasonably balanced classification tasks of which the observations may be
assumed to be independently and identically distributed. Finally, to ensure
that datasets are sufficiently challenging, we removed datasets which are easily
solved by a decision tree.

We created the OpenML-CC18 as a first, practical benchmark suite. In
hindsight, we acknowledge that our initial selection still contains several mis-
takes. Concretely, sick is a newer version of the hypothyroid dataset with several
classes merged, electricity has time-related features, balance scale is an artificial
dataset and mnist 784 requires grouping samples by writers. We will correct
these mistakes in new versions of this suite and also screen the more than 900
new datasets that were uploaded to OpenML since the creation of the OpenML-
CC18. Moreover, to avoid the risk of overfitting on a specific benchmark, and
to include feedback from the community, we plan to create a dynamic bench-
mark with regular release updates that evolve with the machine learning field.
We want to clarify that while we include some datasets which may have ethical
concerns, we do not expect this to have an impact if the suite is used responsi-
bly (i.e., the benchmark suite is used for its intended purpose of benchmarking
algorithms, and not to construct models to be used in real-world applications).

Usage of the OpenML-CC18

The OpenML-CC18 has been acknowledged and used in various studies. For
instance, Van Wolputte and Blockeel [256] used it to study iterative imputation
algorithms for imputing missing values, König, Hoos, and Rijn [136] used it to
develop methods to improve upon uncertainty quantification of machine learning
classifiers, and De Bie et al. [63] introduced deep networks for learning meta-
features, which they computed for all OpenML-CC18 datasets. In some cases,
the authors needed a filtered subset of the OpenML-CC18, which is natively
supported in most OpenML clients. Other uses of the OpenML-CC18 include
interpreting its multiclass datasets as multi-arm contextual bandit problems [22,
23] and using the individual columns to test quantile sketch algorithms [166].

Cardoso et al. [47] claim that the machine learning community has a strong
focus on algorithmic development, and advocate a more data-centric approach.
To this end, they studied the OpenML-CC18 utilizing methods from Item Re-
sponse Theory to determine which datasets are hard for many classifiers. After
analyzing 60 of its datasets (excluding the largest), they find that the OpenML-
CC18 consists of both easy and hard datasets. They conclude that the suite is
not very challenging as a whole, but that it includes many appropriate datasets
to distinguish good classifiers from bad classifiers, and then propose two subsets:

70 Reproducible Benchmarks

one that can be considered challenging, and one subset to replicate the behavior
of the full suite. The careful analysis and subsequent proposed updates are a
nice example of the natural evolution of benchmarking suites.

For completeness, we also briefly mention uses of OpenML100, a predecessor
of the OpenML-CC18 that includes 100 datasets and less strict constraints.
Fabra-Boluda et al. [79] use this suite to build a taxonomy of classifiers. They
argue that the taxonomies provided by the community can be misleading, and
therefore learn taxonomies to cluster classifiers based on predictive behavior.
Van Rijn and Hutter [255] and Probst, Boulesteix, and Bischl [196] used it to
quantify the hyperparameter importance of machine learning algorithms, while
Probst, Wright, and Boulesteix [197] used it to learn the best strategy for tuning
random forest based on large-scale experiments (although Probst, Boulesteix,
and Bischl [196] and Probst, Wright, and Boulesteix [197] use only the binary
datasets without missing values). Based upon these works, we conclude that
the OpenML-CC18 is being used to facilitate very diverse directions of machine
learning research.

Further Existing OpenML Benchmarking Suites

OpenML contains other benchmark suites as well, such as the OpenML100-
friendly that only contains the subset of the OpenML100 without missing values
and with only numerical features. A benchmark suite that contains trading
prices and technical analysis features of various currency pairs for evaluating
machine learning algorithms for Foreign Exchange was created by Schut, Rijn,
and Hoos [216]. Strang et al. [233] investigate on which types of datasets linear
classifiers can be competitive to non-linear classifiers. Since the hypothesis is
that this happens on smaller datasets, they have replicated the OpenML-100
suite and relaxed the exclusion criteria to also including small datasets (starting
with 10 data points). A large amount of datasets from PubChem have been
annotated and made available as an OpenML benchmarking suite by Olier et
al. [177]. Mantovani et al. [159] aim to predict when hyperparameter tuning
improves SVM classifiers, and have made the datasets that they experiment
on available as benchmark suite. Finally, there are the AutoML benchmarking
suites which will be discussed in more detail in the next chapter.

https://www.openml.org/s/225
https://www.openml.org/s/225

4.4. CONCLUSION AND FUTURE WORK 71

4.4 Conclusion and Future Work

OpenML is a platform for collaborative machine learning which allows researchers
to define reproducible experimental setups, share ML experiment results, and
build on the results of others. In this chapter we introduced openml-python,
which provides an easy-to-use interface to OpenML in Python, and OpenML
benchmarking suites, which are a collection of curated tasks to evaluate algo-
rithms under a precise set of conditions. Our goal is to simplify the creation
of well-designed benchmarks to push machine learning research forward. More
than just creating and sharing benchmarks, we want to allow anyone to ef-
fortlessly run and publish their own benchmarking results and organize them
online in a single place where they can be easily explored, downloaded, shared,
compared, analyzed, and used by others in their research.

openml-python makes it easy for people to share and reuse datasets, meta-
data, and empirical results of ML experiments. It has already been used to scale
up studies with hundreds of consistently formatted datasets [85, 94], supply
large amounts of meta-data for meta-learning [186], answer questions about
algorithms such as hyperparameter importance [255] and facilitate large-scale
comparisons of algorithms [233]. In the future we hope to improve support
for deep learning experiments through e.g., extensions for frameworks such as
tensorflow [1].

We introduced OpenML benchmarking suites, a new benchmarking layer on
the OpenML platform that allows scientists to download, share, and compare
results with just a few lines of code. We then introduced the OpenML-CC18,
a benchmark suite created with these tools for general classification bench-
marking. We reviewed how other scientists have adopted OpenML-CC18 and
other benchmarking suites in their own work, from which it becomes clear that
a continuous conversation with the research community is essential to evolve
benchmarks and make them better and more useful over time.

Recently some conferences have recognized that creating a benchmarking
suite requires a lot of work and introduced tracks such as NeurIPS’ datasets and
benchmarks and AutoMLConf’s Systems, Benchmarks and Challenges which
helps authors to expose their work and receive credit for it. However, the intro-
duction of benchmarking suites is free-form which makes it harder for reviewers
to evaluate their value, and for users to find a benchmarking suite relevant to
their research. Similar to datasheets [97] which provide a rich context about a
dataset, such as why it was created, how it was created, whether there are ethical
concerns, and the intended use for the dataset, a standard sheet for benchmark-

72 Reproducible Benchmarks

ing suites could be constructed. This would help authors of benchmark sheets
communicate with its users and further streamline the benchmark suite creation
process, as the questionnaire helps the authors to reflect on each stage of the
creation process. Such a ‘benchmarking sheet’ could be easily citable, integrated
with the OpenML platform, further increase the quality of benchmarking suites
and streamline their review process.

Big benchmarking suites help evaluate algorithms on a wide range of domains
or dataset characteristics. However, for some purposes a large number of tasks
might be unnecessary. Cardoso et al. [47] a post-hoc analysis is used to find
a representative subset of tasks for the OpenML-CC18. The rich experimental
data on OpenML could perhaps be used to shrink the benchmarking suite before
publication by automatically analyzing results of previous experiments, or to
propose tasks to add to a benchmarking suite to improve its expressiveness.
Achieving a similar ability for a benchmarking suite to differentiate algorithms
while using fewer tasks enables researchers with limited budgets and reduces
the environmental impact benchmarking studies have.

While it has not yet been demonstrated, we assume that as more methods
are being evaluated on benchmarking suites, overfitting on fixed suites is in-
creasingly likely. We therefore aim to periodically update existing suites with
new datasets that follow the specifications laid out by the benchmark designers
(e.g., as done for computer vision research [201]) and invite the community to
extend existing suites with harder tasks, as done in NLP research [131].

The task and suite specifications do not yet allow for constraints on re-
sources, e.g., memory or time limits. Specific benchmark studies could impose
identical hardware requirements, e.g., to compare running times. Where requir-
ing identical hardware is impractical, general constraints would ensure results
are more comparable when multiple people run their experiments on a suite.
Explicit constraints also help interpret earlier results.

We invite the community to create additional benchmarks suites for other
tasks besides classification, for larger datasets or more high-dimensional ones,
for imbalanced or extremely noisy datasets, as well as for text, time series, and
many other types of data. We are confident that benchmarking suites will help
standardize evaluation and track progress in many subfields of machine learning,
and also intend to create new suites and make it ever easier for others to do so.

Chapter 5
The AutoML Benchmark

With considerable effort being spent on developing and improving AutoML
tools [285], as well as increased usage by practitioners [252], comes the need to
compare the different tools and track progress in the field. However, comparing
AutoML tools leaves much room for error. Issues may arise from not knowing
how to correctly install, configure, or use ‘competitor’ frameworks, for instance
by misunderstanding memory management and/or using insufficient compute
resources [9], or failing to use comparable resource budgets [81]. Additionally,
we observe that no common benchmarking suites are employed for evaluating
AutoML frameworks and most published AutoML papers use a self-selected set
of datasets on which to evaluate their methods. This inconsistency makes it
hard to compare results across papers, and also allows for presenting cherry
picked results.

In this chapter, we present an open source AutoML benchmark.1 It consists
of an easy to use benchmarking tool for reproducible research on a curated list
of high quality datasets. The benchmarking tool can be used to perform fully
automated AutoML evaluations, and integration of the AutoML frameworks is
developed together with the original AutoML contributors to ensure correct-
ness. We carry out a large scale evaluation of 9 AutoML frameworks across
71 classification and 33 regression tasks and report on the results from various

This chapter is based on a work-in-progress paper, scheduled to be submitted to JMLR.
We presented a first look at this work at the ICML 2019 AutoML workshop:
Pieter Gijsbers et al. “An open source AutoML benchmark”. In: arXiv preprint
arXiv:1907.00909 (2019)
Since the workshop presentation, Stefan Coors and Marcos L. P. Bueno also joined the project.

1https://openml.github.io/automlbenchmark/

73

https://openml.github.io/automlbenchmark/

74 The AutoML Benchmark

perspectives. Finally, we provide an interactive visualization tool which may be
used for further exploration of the results.

The rest of the chapter is structured as follows. We discuss related bench-
marking literature in Section 5.1, followed by an overview of integrated AutoML
frameworks in Section 5.2. In Section 5.3, we provide an overview of the bench-
marking tool and how to use it. We then motivate our benchmark design choices
and its limitations in Section 5.4 and report on the results obtained by running
the benchmark in Section 5.5. In Section 5.6 conclude our paper and sketch
directions for future work.

5.1 Related Work

Several benchmark suites have been developed in machine learning [28, 178,
254, 275]. These datasets often do not include problematic data characteristics
found in real world tasks (e.g., missing values) because many ML algorithms
are not able to handle them natively. By contrast, AutoML frameworks should
be designed to handle these problematic data characteristics to be applicable
to a wide range of data. This makes relaxing these practical restrictions on
the selection of datasets not only possible, but indeed interesting as the way
in which AutoML frameworks handle these issues provides new dimensions in
which they can be compared. Moreover, runtime budgets are often not specified
in traditional ML benchmarks as the algorithms can run to completion (one
exception is performance studies, such as [138]), yet they are a requirement in
an AutoML benchmark as most AutoML frameworks are designed to optimize
until a given time budget is exhausted.

In the remainder of this section we will discuss some of the many experi-
mental evaluations of AutoML frameworks. In the process we highlight some
of the issues that are encountered. We stress that we do not mean to discredit
their authors and similar issues can be found in other papers.

Balaji and Allen [9] conducted one of the first benchmark studies on Au-
toML tools. They evaluated four open-source frameworks on both classification
and regression tasks sourced from OpenML, optimized for weighted F1 score
and mean squared error, respectively. Unfortunately, they encountered techni-
cal issues with most AutoML tools which led to a questionable experimental
evaluation. For example, H2O AutoML [148] was configured to optimize to a dif-
ferent metric (log loss as opposed to weighted F1 score) and ran with a different
setup (unlike the others, H2O AutoML was not containerized), and auto ml [182]
had its hyperparameter optimization disabled.

5.1. RELATED WORK 75

A study on nearly 300 datasets across six different frameworks was conducted
by Truong et al. [244]. Each experiment consisted of a single 80/20 hold out
split on a 15-minute training time budget, which was chosen so that most tools
returned a result on at least 70% of the datasets. We postulate it is reasonable
to assume that the datasets for which no result is returned by a framework
correlate strongly with datasets for which optimization is hard. For example, a
big dataset might cause one framework to conduct only few evaluations while
it completely halts another. Unfortunately this makes results uninterpretable
when comparing aggregate performance (e.g., through the box-whisker plots
used), because a tool could show better performance because it failed to return
models on datasets for which optimization was hard. Truong et al. present their
results across different subsets of the benchmark, e.g., few versus many categor-
ical features, which helps highlighting differences between different frameworks.
The authors also conduct small-scale experiments to analyze performance over
time by running the tools on multiple time budgets on a subset of datasets, as
well as the ‘robustness’ which denotes the variance in final performance given
the same input data. Unfortunately, both experiments were conducted on only
one dataset per sub-category, which does not lend to generalizing the results.

Zöller and Huber [285] present a survey and benchmark on AutoML and
combined algorithm selection and hyperparameter optimization (CASH [238])
frameworks. Six CASH frameworks and five AutoML tools are compared across
137 classification tasks, the former have a limit of 325 iterations while the latter
are constrained to a one hour time limit. The comparison of CASH frameworks
gives insight into the effectiveness of different optimization strategies on the
same search space (hyperopt [18] performed best though absolute differences
were small between all optimizers). The AutoML tools are compared as they
are, which means the comparison might reflect a real life use case more closely
with the drawback that conclusions about the effectiveness of individual parts
of the system are not possible. A number of errors are observed during the
experiments, including memory constraint violations, segmentation faults and
Java server crashes. When analyzing the generated pipelines from different
tools, the authors find that current tools construct rather modest pipelines (few
preprocessing operators) and suggest that perhaps search should be expanded
to explore more complicated pipelines.

Kaggle.com, a platform for data science competitions, is sometimes used to
compare AutoML tools to human data scientists [73, 285]. The comparison by
Zöller and Huber [285] found that the best AutoML framework on the bench-
mark was different than the best in Kaggle competitions (TPOT and H2O AutoML,
respectively). They find humans take approximately 8.5 hours to build a model

https://www.kaggle.com/

76 The AutoML Benchmark

as good the best AutoML tool does in one hour, though the best AutoML model
is still bad compared to the best human-made model. Erickson et al. [73] com-
pare on a larger set of Kaggle tasks, including classification and regression, and
find the tools are able to outperform anywhere from 20% (Auto WEKA) to 70%
(AutoGluon-Tabular) of competitors on a 4 hour budget.

However, it is hard to interpret these results as it is typically unclear how to
interpret scores on the Kaggle leaderboard. Submissions can range from seri-
ous attempts by ML experts to students or even people only testing the upload
functionality. For example, in one report a framework outperformed “99.3% of
participating data scientists” while 42.5% of all submissions did not outperform
the baseline which always predicts the majority class. Similarly, when comput-
ing the time spent on a submission, it seems unreasonable to assume that all
time between submissions is spent working on improving the model.

A benchmark on AutoML for multi-label classification, where a data in-
stance can have multiple labels simultaneously, was presented by Wever, Mohr,
and Hüllermeier [268]. The authors develop a framework with a configurable
search space and optimizer which allows for new improvements to be proposed
in isolation alongside an ablation study, as opposed to the common practice of
changing multiple aspects of the AutoML pipeline at once (typically together as
a new tool). The disadvantage is that existing tools can’t be directly evaluated,
instead each of their components first need to be reimplemented or wrapped into
the benchmark framework so that a tool can be reconstructed within the bench-
mark framework. Five different optimizers are compared across 24 datasets,
finding that Hierarchical Task Network planning worked best, though the com-
parison restricts itself only to the CASH problem as opposed to finding complete
machine learning pipelines that may include preprocessing steps.

In addition to AutoML benchmarks, a series of competitions for tabular
AutoML was hosted [110]. The first two competitions focused on tabular Au-
toML where data is assumed to be independent and identically distributed. In
the competitions participants had to submit code which automatically builds a
model on given data and produce predictions for a test set. During the devel-
opment phase, competitors could make use of a public leaderboard and several
validation datasets. After the development phase, the latest submissions of each
participant would be evaluated on a set of new datasets to determine the final
ranking. Datasets consisted of a mix of both new data and data taken from
public repositories, though they were reformatted to conceal their identity. In
their analysis Guyon et al. reveal most methods fail to return results on at least
some datasets due to practical issues (e.g., running out of memory).

5.2. AUTOML TOOLS 77

5.2 AutoML Tools

Automated machine learning pipeline design was first explored by Statnikov,
Aliferis, and Tsamardinos [230] to automate cancer diagnosis from gene expres-
sion data. Their method, later called GEMS (for Gene Expression Model Selec-
tor [231]), automatically performed pipeline design through grid search. Auto-
mated pipeline design was later independently explored in a domain-agnostic
setting by Escalante, Montes, and Sucar [75] and the first prominent general-
purpose AutoML framework was Auto-WEKA [238]. Auto-WEKA used Bayesian
optimization to select and tune the algorithms in a machine learning pipeline
based on WEKA [111]. Over time, countless new AutoML frameworks have been
developed either by iteratively improving on old designs, or using novel ap-
proaches. In this section we will discuss the AutoML frameworks we evaluate
in this chapter.

Unfortunately the cost of evaluating all frameworks is prohibitive, so we
selected only 9 of them. Only open source tools were considered, and from
those we made picks to cover a variety of different approaches. We considered
both frameworks developed by industry and academia, and included packages
whose authors proactively integrated their AutoML framework.

The most notable omission is Auto-WEKA, which we decided to exclude based
on the performance in our 2019 evaluation and its lack of updates since then [100].
Other integrated tools which are not included in the evaluation are autoxgboost [237],
because the author opted out due to the framework being built on depre-
cated software, and ML-Plan [169] and mlr3automl2 because we experienced
odd behavior when running the experiments.3 There are still many AutoML
frameworks not yet integrated which we hope to include in the future, e.g.,
Auto-Keras [124], AutoPyTorch [284], and BOHB [80].

5.2.1 Integrated Frameworks

Table 5.1 offers an overview of the AutoML tools evaluated in this paper. These
aspects are simplified, and we brief description with more detail of each frame-
work below.

AutoGluon-Tabular AutoGluon automates machine learning across a va-
riety of tasks including image, text and tabular data. The subsystem which

2https://github.com/a-hanf/mlr3automl/
3ML-Plan and mlr3automl are still planned to be included in the paper submission to JMLR.

https://github.com/a-hanf/mlr3automl/

78 The AutoML Benchmark

framework optimization search space

autogluon custom predefined pipelines
autosklearn Bayesian scikit-learn pipelines
autosklearn 2 Bayesian iterative algorithms
flaml CFO iterative algorithms
GAMA Evolution scikit-learn pipelines
H2OAutoML Random Search H2O pipelines
lightautoml Bayesian Linear model, GBM
mljarsupervised custom python modules
TPOT Evolution scikit-learn pipelines

Table 5.1: Used AutoML frameworks in the experiments.

automates machine learning on tabular data is called AutoGluon-Tabular [73],
which for the remainder of this chapter we will simply refer to as AutoGluon. In
contrast to other AutoML systems discussed here, it does not perform a pipeline
search or hyperparameter tuning. Instead, it has a predetermined set of models
which are combined through multi-layer stacking and ensembling.

AutoGluon’s ensemble consists of three layers. The first layer are models
from a range of model families trained directly on the data. In the second layer
the same type of models are considered, but as a stacking learner trained with
both the input data and the predictions of the first layer. In the final layer the
predictions of the second-layer models are combined into an ensemble [49].

To adhere to time constraints AutoGluon may stop iterative algorithms
prematurely or forgo training certain models altogether. Given more time
AutoGluon will train additional models using the same algorithms and hyper-
parameter configurations on different data splits, which further improves the
generalization of the stacking layer.

auto-sklearn Based on the design of Auto-WEKA, auto-sklearn [85] also
uses Bayesian optimization but is instead implemented in Python and optimizes
pipelines built with scikit-learn [184]. Additionally, it warm-starts optimiza-
tion through meta-learning, starting pipeline search with the best pipelines for
the most similar datasets [88]. After pipeline search has concluded, an ensemble
is created from pipelines trained during search. Auto-sklearn has won two Au-
toML Challenges [110], though for both entries auto-sklearn was customized
for the competition and not all changes are found in the public releases [83].

5.2. AUTOML TOOLS 79

Based on experience from the challenges, ‘auto-sklearn 2.0’ was devel-
oped [82]. The most notable changes include reducing the search space to only
iterative learning algorithms and excluding most preprocessing, use of succes-
sive halving [123], adaptive evaluation strategies, and replacing the data-specific
warm-start strategy with a data-agnostic portfolio of pipelines. Because these
changes make version 2.0 almost entirely different to 1.0, and 1.0 has been
updated since our last evaluation, we evaluate both auto-sklearn versions in
this paper. However, autosklearn 2.0 does not yet support regression and
it’s heavy use of meta-learning made it impossible for us to perform a ‘clean’
evaluation at this time (see Section 5.4.3).

FLAML FLAML [265], short for fast and lightweight AutoML library, which
optimizes boosting frameworks (xgboost, catboost, and lightgbm) and a small
selection of scikit-learn algorithms through a multi-fidelity randomized di-
rected search [273]. This search is based on an expected cost for improvement,
which tracks for each learner the expected computational cost of improving over
the best found model so far. Only after choosing which learner to tune, hyper-
parameter optimization proceeds by a randomized directed search, sampling a
new configuration from a unit sphere around the previous sample point. After
evaluating its validation performance, the next sample point is moved to that
direction (if better) or the opposite direction (if worse). FLAML positions itself
as a fast AutoML framework that can find good models in minutes [265].

GAMA Described in detail in Chapter 3, GAMA is designed as a modular
AutoML tool for researchers [103]. By default GAMA uses the asynchronous
evolutionary optimization described in Section 3.2.1 to optimize scikit-learn

pipelines, and ensembles them in a post-processing step as described in Sec-
tion 3.2.2.

H2O AutoML Built on the scalable H2O machine learning platform, H2O

AutoML [148] evaluates a portfolio of algorithm configurations and also performs
a random search over the majority of the supervised learning algorithms offered
in H2O. To maximize accuracy, H2O AutoML also trains two types of stacked en-
semble models at various stages during the run: an ensemble using all available
models at time t, and an ensemble with only the best models of each algorithm
type at time t. H2O AutoML relies on high performance implementations of al-
gorithms inside H2O, to cover a large search space quickly, and relies on stacking
to boost model performance. H2O AutoML uses a predefined strategy for impu-

80 The AutoML Benchmark

tation, normalization and categorical encoding for each algorithm and does not
currently optimize over preprocessing pipelines. The H2O AutoML algorithm is
designed to generate models that are very fast at inference time, rather than
strictly focusing on maximizing model accuracy, with the goal of balancing these
two competing factors to produce practical models that can be practically used
in production environments.

Light AutoML Light AutoML is specifically designed with applications in
the financial services industry in mind [249]. Pipelines are designed for quick
inference and interpretability. Only linear models and GBMs are considered,
and their hyperparameters are tuned in three steps. First, expert rules are used
to evaluate likely good hyperparameter configurations. Second, Tree-structured
Parzen Estimators [16] are used as the time-budget allows to optimize hyper-
parameters in a data-driven way. A final stage of tuning is performed with grid
search. In the final model construction step, different models are combined in
either a weighted voting ensemble (binary classification and regression) or with
two levels of stacking (multi-class classification). In a special “compete” mode
for larger time budgets, the AutoML pipeline is ran multiple times and their
resulting models are ensembled with weighted voting.

MLJar Similar to H2O, search starts with a set of predetermined models and
a limited random search. This is followed by a feature creation and selection
step, after which a hill climbing algorithm is used to further tune the best
pipelines. After search, the models can be stacked, used in a voting ensemble,
or both. The search space contains many scikit-learn algorithms, but also
the boosting frameworks xgboost, catboost, and lightgbm and the neural
network frameworks Keras and Tensorflow.

TPOT Tree-based Pipeline Optimization Tool [179], or TPOT, optimizes pipelines
using genetic programming. Using a grammar, machine learning pipelines can
be expressed as trees where different branches represent distinct preprocess-
ing pipelines. These pipelines are then optimized through evolutionary opti-
mization. To reduce overfitting that may arise from the large search space,
multi-objective optimization is used to minimize for pipeline complexity while
optimizing for performance. It is also possible to reduce the search space by
specifying a pipeline template [147], which dictates the high-level steps in the
pipeline (e.g. ”Selector-Transformer-Classifier”). Development has been focused
around genomics studies, providing specific options for dealing with this type of

5.3. SOFTWARE 81

high dimensional data for which prior knowledge may be present [227]. While
TPOT supports neural networks in its search [210], the default search space uses
scikit-learn components and XGBoost [55] only.

5.2.2 Baselines

In addition to the integrated frameworks, the benchmark tool allows for running
several baselines. The constant predictor always predicts the class prior or
mean target value, regardless of the values of the independent variables. The
Random Forest baseline builds a forest 10 trees at a time, until one of two
criterion is met: we expect to exceed 90% of the memory limit or time limit by
building 10 more trees, or 2000 trees have been built.

The Tuned Random Forest baseline improves on the Random Forest base-
line by using an optimized max features value. The max features hyperpa-
rameter defines how many features are considered when determining the best
split, and is found to be the most important hyperparameter [255] 4. The value
is optimized by evaluating up to 11 unique values for the hyperparameter with
5-fold cross-validation, before training a final model with the best found value.
The Tuned Random Forest is our strongest baseline and could mimic the first
effort of a data scientist.

Recently, Mohr and Wever [168] proposed to introduce a baseline which aims
to emulate the optimization that a data scientist might perform. In several steps,
including feature scaling, feature selection, hyperparameter tuning, and model
selection. We omit it here because it does not support regression and it was
published late into our preparation for the experiments.

5.3 Software

We developed an open source benchmark tool which may be used for repro-
ducible AutoML benchmarking.5 It features robust automated experiment ex-
ecution and has support for multiple AutoML frameworks, many of which are
evaluated in this paper. The benchmark tool is implemented as a Python ap-
plication consisting mainly of an amlb module and a framework folder hosting
all the officially supported extensions, which have been developed together with

4min. samples leaf is more important, but not significantly. It is not obvious the absolute
values used for min. samples leaf transfer as well to our datasets as the relative values used
in max features.

5https://github.com/openml/automlbenchmark

https://github.com/openml/automlbenchmark

82 The AutoML Benchmark

AutoML framework developers. The main consideration for the design of the
benchmark tool is to produce correct and reproducible evaluations. That is to
say that the AutoML tools are used as intended by their authors with little
to no room for user error, and the same evaluation conditions (e.g., framework
version, dataset, resampling splits) and controlled computational environments
can easily be recreated by anyone. The amlb module provides the following
features:

• a data loader to retrieve and prepare data from OpenML or local datasets.

• various benchmark runner implementations:

– a local runner: which runs the experiments directly on the machine.
This is also the runner to which each runner below delegates the final
execution.

– container runners (docker and singularity are currently supported):
this allows to preinstall the amlb application together with a full
setup of one framework, and consistently run all benchmark tasks
against the same setup. It also makes it possible to run multiple
container instances in parallel.

– an aws runner that allows the user to safely run the benchmark on
several EC2 instances in parallel. Each EC2 instance can itself use a
pre-built docker image, as used for this paper, or can configure the
target framework on the fly, e.g., for experiments in a development
environment.

• a job executor responsible to run and orchestrate all the tasks. When used
with the aws runner, this allows to distribute the benchmark tasks across
hundreds of EC2 instances in parallel, each one being monitored remotely
by the host.

• a post-processor responsible for collecting and formatting the predictions
returned by the frameworks, handling errors, and computing the scoring
metrics before writing the information needed for post-analysis to a file.

5.3.1 Extensible Framework Structure

To make sure that the benchmark tool is easily extensible for new AutoML
frameworks, we integrate each tool through a minimal interface. Each of the
current tools require less than 200 lines of code across at most four files (most

5.3. SOFTWARE 83

of which is boilerplate). The integration code takes care of installation of the
AutoML tool and its software stack, as well as providing it with data and
recording predictions. The integration requirements are minimal, as both input
data and predictions can be exchanged both in Python objects and common
file formats, which makes integration across programming languages possible
(currently integrated frameworks are written in C#, Java, Python and R). By
keeping the integration requirements minimal, we hope that AutoML framework
authors are encouraged to contribute integration scripts for their framework, and
at the same time avoid influencing the methods or software used to design and
develop new AutoML frameworks (as opposed to providing a generic starter kit
which may bias the developed AutoML frameworks [110]). Frameworks may
also be integrated completely locally, to allow for private benchmarking.6

5.3.2 Extensible Benchmarks

Benchmark suites define the datasets and one or more train/test splits which
should be used to evaluate the AutoML frameworks. The benchmark tool can
work directly with OpenML tasks and suites, allowing new evaluations without
further changes to the tool or its configuration. This is the preferred way to use
the benchmark tool for scientific experiments, because it guarantees that the
exact evaluation procedure can be reproduced easily by others. However, it is
also possible to use datasets stored in local files with manually defined splits,
for example to benchmark private use cases.7

5.3.3 Running the tool

To benchmark an AutoML framework, the user first needs to identify and define:

• the framework against which the benchmark is executed,

• the benchmark suite listing the tasks to use in the evaluation, and

• the constraint that needs to be imposed on each task. This includes:

– the maximum training time.

6https://github.com/openml/automlbenchmark/blob/master/docs/HOWTO.md#
add-an-automl-framework

7https://github.com/openml/automlbenchmark/blob/master/docs/HOWTO.md#
add-a-benchmark

https://github.com/openml/automlbenchmark/blob/master/docs/HOWTO.md#add-an-automl-framework
https://github.com/openml/automlbenchmark/blob/master/docs/HOWTO.md#add-an-automl-framework
https://github.com/openml/automlbenchmark/blob/master/docs/HOWTO.md#add-a-benchmark
https://github.com/openml/automlbenchmark/blob/master/docs/HOWTO.md#add-a-benchmark

84 The AutoML Benchmark

– the amount of CPU cores that can be used by the framework: not all
frameworks respect this constraint, but when run in aws mode, this
constraint translates to specific EC2 instances, therefore limiting the
total amount of CPUs available to the framework.

– the amount of memory that can be used by the framework: not all
frameworks respect this constraint, but when run in aws mode, this
constraint translates to specific EC2 instances, therefore limiting the
total amount of memory available to the framework.

– the amount of disk volume that can be used by the framework (only
respected in aws mode).

Those constraints must then be declared explicitly in a constraints.yaml
file (also in the resources folder or as an external extension).

Commands

Once the previous parameters have been defined, the user can run a benchmark
on the command line using the basic syntax:

$ python runbenchmark . py framework id benchmark id c o n s t r a i n t i d

For example, to evaluate the tuned random forest baseline on the classification
suite:

$ python runbenchmark . py tunedrandomforest openml/ s /271 1h8c

Additional options may be used to specify e.g., the mode or the parallelization.
For example, the following command may be used to evaluate the random forest
baseline on the regression benchmark suite across 100 aws instances in parallel.

$ python runbenchmark . py randomforest openml/ s /269 1h8c −m aws −p 100

5.4 Benchmark Design

In this section we discuss both the design of the benchmark suite (i.e., the
chosen datasets and evaluation procedures [28]) and the experimental setup, as
well as their limitations.

5.4. BENCHMARK DESIGN 85

5.4.1 Benchmark Suites

To facilitate a reproducible experimental evaluation, we make use of OpenML
Benchmark suites [28]. An OpenML benchmark suite is collection of OpenML
tasks, which each reference a dataset, an evaluation procedure (e.g., k-fold CV)
and its splits, the target feature, and the type of task (regression or classifica-
tion). The benchmark suites are designed to reflect a wide range of realistic
use-cases for which the AutoML tools are designed. Resource constraints are
not part of the task definition. Instead, we define them separately in a lo-
cal file so that each task can be evaluated with multiple resource constraints.
Both the OpenML benchmark suite (and tasks) and the resource constraints
are machine-readable to ensure automated and reproducible experiments.

Datasets

We created two benchmarking suites, one with 71 classification tasks, and one
with 33 regression tasks. The datasets used in these tasks are selected from
previous AutoML papers [238], competitions [109], and machine learning bench-
marks [28], according to a predefined list of criteria as follows:

• Difficulty of the dataset has to be a sufficient. If a problem is easily
solved by just about any algorithm, it will not be able to differentiate the
various AutoML frameworks. This can mean that a simple models such as
random forests, decision trees or logistic regression achieve a generalization
error of zero, or that the performance of these models and all evaluated
AutoML tools is identical.

• Representative of real-world data science problems to be solved with
the tool. In particular we limit artificial problems. We included a small
selection of such problems, either based on their widespread use (kr-vs-kp)
or because they pose difficult problems. But we do not want them to be a
large part of the benchmark. We also limit computer vision problems on
raw pixel data because those problems are typically solved with dedicated
deep learning solutions. However since they still make for real-world,
interesting, and hard problems, we did not exclude them altogether.

• No free form text features that cannot reasonably be interpreted as a
categorical feature. Most AutoML frameworks do not yet support feature
engineering on text features and will process them as categorical features.
For this reason we exclude text features even though we admit their preva-
lence in many interesting real-world problems. A first investigation and

86 The AutoML Benchmark

benchmark of multimodal AutoML with text features has been carried out
by Shi et al. [222].

• Diversity in the problem domains. We do not want the benchmark to
skew towards any application domain in particular. There are various
software quality problems in the OpenML-CC18 benchmark (jm1, kc1,
kc2, pc1, pc3, pc4), but adopting them all would lead to a bias in the
benchmark to this domain.

• Independent and identically distributed (i.i.d) data is required for
each task. If the data is of temporal nature or repeated measurements
have been conducted the task has been discarded. Both types of data
are generally very interesting, but are currently not supported for most
AutoML systems and we plan to extend the benchmark in the future in
this direction.

• Freely available and hosted on OpenML. Datasets that can only be used
on specific platforms like kaggle or not shared freely for any reasons are
not included in the benchmark.

• Miscellaneous reasons to exclude a dataset included label-leakage, near-
duplicates of other tasks in features (e.g., different only in categorical
encoding or imputation) or target (e.g., binarization of a regression of
multi-class task).

To study the differences between AutoML systems, the datasets vary in the
number of samples and features by orders of magnitude, and vary in the occur-
rence of numeric features, categorical features and missing values. Figure 5.1
shows basic properties of the classification and regression tasks, including the
distributions of the number of instances and features, the frequency of missing
values and categorical features, and the number of target classes (for classifica-
tion tasks). Other properties of the tasks are shown in Table A.2 and Table A.3
of Appendix A and can be explored interactively on OpenML.8 While the selec-
tion spans a wide range of data types and problem domains, we recognize that
there is room for improvement. Restricting ourselves to open datasets without
text features severely limits options, especially for big datasets.

All datasets are available in multiple formats for the AutoML frameworks,
either as files (parquet, arff, or csv) or as Python object (pandas dataframe,
numpy array). The used format depends on the framework, and in case a format

8Regression: www.openml.org/s/269, classification: www.openml.org/s/271

www.openml.org/s/269
www.openml.org/s/271

5.4. BENCHMARK DESIGN 87

is used without column annotation (i.e., numpy arrays or csv) these annotations,
i.e., type of column and levels, of may be provided to the framework separately.

Performance metrics

In our evaluation, we use area under the receiver operator curve (AUROC)
for binary classification, log loss for multi-class classification and root mean-
squared error (rmse) for regression9. We chose to use these metrics because
they are generally reasonable, commonly used in practice and supported by most
AutoML tools. The latter is especially important because it is imperative that
AutoML systems optimize for the same metric they are evaluated on. However,
our tool is not limited to these three metrics and a wide range of performance
metrics can be specified by the user.

Missing Values

As will be discussed in more detail in Section 5.5.4, not all frameworks are
equally well-behaved. There are times when search time budgets are exceeded
or the AutoML frameworks crash outright, which results in missing performance
estimates. There are multiple strategies to consider on how to deal with this
missing data.

One naive approach may be to ignoring missing values, and aggregate over
the obtained results. However, we see that failures do not occur at random. Fail-
ures are correlated to dataset properties, such as dataset size and class imbal-
ance, which may be correlated with “problem difficulty” and thus performance.
Ignoring missing values thus means that AutoML frameworks may fail on harder
tasks or folds, and consequently obtain higher performance estimates. Imputing
missing values with performance obtained by the same AutoML framework on
other folds is subject to the same drawback. Moreover, both methods do not
specify how to deal with missing values in case a framework fails to produce
predictions on all folds of a task.

Instead, we propose to impute the missing values with an interpretable and
reliable baseline. An argument may be made for using the random forest base-
line, since this may be a strong fallback that AutoML frameworks could realisti-
cally implement. However, we observe that training a random forest (of the size
used in the baseline) requires a non-significant amount of time on some datasets.
Automatically providing this fallback by means of imputation would provide an
unfair advantage to the AutoML frameworks which are well-behaved. Moreover,

9We use the implementations provided by scikit-learn 0.24.2

88 The AutoML Benchmark

many failures would not be remedied by having a random forest to fall back on,
since the AutoML frameworks crash irrecoverably due to e.g., segmentation
faults.

Instead, we impute missing values with the constant predictor, or prior.
This baseline returns the empirical class distribution for classification, and the
empirical mean for regression. This is a very penalizing imputation strategy,
as the constant predictor is often much worse than results obtained by the
AutoML frameworks which produce predictions for the task or fold. However,
we feel this penalization for ill-behaved systems is appropriate and fairer towards
the well-behaved frameworks, and hope that it encourages a standard of robust,
well-behaved AutoML frameworks.

5.4.2 Experimental Setup

Hardware

For comparable hardware and easy expandability we opt to conduct the bench-
mark on standard m5.2xlarge10 instances available on Amazon Web Services
(AWS). These represent current commodity level hardware with 32 GB mem-
ory, 8 vCPUs (Intel Xeon Platinum 8000 series Skylake-SP processor with a
sustained all core Turbo CPU clock speed of up to 3.1 GHz). 100 GB of gp3-
SSD storage is available for storage, which can be necessary for storing a larger
number of evaluated pipelines. The use of AWS also enables others to fully
reproduce and extend our results, since the results do not depend on private
computing infrastructure. As discussed in Section 5.3.1, the benchmark is not
limited to AWS but can be run on any machine.

Framework Configuration

All AutoML frameworks are instantiated with their default configuration, with
the following exceptions:

• Runtime for the search with one hour leeway for data loading, making
predictions, and cleanup operations.

• Resource constraints which specify the number of CPU cores and amount
of memory available.

10https://aws.amazon.com/ec2/instance-types/m5/

https://aws.amazon.com/ec2/instance-types/m5/

5.4. BENCHMARK DESIGN 89

• Target metric to use for optimization. This is the same metric that is
used for evaluation in the benchmark.

• ‘mode’ to declare the user intent. E.g., getting the best possible model
versus finding an interpretable (less complex) model. The mode used to
evaluate each AutoML framework is chosen by their developers.

• ‘output directory’ where any artifacts of the AutoML framework may
be stored.

The benchmark intentionally does not allow further customization of other Au-
toML system configuration parameters to reflect how these systems are usually
applied in practice as closely as possible.

5.4.3 Limitations

Both the design of the benchmark and the setup for the experiments described
in this paper have some limitations when it comes to the interpretation of their
results. Limitations in the design stem from the desire to keep the use of the
tools as close as possible to the original vision and usage intended by developers,
whereas the limitations in the experiments are caused by resource constraints
and may be alleviated by running additional experiments with the benchmark
software. In this section we highlight some important limitations, and stress that
this paper and the results within do not state which AutoML tool ultimately is
the best.

Limitations of the Design

Perhaps the biggest limitation of the design is the inability to attribute the per-
formance of an AutoML tool to any one aspect of its build as it is often done
with ablation studies. The evaluated AutoML tools differ among multiple design
choices, such as underlying ML library, search space, preprocessing and search
algorithm. Concretely, a performance difference between e.g., auto-sklearn

and TPOT could be caused by TPOT’s built-in stacking, auto-sklearn’s ensem-
bles, the difference in Bayesian Optimization versus genetic programming, the
difference in how multiprocessing is employed, or a combination of these or any
other difference between them. Software that would allow for such conclusions
essentially requires each AutoML tool to be reimplemented on a shared set of
algorithms for building models, search and evaluation. We acknowledge that
this would be incredibly valuable for the research community, however it would

90 The AutoML Benchmark

also no longer resemble the software as used in practice and thus be different
work altogether. Note that it is possible to perform ablation studies with the
benchmark tool for a specific AutoML framework, for example by comparing
different framework configurations as done by Erickson et al. [73].

Another limitation stems from only recording results produced by the final
model. Anytime performance, where information about the performance during
optimization is captured as if they would be final models, can be very insightful.
It allows for the distinction between a tool which converges quickly from one
that does not, and may be especially important for users which are interested to
use the systems with a human-in-the-loop, e.g., when designing a search space or
data features. Unfortunately many tools do not support collection of anytime
performance, and depending on how they are recorded might interfere with
resources used during search. We hope to be able to record anytime performance
in the future, but in this work we only approximate it by evaluating the tools
under two different time constraints (1 and 4 hours).

Finally, the qualitative comparison of the tools is also limited. Certain qual-
ity of life features like analysis of the pipeline via interpretable machine learning
(IML) methods, reports, usability or support are not evaluated, but are impor-
tant to many users. For a qualitative analysis of those we refer the reader to
one of the many existing overview papers on AutoML [244, 285].

Limitations of the Experiments

Most tools are highly configurable and allow the user to configure the search
algorithm or its hyperparameters, among other aspects that affect the AutoML
performance. Some tools even provide different configuration presets for dif-
ferent use cases, e.g., a performance-oriented competition mode, which we use,
and a mode that produces fast or interpretable models at the cost of some
performance. However, comparing the effect on model performance of tuning
hyperparameters, or using different presets, quickly carries prohibitive costs.
For this reason we have to limit our experiments to only use one mode specified
by the frameworks’ developers. The mode selected for each tool was the most
performance-oriented setting. It is likely that better results may be achieved
by carefully meta-tuning the AutoML tool, or that the tool with the best per-
formance in competition mode has relatively poor performance in interpretable
mode. While it is cost prohibitive for us to evaluate many different scenarios, it
easy to run the benchmark with custom configurations for the various AutoML
tools. This allows users to evaluate AutoML systems in a setting that reflects
their interest.

5.4. BENCHMARK DESIGN 91

Meta-learning

Many AutoML tools make use of meta-learning to better initialize and speed
up the search. Since all data in the benchmark is publicly available and many
of them are well known in the AutoML community, it is likely that there is a
substantial overlap between data used by the developers for meta-learning and
the data used in the benchmark. This is a very intricate problem as we consider
AutoML tools as black boxes. Removing the effect of the dataset that is to be
evaluated from the meta-learning procedure is not solvable in general.

In this paper specifically, both auto-sklearn 1 and auto-sklearn 2 use
meta-learning. Auto-sklearn 1’s meta-learning uses 140 datasets from OpenML,
each associated with well working ML pipelines. The search is initialized with a
25-nearest-dataset (KND) lookup using 38 meta-features [203]. Auto-sklearn

1 can exclude datasets by name from the lookup11 which we make use of in the
benchmark. Even so, it cannot be guaranteed that identical datasets with a
different name might be used for meta learning. A different approach would be
to exclude data with a distance of zero (or extremely small value) in the KND
initialization.

Auto-sklearn 2’s meta-learning model is more complicated, it consists of:
a) A static pipeline portfolio for warm-starting the search, which is computed
across hundreds of datasets using a greedy forward selection. And b) A meta-
model to predict the internal model selection strategy and budget allocation
strategy. Single datasets cannot be excluded from these meta-learning pro-
cedures and it is not feasible retrain the meta-models and pipeline portfolio
for each dataset in our benchmark. This ultimately means that the result of
auto-sklearn 1 and especially auto-sklearn 2 needs to be considered very
carefully. More research is required to address these issues and allow for the
correct evaluation of AutoML systems that use meta-learning.

5.4.4 Overfitting the Benchmark

One last issue that plagues any widely adopted benchmark is the potential
of algorithms overfitting on the datasets used in the benchmark. Since freely
available, interesting and usable (c.f. Section 5.4.1 on our selection criteria)
datasets are scarce, many AutoML developers use these datasets to benchmark
and improve their systems iteratively. While this is not as direct of an issue as
with meta-learning, these datasets can in general not be assumed to be truly
unseen. The only practical way to avoid this is to collect a novel set of datasets

11https://automl.github.io/auto-sklearn/master/faq.html#meta-learning

https://automl.github.io/auto-sklearn/master/faq.html#meta-learning

92 The AutoML Benchmark

for the benchmark which would entail a prohibitive effort. Even more, after
publishing this benchmark, the new datasets are published which again gives
developers the possibility to use them to improve their systems. On the other
hand, should you keep the benchmarking datasets private to avoid this issue, the
benchmark is no longer entirely reproducible by independent researchers. We
hope that the size of our benchmarking suites is large enough and their design
general enough that overfitting is less of an issue, but this is hard to guarantee.

5.4. BENCHMARK DESIGN 93

1 2 3 4
Number of features (log_10 scale)

0

5

10

15

20

Da
ta

se
ts

Binary
Multi
Regression

2 3 4 5 6 7
Number of instances (log_10 scale)

0

5

10

15

20

25

Da
ta

se
ts

Binary
Multi
Regression

1 2 3 4
Number of features (log_10 scale)

2

3

4

5

6

7

Nu
m

be
r o

f i
ns

ta
nc

es
 (l

og
_1

0
sc

al
e)

Binary
Multi
Regression

0 20 40 60
Percentage of missing values

0

2

4

6

Da
ta

se
ts

Binary
Multi
Regression

0 20 40 60 80 100
% categorical features

0

10

20

30

40

50

60

Da
ta

se
ts

Binary
Multi
Regression

2 4 6 8
Number of classes (log_2 scale)

0

2

4

6

8

10

Da
ta

se
ts

Multi

Figure 5.1: Properties of the tasks in both benchmarking suites.

94 The AutoML Benchmark

5.5 Results

In this section, we provide an overview and analysis of the results obtained. This
section is accompanied by an interactive visualization tool12 and all data arti-
facts generated from these experiments13. We strongly encourage the reader to
explore the data with the interactive visualization tool for a more comprehensive
comparison than we can provide here.

5.5.1 Performance

To report on the results for many AutoML frameworks across whole benchmark-
ing suites, we propose to use critical difference (CD) diagrams [65]. For each
framework they show their average rank, as well as which ranks are statistically
significantly different from each other. To calculate the average rank per task,
we first impute any missing values with the constant predictor and then average
the performance over all folds. We may then test for the presence of statistically
significant differences in the average rank distributions using a non-parametric
Friedman test at p < 0.05 (here, p ≈ 0 for every diagram) and use a Nemenyi
post-hoc test to find which pairs differ. For each benchmarking suite and time
budget, the critical difference diagrams are shown in Figure 5.2. They display
the rank of each framework (lower is better) averaged over all results from the
given benchmarking suite and budget.

Overall, we observe that AutoGluon and TPOT respectively achieve the best
and worst rank among AutoML frameworks in each setting with respect to
model accuracy, though never by a statistically significant margin. In almost all
cases, the baselines obtain lower ranks than any AutoML framework, though the
tuned random forest is a strong baseline that is often not significantly worse than
many of the AutoML frameworks. All AutoML frameworks except AutoGluon

and TPOT are generally ranked close to each other, with small differences in order
for the various suites and budgets.

To complement the CD diagrams, which obfuscate the relative performance
differences, we show box plots of obtained results (after imputation) across all
tasks in Figure 5.3. Because the performances are not commensurable across
tasks, we first scale the all results per task between the random forest perfor-
mance (-1) and the best observed performance (0) which means that higher
scores are better. This also makes the scaled value interpretable, and scales

12https://compstat-lmu.shinyapps.io/AutoML-Benchmark-Analysis/
13https://openml-test.win.tue.nl/amlb/

https://compstat-lmu.shinyapps.io/AutoML-Benchmark-Analysis/
https://openml-test.win.tue.nl/amlb/

5.5. RESULTS 95

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
flaml

H2OAutoML
lightautoml

GAMA(B)
autosklearn

mljarsupervised(B)
TunedRandomForest
TPOT
RandomForest
constantpredictor

CD

(a) Binary Classification, 1 hour

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
H2OAutoML

GAMA(B)
lightautoml
autosklearn

flaml
mljarsupervised(B)
TunedRandomForest
TPOT
RandomForest
constantpredictor

CD

(b) Binary Classification, 4 hours

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
mljarsupervised(B)

lightautoml
H2OAutoML

flaml
autosklearn

GAMA(B)
TunedRandomForest
TPOT
RandomForest
constantpredictor

CD

(c) Multi-class Classification, 1 hour

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
mljarsupervised(B)

lightautoml
H2OAutoML
autosklearn

flaml
GAMA(B)
TPOT
TunedRandomForest
RandomForest
constantpredictor

CD

(d) Multi-class Classification, 4 hours

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
H2OAutoML

flaml
mljarsupervised(B)

lightautoml
GAMA(B)

autosklearn
TPOT
TunedRandomForest
RandomForest
constantpredictor

CD

(e) Regression, 1 hour

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
H2OAutoML

mljarsupervised(B)
lightautoml
autosklearn

flaml
GAMA(B)
TPOT
TunedRandomForest
RandomForest
constantpredictor

CD

(f) Regression, 4 hours

Figure 5.2: CD plots with Nimenyi post-hoc test after imputing missing values
with the constant predictor baseline.

96 The AutoML Benchmark

based on the improvement over the baseline that is observed to be achievable.
While the boxplots are calculated over performance data on all tasks, the plots
are cut off to allow a better visualization of the most relevant area. The number
of outliers for each framework that are not shown in the plot are denoted on the
x-axis.

Even if ranks are similar, the performance distribution might be noticeably
different. For example, GAMA, H2O AutoML, and Light AutoML achieve very
similar average ranks on the one hour binary classification tasks, but from the
boxplots we observe that while H2O AutoML achieves lower median normalized
performance in this segment, its worst observed performances are much better
than that of GAMA and Light AutoML. Similarly, while TPOT’s average rank is
generally close to that of the Tuned Random Forest baseline, TPOT exhibits
much higher variance in its prediction quality.

5.5.2 BT-Trees

Bradley-Terry (BT) trees [234] can be used to statistically analyse benchmark
experiments based on dataset characteristics [78]. These trees use dataset char-
acteristics, such as the number of instances, the number of features, the ratio of
missing values and others, to split paired performance comparisons of the frame-
work to find statistically significant differences in performance. Bradley-Terry
models are originated in psychology to analyze paired comparison experiments
of subjects preferring one stimulus over another. For our benchmark, such a
preference ranking can be easily derived by pairwise performance comparisons
of all frameworks regarding the datasets and cross-validation folds.

The underlying algorithm of model-based recursive partitioning of Bradley–Terry
models works as follows: in each split of the BT tree, a BT model is fitted for
the paired comparisons based on the underlying dataset characteristics. Follow-
ing Zeileis and Hornik [282] and Eugster, Leisch, and Strobl [78] the BT model
performs a statistical test of parameter instability for the chosen data character-
istics. If this test reveals a significant instability in the model parameters, the
corresponding tree node splits the data according the the characteristic yield-
ing the highest instability (lowest test p-value). The splitting cut-point is then
determined such that it has the highest improvement of the model fit. This pro-
cedure is repeated until either no significant instability is left, a set tree depth is
reached, or further splits would exceed a set minimum number of observations
in the leaves.

Numeric values in the tree leafs are worth parameters which can be inter-
preted as preferences for the different frameworks [78]. Since they are in [0, 1]

5.5. RESULTS 97

[0] [0] [0] [4] [2] [0] [4][12][7] [0]3

2

1

0

Sc
al

ed
 P

er
fo

rm
an

ce

Binary classification, 1 hour

[0] [1] [1] [5] [1] [0] [4][13][4] [0]
6

4

2

0

Sc
al

ed
 P

er
fo

rm
an

ce

Binary classification, 4 hours

[0] [0] [0] [0] [3] [1] [3] [1] [5] [2]3

2

1

0

Sc
al

ed
 P

er
fo

rm
an

ce

Multiclass classification, 1 hour

[1] [1] [1] [3] [4] [1] [4] [1] [6] [1]3

2

1

0
Sc

al
ed

 P
er

fo
rm

an
ce

Multiclass classification, 4 hours

 AutoGluon(B)
 autosklearn
 autosklearn2
 flam

l
 GAM

A(B)
 H2OAutoM

L
 lightautom

l
 m

ljarsupervised(B)
 TPOT
 TunedRandom

Forest

[2] [0] [0] [0] [1] [0] [0] [2] [1] [0]3

2

1

0

Sc
al

ed
 P

er
fo

rm
an

ce

Regression, 1 hour

 AutoGluon(B)
 autosklearn
 autosklearn2
 flam

l
 GAM

A(B)
 H2OAutoM

L
 lightautom

l
 m

ljarsupervised(B)
 TPOT
 TunedRandom

Forest

[2] [0] [0] [1] [2] [0] [0] [3] [1] [0]3

2

1

0

Sc
al

ed
 P

er
fo

rm
an

ce

Regression, 4 hours

Figure 5.3: Boxplots of framework performance across tasks after scaling the
performance values from random forest (-1) to best observed (0).

98 The AutoML Benchmark

and sum up to 1 within a leaf, they can be understood as probability of a
framework performing best given the data characteristics in the corresponding
leaf.

Figure 5.4 shows a Bradley-Terry tree for classification tasks for a runtime
of one hour. For simplicity reasons, in order to obtain an easy understanding
tree, only the number of instances/features and the imbalance ratio was cho-
sen as data characteristics. The first split distinguishes between datasets with
more that 5832 instances and the ones equal or below that cut-point. Following
the left child node, the imbalance ratio of 1.034 was chosen to define the two
left tree leafs. The left one (Node 3) - small and very balanced classification
datasets - indicate that in such situations GAMA is preferred over all other
frameworks. Even though AutoGluon is less preferred for those kind of datasets
than GAMA, it is still preferable to all other frameworks. On small, more im-

number.of.instances
p < 0.001

1

≤ 5832 > 5832

imbalance.ratio
p < 0.001

2

≤ 1.034 > 1.034

Node 3 (n = 100)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.41
Node 4 (n = 250)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.41

number.of.instances
p < 0.001

5

≤ 130064 > 130064

Node 6 (n = 270)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.41
Node 7 (n = 80)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.41

Figure 5.4: Bradley-Terry tree of depth three for classification tasks. Results
from the one hour classification benchmark were used, and missing values were
imputed by constant predictor performance. One observation within the BT
tree equals the preference ranking of one fold on one dataset.

5.5. RESULTS 99

balanced datasets (Node 4), Autogluon is preferable to all other frameworks,
followed by autosklearn 2.

The right half of the tree is again divided into medium and large datasets
at a splitting value of 130064 observations. While on the left leaf (Node 6)
AutoGluon is clearly the preferred framework, the same applies on large classifi-
cation datasets to FLAML (Node 7), followed by mljar supervised and AutoGluon.

Figure B.1 and B.2 in the appendix show simpler Bradley-Terry trees with
only the number of instances and features as dataset characteristics. The find-
ings from the BT trees are essentially the same as those from Section 5.5.1, i.e.,
that overall AutoGluon is the preferred framework in most tree leafs. More-
over, the reader is strongly invited to explore the aforementioned interactive
visualization tool with which deeper BT trees based on several more dataset
characteristics can be constructed on various task types.

5.5.3 Model Accuracy vs. Inference Time Trade-offs

In terms of performance metrics, the development version of the AutoML Bench-
mark only measured model accuracy metrics (e.g., AUC, logloss). Some of the
integrated frameworks offer a “compete” mode (e.g., AutoGluon, MLJar) which
maximizes accuracy, typically at the cost of increased model complexity, similar
to how you may compete in a Kaggle competition. This can lead to models
being built that are highly accurate but are extremely slow at inference time
and are therefore not practical in many real life use-cases. In order to evaluate
the limitations of the models produced by each framework, we also measured
“prediction duration,” or how long it took to produce predictions for the test
set for each dataset in the benchmark. This metric provides important insight
into the trade-offs that tool authors make in their algorithm designs.

Figure 5.5 shows aggregated inference times across all models, including to-
tal time to score the test set (predict duration) as well as the per-row prediction
speed (predict duration divided by the number of rows in each test set). Outliers
have been removed from both plots for visibility, as there are a handful of very
extreme outliers. Both AutoGluon and MLJar stand out as orders of magnitude
slower than the other AutoML tools, on average. Light AutoML is also slower
than the remaining tools. GAMA is approximately as fast as autosklearn

and autosklearn 2, which can be explained by the fact that they both build
optimize scikit-learn pipelines and create an ensemble using the same al-
gorithm [48, 49]. H2O AutoML, FLAML and TPOT stand out as having very fast
inference times, however TPOT is much less accurate than the other tools, as we
will see in more detail below.

100 The AutoML Benchmark

0

20

40

60

Au
to

G
lu

on
(B

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2

fla
m

l
G

AM
A(

B)
H

2O
Au

to
M

L
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d(

B)
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

framework

pr
ed

ic
t_

du
ra

tio
n

All (1 & 4 hour, 8 cores)

Prediction Duration: Test set

0.00

0.02

0.04

0.06

0.08

Au
to

G
lu

on
(B

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2

fla
m

l
G

AM
A(

B)
H

2O
Au

to
M

L
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d(

B)
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

framework

pr
ed

ic
t_

ro
w

_s
pe

ed

All (1 & 4 hour, 8 cores)

Prediction Speed: Per row

Figure 5.5: Prediction duration (on the test set) in seconds and prediction
speed (per row) in seconds as divided by the total number of rows in the test
set, aggregated across all runs (tasks, problem types and constraints).

In Figure 5.6 we show the Pareto Frontier for all six scenarios, demonstrating
the average normalized model accuracy against corresponding average per-row
prediction speeds. We can more clearly see that the frameworks that are getting
the highest accuracy are doing so at the cost of inference time performance. This
demonstrates that when contextualizing any type of model accuracy results, it
is important to consider any trade-offs that may have been made to achieve the
extra performance and how that will affect the framework’s usability in practice.
Measuring accuracy in isolation does not give the complete picture of the overall
utility of a particular framework.

5.5.4 Observed AutoML Failures

While most jobs completed successfully, we observed multiple framework er-
rors during our experiments. In this section, we will discuss where AutoML
frameworks fail, though we want to stress that development for these packages
is ongoing. For that reason, it is likely that the same frameworks will not ex-
perience the same failures in the future (especially after gaining access to all
experiment logs). We categorize the errors into the following categories:

Memory: The framework crashed due to exceeding available memory.

5.5. RESULTS 101

0.6

0.7

0.8

0.9

1e−041e−041e−041e−041e−041e−041e−041e−041e−04 1e−031e−031e−031e−031e−031e−031e−031e−031e−03 1e−021e−021e−021e−021e−021e−021e−021e−021e−02 1e−011e−011e−011e−011e−011e−011e−011e−011e−01
predict_row_speed_mean

re
su

lt_
no

rm
_m

ea
n

framework

AutoGluon(B)

autosklearn

autosklearn2

flaml

GAMA(B)

H2OAutoML

lightautoml

mljarsupervised(B)

TPOT

TunedRandomForest

Binary (1 hour, 8 cores)

0.6

0.7

0.8

0.9

1e−041e−041e−041e−041e−041e−041e−041e−041e−04 1e−031e−031e−031e−031e−031e−031e−031e−031e−03 1e−021e−021e−021e−021e−021e−021e−021e−021e−02 1e−011e−011e−011e−011e−011e−011e−011e−011e−01 1e+001e+001e+001e+001e+001e+001e+001e+001e+00
predict_row_speed_mean

re
su

lt_
no

rm
_m

ea
n

framework

AutoGluon(B)

autosklearn

autosklearn2

flaml

GAMA(B)

H2OAutoML

lightautoml

mljarsupervised(B)

TPOT

TunedRandomForest

Binary (4 hour, 8 cores)

0.4

0.6

0.8

1e−041e−041e−041e−041e−041e−041e−041e−041e−04 1e−031e−031e−031e−031e−031e−031e−031e−031e−03 1e−021e−021e−021e−021e−021e−021e−021e−021e−02 1e−011e−011e−011e−011e−011e−011e−011e−011e−01
predict_row_speed_mean

re
su

lt_
no

rm
_m

ea
n

framework

AutoGluon(B)

autosklearn

autosklearn2

flaml

GAMA(B)

H2OAutoML

lightautoml

mljarsupervised(B)

TPOT

TunedRandomForest

Multiclass (1 hour, 8 cores)

0.4

0.6

0.8

1e−041e−041e−041e−041e−041e−041e−041e−041e−04 1e−031e−031e−031e−031e−031e−031e−031e−031e−03 1e−021e−021e−021e−021e−021e−021e−021e−021e−02 1e−011e−011e−011e−011e−011e−011e−011e−011e−01
predict_row_speed_mean

re
su

lt_
no

rm
_m

ea
n

framework

AutoGluon(B)

autosklearn

autosklearn2

flaml

GAMA(B)

H2OAutoML

lightautoml

mljarsupervised(B)

TPOT

TunedRandomForest

Multiclass (4 hour, 8 cores)

0.4

0.5

0.6

0.7

0.8

0.9

1e−061e−061e−061e−061e−061e−061e−061e−061e−06 1e−051e−051e−051e−051e−051e−051e−051e−051e−05 1e−041e−041e−041e−041e−041e−041e−041e−041e−04 1e−031e−031e−031e−031e−031e−031e−031e−031e−03 1e−021e−021e−021e−021e−021e−021e−021e−021e−02 1e−011e−011e−011e−011e−011e−011e−011e−011e−01
predict_row_speed_median

re
su

lt_
no

rm
_m

ea
n

framework

AutoGluon(B)

autosklearn

flaml

GAMA(B)

H2OAutoML

lightautoml

mljarsupervised(B)

TPOT

TunedRandomForest

Regression (1 hour, 8 cores)

0.4

0.5

0.6

0.7

0.8

0.9

1e−041e−041e−041e−041e−041e−041e−041e−041e−04 1e−031e−031e−031e−031e−031e−031e−031e−031e−03 1e−021e−021e−021e−021e−021e−021e−021e−021e−02 1e−011e−011e−011e−011e−011e−011e−011e−011e−01
predict_row_speed_median

re
su

lt_
no

rm
_m

ea
n

framework

AutoGluon(B)

autosklearn

flaml

GAMA(B)

H2OAutoML

lightautoml

mljarsupervised(B)

TPOT

TunedRandomForest

Regression (4 hour, 8 cores)

Figure 5.6: Pareto Frontiers of framework performance across tasks after scaling
the performance values from the worst framework (0) to best observed (1).

102 The AutoML Benchmark

Time: The framework exceeded the time limit past the leniency period.

Data: When errors are due to specific data characteristics (e.g., imbal-
anced data).

Implementation: Any errors caused by bugs in the AutoML framework
code.

These categories are a bit crude and ultimately subjective, e.g., in the extreme
case all errors are implementation errors. However, they serve for a quick
overview and a more detailed overview can be found in Appendix B.2.

Figure 5.7 shows the errors by type on the left, and by task on the right.
Overall, memory and time constraints are the main cause for errors with one
major exception14. We observe that errors are far more common in the clas-
sification benchmark suite than the regression suite. This is largely accounted
for by the difference in benchmarking suite size (33 and 71 tasks) and the fact
that the largest datasets are mostly classification, both in number of instances
and features. Unique to classification, we do observe several frameworks failing
to produce models or predictions on highly imbalanced datasets (e.g., ‘yeast’).
This is also the case for the failures on the two small classification datasets,
where internal validation splits no longer contain all classes. Interestingly, Au-
toML frameworks fail more frequently on a larger time budget. Both memory
and time constraint violations happen more frequently, which may potentially
be explained by frameworks saving increasingly more models or building in-
creasingly larger pipelines.

m
ljarsupervised

lightautom
l

tpot

gam
a

flam
l

m
lr3autom

l

h2oautom
l

autosklearn2

autosklearn

autogluon

0

50

100

150

200

co
un

t

Error Types by Framework
Data
Implementation
Memory
Timeout

102 103 104 105 106 107

Instances

101

102

103

104

Fe
at

ur
es

Number of Errors by Data Dimensions
No Error
Classification
Regression
Error Count:
2
2< # 11
>11

Figure 5.7: For each framework, errors by type are shown on the left, and errors
by task are shown on the right.

14MLJarSupervised has 190 ‘implementation errors’ which are caused by only two distinct
index errors.

5.6. CONCLUSION AND FUTURE WORK 103

 AutoGluon(B)
 autosklearn
 autosklearn2
 flam

l
 GAM

A(B)
 H2OAutoM

L
 lightautom

l
 m

ljarsupervised(B)
 Random

Forest
 TPOT
 TunedRandom

Forest

[0] [0] [0] [0] [0][10][2] [0] [0][28][0]
0

2000

4000

6000

Tr
ai

ni
ng

 D
ur

at
io

n
(s

) Training Duration 1 hour

 AutoGluon(B)
 autosklearn
 autosklearn2
 flam

l
 GAM

A(B)
 H2OAutoM

L
 lightautom

l
 m

ljarsupervised(B)
 Random

Forest
 TPOT
 TunedRandom

Forest

[0] [5][10][11][0][10][2][14][0][29][0]
0

5000

10000

15000

Tr
ai

ni
ng

 D
ur

at
io

n
(s

) Training Duration 4 hours

Figure 5.8: Time spent during search with a one hour budget (left) and four
hour budget (right). The grey line indicates the specified time limit, and the
red line denotes the end of the leniency period. The number of timeout errors
for each framework are shown beside it.

Only when the framework exceeds the time budget by more than one hour
do we record a time error. However, as we can see in Figure 5.8, not all AutoML
frameworks adhere to the runtime constraints equally well, even if they finish
within the leniency period. In the figure, the training duration for each job (task
and fold combination) are aggregated and timeout errors are shown above each
framework, missing values due to non-time errors are not included. These plots
reveal design decisions around the specified runtime, with some frameworks
never exceeding the limit by more than a few minutes, while others violate
it by a larger margin with some regularity. Interestingly, we see that several
frameworks consistently tend to stop far before the specified runtime limit.

5.6 Conclusion and Future Work

The benchmark tool makes producing rigorous reproducible research both eas-
ier and faster. We conducted a thorough comparison of 9 AutoML frameworks
across 71 classification tasks and 33regression tasks. A statistical analysis re-
veals that their average rank is generally not statistically significantly different.
Overall, AutoGluon consistently has the highest average rank, in terms of model
performance, in our benchmark. Also, in most scenarios, the AutoML frame-

104 The AutoML Benchmark

works outperform even our strongest baseline.
Since inference time is an important factor in real-world applications, we also

analyzed the trade-off between model accuracy and inference time. We found
large difference in inference time, in some cases the difference spans orders of
magnitude. Overall, better models also had slower inference time, but not all
AutoML frameworks provide solutions that are Pareto optimal.

In the future we would like to extend the benchmark to support new problem
types, such as multi-objective optimization, semi-supervised learning or non-
i.i.d. settings (such as when temporal relationships are present in the data).
We also want to continue to update the benchmark with current and real-world
tasks so that it stays reflective of modern challenges, and in the process hopefully
reduce the ability for AutoML frameworks to overfit to the benchmark. Even
so, we would like to investigate whether AutoML frameworks start to overfit
to the benchmark, as it may be used in framework development. This might
be possible by, for example, benchmarking both the current and future version
of the AutoML frameworks on new, unseen tasks, and comparing the relative
improvements on both the benchmark tasks and the new tasks.

Contributing new datasets or integrating a new framework is possible through
the open source and extensible design of the benchmark. We hope this motivates
researchers to contribute their own dataset, framework integration or feedback
to the open source AutoML benchmark so that it may be useful to the commu-
nity for a long time to come.

Chapter 6
Meta-Learning for Symbolic Hy-
perparameter Defaults

As we have seen in Chapters 1 and 2, the performance of most machine learning
algorithms is greatly influenced by their hyperparameter configuration [146] and
various methods exist to automatically optimize them for a specific dataset [27].
This motivates that the optimal values of a hyperparameter are functionally
dependent on properties of the data.

While various methods exist to automatically optimize hyperparameters, the
additional complexity and effort cause many practitioners to forgo optimization.
Hyperparameter defaults provide a fallback but are often static and do not take
properties of the dataset into account. If we could learn the functional rela-
tionship between hyperparameter configurations and the data, we could express
them as symbolic default configurations that work well across many datasets.
These symbolic defaults would not only directly benefit users of the algorithms,
but could also be used as a stronger baseline for further tuning in AutoML, or
even to inform transformations of the search space.

Well-known examples for such symbolic defaults are already widely used:
The random forest algorithm’s default mtry =

√
p for the number of features

This chapter is derived from: Pieter Gijsbers et al. Meta-Learning for Symbolic Hyper-
parameter Defaults. 2021. arXiv: 2106.05767 [stat.ML]

and its short-form publication: Pieter Gijsbers et al. “Meta-learning for symbolic hyper-
parameter defaults”. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (July 2021). doi: 10.1145/3449726.3459532. url: http://dx.doi.org/10.
1145/3449726.3459532

105

https://arxiv.org/abs/2106.05767
https://doi.org/10.1145/3449726.3459532
http://dx.doi.org/10.1145/3449726.3459532
http://dx.doi.org/10.1145/3449726.3459532

106 Meta-Learning for Symbolic Hyperparameter Defaults

sampled in each split [38], the median distance between data points for the
width1 of the Gaussian kernel of an SVM [46], and many more. Unfortunately,
it has not been studied how such formulas can be obtained in a principled,
empirical manner, especially when multiple hyperparameters interact, and have
to be considered simultaneously.

This chapter addresses a new meta-learning challenge: “Can we learn a vec-
tor of symbolic configurations for multiple hyperparameters of state-of-the-art
machine learning algorithms?”. We propose an approach to learn such symbolic
default configurations by optimizing over a grammar of potential expressions,
in a manner similar to symbolic regression [140] using Evolutionary Algorithms.
The proposed approach is general and can be used for any algorithm as long as
their performance is empirically measurable on instances in a similar manner.

The rest of the chapter is structured as follows. We first give a motivating
example in Section 6.1, after which we introduce relevant related work in Section
6.2 and define the resulting optimization problem in Section 6.3. In Section 6.4
we continue with describing the proposed method and we study the efficacy of
our approach in a broad set of experiments across multiple machine learning
algorithms in Sections 6.5 & 6.6.2

6.1 A Motivating Example

We motivate the intuitive idea that the optimal hyperparameter configurations
depend on properties of the data with an example in Figure 6.1. The figure
shows averaged response surfaces across 106 tasks for hyperparameters γ and
cost (zoomed in to a relevant area of good performance). While the scale for
the cost parameter is kept fixed in Figures 6.1(a) and 6.1(b), the x-axis displays
the unchanged, direct scale for γ in (a), and multiples of mkd

xvar in (b).3 This
formula was found using the procedure that will be detailed in this chapter.
The maximum performance across the grid in (a) is 0.859, while in (b) it is
0.904.

Empirically, we can observe several things. First, on average, a grid search
over the scaled domain in (b) yields better models. Secondly, the average solu-

1Or the inverse median for the inverse kernel width γ
2This work was carried out before/concurrent to the other work presented in this thesis.

For this reason, and additional considerations described in the final section of this chapter,
empirically evaluating the usefulness of symbolic hyperparameter defaults for AutoML remains
future work.

3Values for mkd
xvar

range between 4.8 · 10−5 and 0.55, this formula was found using the
procedure that will be detailed in this chapter. Symbols are described in Table 6.2.

6.2. RELATED WORK 107

(a) Linear cost and gamma
(b) Linear cost, gamma multiple of
mkd/xvar

Figure 6.1: Performance of an RBF-SVM averaged across 106 datasets for dif-
ferent values of cost and gamma, unscaled (a) and with gamma as multiples of
meta-features (b)

tion quality and the area where good solutions can be obtained is larger, and
the response surface is therefore likely also more amenable towards other types
of optimization. And thirdly, we can conjecture that introducing formulas e.g.
γ = mkd

xvar for each hyperparameter can lead to better defaults. Indeed, finding
good defaults in our proposed methodology essentially corresponds to optimiza-
tion on an algorithm’s response surface (averaged across several datasets). It
should be noted that the manually defined heuristic used in sklearn [184], i.e.
γ = 1

p·xvar , is strikingly similar.

6.2 Related Work

Symbolic defaults express a functional relationship between an algorithm hyper-
parameter value and dataset properties. Some example for such relationships
are reported in literature, such as the previously mentioned formulas for the
random forest [37] or the SVM [46]. Some of these are also implemented in
ML workbenches such as sklearn [184], WEKA [111] or mlr [145]. It is often not
clear and rarely reported how such relationships were discovered, nor does there
seem to be a clear consensus between workbenches on which symbolic defaults
to implement. Also, they are typically limited to a single hyperparameter, and
do not take into account how multiple hyperparameters may interact.

Meta-learning approaches have been proposed to learn static (sets of) de-

108 Meta-Learning for Symbolic Hyperparameter Defaults

faults for machine learning algorithms [160, 188, 196, 267, 269, 271] or neural
network optimizers [162], to analyze which hyperparameters are most important
to optimize [196, 255, 267], or to build meta-models to select the kernel or kernel
width in SVMs [225, 233, 250].

An underlying assumption is that hyperparameter response surfaces across
datasets behave similarly, and therefore settings that work well on some datasets
also generalize to new datasets. Research conducted by warm-starting optimiza-
tion procedures with runs from other datasets (cf. [154], [86]) suggest that this
the case for many datasets.

Previous work [209] on symbolic defaults proposed a simplistic approach
towards obtaining those, concretely by doing an exhaustive search over a space
of simple formulas composed of an operator, a numeric value and a single meta-
feature. This significantly constricts the variety of formulas that can be obtained
and might therefore not lead to widely applicable solutions.

6.3 Problem Definition

6.3.1 Supervised Learning and Risk of a Configuration

Consider a target variable y, a feature vector x, and an unknown joint dis-
tribution P on (x, y), from which we have sampled a dataset D containing N

observations. An ML model f̂(x) should approximate the functional relation-
ship between x and y. An ML algorithm Aλ(D) now turns the dataset (of

size N) into a prediction model f̂(x). Aλ is controlled by a multi-dimensional
hyperparameter configuration λ ∈ Λ of length M : λ = {λ1, . . . , λM}, where
Λ = Λ1 × . . . × ΛM is a cross-product of (usually bounded) domains for all
individual hyperparameters, so Λj is usually a bounded real or integer interval,
or a finite set of categorical values. In order to measure prediction performance
pointwise between a true label and a prediction, we define a loss function L(y, ŷ).
We are interested in estimating the expected risk of the inducing algorithm w.r.t.
λ on new data, also sampled from P:

RP(λ) = EP(L(y,Aλ(D)(x))),

where the expectation above is taken over all datasets D of size N from P
and the test observation (x, y). Thus, RP(λ) quantifies the expected predictive
performance associated with a hyperparameter configuration λ for a given data
distribution, learning algorithm and performance measure.

6.3. PROBLEM DEFINITION 109

6.3.2 Learning an Optimal Configuration

From a good default configuration λ we now expect that it performs well ac-
cording to many of such risk mappings for many different data scenarios. Given
K different datasets (or data distributions) P1, ...,PK , we define K hyperpa-
rameter risk mappings:

Rk(λ) = EPk
(L(y,Aλ(D)(x))), k = 1, ...,K.

We now define the average risk of λ over K data distributions:

R(λ) =
1

K

K∑
k=1

Rk(λ).

Minimizing the above w.r.t λ over Λ defines an optimization problem for
obtaining an optimal static configuration from K scenarios, where we assume
that, given a large enough K, a configuration will also work well on new data
situations P.

6.3.3 Learning a Symbolic Configuration

We now allow our configurations to be symbolic, i.e., contain formulas instead of
static values. Hence, we assume that λ(.) is no longer a static vector from Λ, but
a function that maps a dataset, or it’s data characteristics, to an M-dimensional
configuration.

λ = (λ1, . . . , λM) : D → Λ

For this reason, we define a context-free grammar of transformations, which
define the space of potential expressions for all component functions λj(.). This
grammar consists of constant values, symbolic dataset meta-features and simple
mathematical operators, detailed in Table 6.1.

Given a meta-training set of K data scenarios D1, . . . ,DK , we include the
computation of the configuration by λ(D) as a first step into the algorithm
Aλ(D) and change our risk definition to:

Rk(λ) = EPk
(L(y,Aλ(D)(D)(x))), k = 1, ...,K.

and again average to obtain a global objective for λ(.):

R(λ) =
1

K

K∑
k=1

Rk(λ),

110 Meta-Learning for Symbolic Hyperparameter Defaults

where the optimization now runs over the space of all potential M-dimensional
formulas induced by our grammar.

6.3.4 Metadata and Surrogates

In principle, it is possible to estimate Rk(λ) empirically using cross-validation
during the optimization. However, this is obviously costly, as we want to ob-
tain results for a large number of configurations across many multiple datasets.
Therefore, we propose to employ surrogate models that approximate Rk(λ). We
generate one surrogate for each dataset, ML algorithm and performance met-
ric combination on a sufficiently large number of cross-validations experiments,
with randomly planned design points for λ. Such meta-data evaluations are
often used in literature ([255, 270, 271]), and can for example be obtained from
[143, 255] or [270]. This induces empirical surrogates, that map from static
configurations to predicted performance values:

R̂(λ) : Λ→ R

As our algorithm Aλ(D) is now removed, we simply change our objective to a
simplified version, too:

R̂(λ(.)) =
1

K

K∑
k=1

Rk(λ(Dk))

This defines a global, average risk objective for arbitrary formulaic λ(.) expres-
sions that can be efficiently evaluated.

Considering the fact that performances on different datasets are usually not
commensurable [65], an appropriate scaling is required before training surrogate
models to enable a comparison between datasets. This is done in literature by
resorting to ranking [12], or scaling [281] to standard deviations from the mean.
We mitigate the problem of lacking commensurability between datasets by scal-
ing performance results to [0; 1] on a per-dataset basis as done in [162, 188].
After scaling, 1 corresponds to the best performance observed in the meta-data
and 0 to the worst. A drawback to this is that some information regarding the
absolute performance of the algorithm and the spread across different configu-
rations is lost.

Dataset Characteristics In addition to the performance of random hyperparameter-
configurations, OpenML [258] contains a range of dataset characteristics, i.e,

6.3. PROBLEM DEFINITION 111

meta-features. A full list of available characteristics is described by [207]. In
order to obtain simple, concise and efficient formulas, we opted to include only
simple dataset characteristics instead of working an extensive set as described
by [207]. Table 6.2 contains an overview over used meta-features and their
corresponding ranges over our meta training set described in Section 6.5. Meta-
features are computed for each dataset after imputation, one-hot encoding of
categoricals and scaling of numeric features. We include (among many others)
the number of observations, the number of features and information regarding
class balance. We denote the set of characteristics {c1, c2, ..., cL} with C. For
this, we can also reuse evaluations shared on OpenML.

Evaluation meta-data To learn symbolic defaults, we first gather meta-
data that evaluates Rk(λ) on all K datasets. For a given fixed algorithm with
hyperparameter space Λ and performance measure, e.g., logistic loss, a large
number of experiments of randomly sampled λ is run on datasets P1, . . . , PK ,
estimating the generalization error of λ via 10-fold Cross-Validation.

112 Meta-Learning for Symbolic Hyperparameter Defaults

Symbol definition Description

⟨configuration⟩ ::= N: Number of hyperparameters
[⟨F⟩—⟨I⟩] * N Type depends on hyperparameter
⟨I⟩ ::=
⟨unary⟩ ⟨F⟩ unary function
— ⟨binary⟩ 2*⟨F⟩ binary function
— ⟨quaternary⟩ 4*⟨F⟩ quaternary function
— ⟨i⟩ integer constant or symbol
⟨F⟩ ::=
⟨I⟩
— ⟨f⟩ float constant or symbol
⟨i⟩ ::=
⟨mfi⟩ Integer meta-feature, see Table 6.2
— ci ⌊x⌉; x ∼ loguniform(20, 210)
⟨f⟩ ::=
⟨mff⟩ Continuous meta-feature, see Table 6.2
— cf x ∼ loguniform(2−10, 20)
⟨unary⟩ ::=
exp exp(x)
— neg -x
⟨binary⟩ ::=
add x + y
— sub x− y
— mul x · y
— truediv x/y
— pow xy

— max max(x, y)
— min min(x, y)
⟨quaternary⟩ ::=
if greater if a ⟩ b: c else d

Table 6.1: BNF Grammar for symbolic defaults search. ⟨configuration⟩ is the
start symbol.

6.3. PROBLEM DEFINITION 113

symbol explanation min median max

⟨mfi⟩::=
n N. observations 100 4147 130064
po N. features original 4 36 10000
p N. features one-hot 4 54 71673
m N. classes 2 2 100

⟨mff⟩::=
rc N. categorical / p 0.00 0.00 1.00
mcp Majority Class % 0.01 0.52 1.00
mkd Inv. Median Kernel Distance 0.00 0.01 0.55
xvar Avg. feature variance 0.00 1.00 1.00

Table 6.2: Available meta-features with corresponding symbols

114 Meta-Learning for Symbolic Hyperparameter Defaults

6.4 Finding Symbolic Defaults

The problem we aim to solve requires optimization over a space of mathematical
expressions. Several options to achieve this exist, e.g., by optimizing over a pre-
defined fixed-length set of functions [209]. One possible approach is to represent
the space of functions as a grammar in Backus-Naur form and represent gener-
ated formulas as integer vectors where each entry represents which element of
the right side of the grammar rule to follow [175]. We opt for a tree representa-
tion of individuals, where nodes correspond to operations and leaves to terminal
symbols or numeric constants, and optimize this via genetic programming [140].
Our approach is inspired by symbolic regression [139], where the goal is to seek
formulas that describe relationships in a dataset. In contrast, we aim to find a
configuration (expressed via formulas), which minimizes R̂(λ(.)).

We differentiate between real-valued (⟨F⟩) and integer-valued (⟨I⟩) terminal
symbols to account for the difference in algorithm hyperparameters. This is
helpful, as real-valued and integer hyperparameters typically vary over different
orders of magnitude. Simultaneously, some meta-features might be optimal
when set to a constant, which is enabled through ephemeral constants.

A relevant trade-off in this context is the bias induced via a limited set
of operations, operation depth and available meta-features. Searching, e.g.,
only over expressions of the form ⟨binary⟩(⟨mff⟩, cf) introduces significant bias
towards the form and expressiveness of resulting formulas. Our approach using
a grammar is agnostic towards the exact depth of resulting solutions, and bias is
therefore only introduced via the choice of operators, meta-features and allowed
depth.

Note that formulas can map outside of valid hyperparameter ranges. This
complicates search on such spaces, as a large fraction of evaluated configurations
might contain at least one infeasible setting. In order to reduce the likelihood of
this happening, we define a set of mutation operators for the genetic algorithms
that search locally around valid solutions. However if an infeasible setting is
generated, the random forest surrogate effectively truncates it to the nearest
observed value of that hyperparameter in the experiment meta-data, which is
always valid.

Symbolic hyperparameters are interpretable and can lead to new knowledge
i.e., about the interaction between dataset characteristics and performance.

6.4. FINDING SYMBOLIC DEFAULTS 115

6.4.1 Grammar

Table 6.1 shows the primitives and non-symbolic terminals of the grammar, and
Table 6.2 shows the symbolic terminals whose values depend on the dataset.
We define a set of unary, binary and quaternary operators which can be used
to construct flexible functions for the different algorithm hyperparameters.

The definition start symbol ⟨configuration⟩ indicates the type and number of
hyperparameters available in a configuration and depends on the algorithm for
which we want to find a symbolic default configuration. In Table 6.3 we indicate
for each considered hyperparameter of a learner whether it is real-valued or
integer-valued (the latter denoted with an asterisk (∗)). For example, when
searching for a symbolic default configuration for the decision tree algorithm,
⟨configuration⟩ is defined as ⟨F⟩⟨I⟩⟨I⟩⟨I⟩, because only the first hyperparameter
is a float. Expressions for integer hyperparameters are also rounded after their
expression has been evaluated. Starting from ⟨configuration⟩, placeholders ⟨I⟩
and ⟨F⟩ can now be iteratively replaced by either operators that have a return
value of the same type or terminal symbols ⟨i⟩ and ⟨f⟩. Terminal symbols can
either be meta-features (cf. Table 6.2) or ephemeral constants.

6.4.2 Algorithm

We consider a genetic programming approach for optimizing the symbolic ex-
pressions. We use a plus-strategy algorithm to evolve candidate solutions, where
we set population size to 20 and generate 100 offspring in each generation via
crossover and mutation. Evolution is run for 1000 generations in our experi-
ments. We perform multi-objective optimization, jointly optimizing for perfor-
mance of solutions (normalized logloss) while preferring formulas with smaller
structural depth. Concretely, we employ NSGA-II selection [64] with binary
tournament selection for parents and select offspring in an elitist fashion by
usual non-dominated sorting and crowding distance as described in [64]. For
offspring created by crossover, the M vector components of λj are chosen at
random from both parents (uniform crossover on components), though we en-
force at least one component from each parent is chosen. This results in large,
non-local changes to candidates. Mutations, on the other hand, are designed
to cause more local perturbations. We limit their effect to one hyperparameter
only, and include varying constant values, pruning or expanding the expression
or replacing a node. Each offspring is created through either crossover or mu-
tation, never a combination. Initial expressions are generated with a maximum
depth of three. We do not limit the depth of expressions during evolution ex-

116 Meta-Learning for Symbolic Hyperparameter Defaults

plicitly, though multi-objective optimization makes finding deep formulas less
likely.

6.5 Experimental Setup

We aim to answer the following research questions:
RQ1: How good is the performance of symbolic defaults in a practical sense? In
order to asses this, we compare symbolic defaults with the following baselines:
a) existing defaults in current software packages b) static defaults found by the
search procedure described in Section 6.4, disallowing meta-features as terminal
symbols and c) a standard hyperparameter random search (on the surrogates)
with different budgets. Note that existing defaults already include symbolic
hyperparameters in several implementations. In contrast to defaults obtained
from our method, existing implementation defaults are often not empirically
evaluated, and it is unclear how they were obtained. This question is the core
of our work, as discrepancy to evaluations on real data only arise from inaccurate
surrogate models, which can be improved by tuning or obtaining more data.
RQ2: How good are the symbolic defaults we find, when evaluated on real
data? We evaluate symbolic defaults found by our method with experiments on
real data and compare them to existing implementation defaults and a simple
meta-model baseline.

6.5.1 General setup

We investigate symbolic defaults for 6 ML algorithms using the possibly largest
available set of meta-data, containing evaluations of between 106 and 119 datasets
included either in the OpenML-CC18 [29] benchmark suite or the AutoML
benchmark [100]. Datasets have between 100 and 130000 observations, between
3 and 10000 features and 2− 100 classes. The number of datasets varies across
algorithms as we restrict ourselves to datasets where the experimental data con-
tains evaluations of at least 100 unique hyperparameter configurations available
as well as surrogate models that achieve sufficient quality (Spearman’s ρ > 0.8).
We investigate implementations of a diverse assortment of state-of-the-art ML
algorithms, namely support vector machines [59], elastic net [287], approximate
knn [158], decision trees [36], random forests [37] and extreme gradient boosting
(xgboost, [54]). The full set of used meta-features can be obtained from Table
6.2. The choice of datasets and ML algorithms evaluated in our paper was
based on the availability of high-quality metadata. A large number of random

6.5. EXPERIMENTAL SETUP 117

algorithm fixed optimized

elastic net - α, λ
decision tree - cp, max.depth∗

, minbucket∗,
minsplit∗

random forest splitrule:gini,
num.trees:500,
replace:True

mtry∗,
sample.fraction,
min.node.size∗

svm kernel:radial C, γ
approx. knn distance:l2 k∗, M∗, ef∗, efc∗

xgboost booster:gbtree η, λ, γ, α,
subsample,
max depth∗,
min child weight,
colsample bytree,
colsample bylevel

Table 6.3: Fixed and optimizable hyperparameters for different algorithms. Hy-
perparameters with an asterisk (*) are integers.

118 Meta-Learning for Symbolic Hyperparameter Defaults

evaluations across the full configuration space of each algorithm for each dataset
was obtained and used in order to fit a random forest surrogate model for each
dataset / algorithm combination4. We optimize the average logistic loss across
10 cross-validation folds (normalized to [0,1]), as it is robust to class-imbalances,
but our methodology trivially extends to other performance measures. The hy-
perparameters optimized for each algorithm are shown in Table 6.3. For the
random forest, we set the number of trees to 500 as recommended in litera-
ture [195]. We perform 10 replications of each experiment for all stochastic
algorithms and present aggregated results.

6.5.2 Experiments for RQ1 & RQ2

The evaluation strategy for both experiments is based on a leave-one-data-set-
out strategy, where the (symbolic) defaults are learned on all but one dataset,
and evaluated using the held-out dataset.
In Experiment 1 for RQ1, we evaluate symbolic defaults found using our ap-
proach against baselines mentioned in RQ1. Our hold-out-evaluation is per-
formed on a held-out surrogate.
In Experiment 2 for RQ2, we now learn our symbolic defaults in the same
manner as for Experiment 2 on K − 1 surrogates, but now evaluate their per-
formance via a true cross-validation on the held out dataset instead of simply
querying the held out surrogate.

Our main experiment – Experiment 1 evaluates symbolic defaults on surro-
gates for a held-out task, which lets us measure whether our symbolic defaults
can extrapolate to future datasets. If results from surrogate evaluation corre-
spond to real data, we can also conclude that our surrogates approximate the
relationship between hyperparameters and performance well enough to transfer
to real-world evaluations. We conjecture, that, given the investigated search
space, for some algorithms/hyperparameters symbolic defaults do not add ad-
ditional benefits and constant defaults suffice. In those cases, we expect that
our approach performs roughly as well as an approach that only takes into ac-
count constant values, because our approach can similarly yield purely constant
solutions.

We employ a modified procedure, optimistic random search that simulates
random search on each dataset which is described below. We consider random
search with budgets of up to 32 iterations to be a strong baseline. Other base-

4https://www.openml.org/d/4245[4-9]

https://www.openml.org/d/4245[4-9]

6.5. EXPERIMENTAL SETUP 119

lines like Bayesian optimization are left out of scope, as we only evaluate a single
symbolic default, which is not optimized for the particular dataset. In contrast
to requiring complicated evaluation procedures such as nested cross-validation,
our symbolic defaults can simply be implemented as software defaults. We fur-
ther consider full AutoML systems such as auto-sklearn [85] to be out-of-scope
for comparison, as those evaluate across pre-processing steps and various ML
algorithms, while our work focuses on finding defaults for a single algorithm
without any pre-processing.

Optimistic random search As we deal with random search in the order
of tens of evaluations, obtaining reliable results would require multiple replica-
tions of random search across multiple datasets and algorithms. We therefore
adapt a cheaper, optimistic random search procedure, which samples budget
rows from the available metadata for a given dataset, computes the best per-
formance obtained and returns it as the random search result. Note that this
assumes that nested cross-validation performance generalizes perfectly to the
outer cross-validation performance, which is why it is considered an optimistic
procedure. It is therefore expected to obtain higher scores than a realistic ran-
dom search would obtain. Nonetheless, as we will show, the single symbolic
default will often outperform the optimistic random search procedure with 8-16
iterations. The optimistic random search procedure is repeated several times in
order to obtain reliable estimates.

1-Nearest Neighbour In Experiment 2, where we conduct evaluations with
10-fold cross-validation on the data, we also compare to a simple meta-model
for generating a candidate solution given the meta-dataset. We use the k-
Nearest Neighbour approach used by auto-sklearn [85], which looks up the best
known hyperparameter configuration for the nearest dataset. To find the near-
est datasets each meta-feature is first normalized using min-max scaling, then
distances to each dataset are computed using L1-norm. While auto-sklearn finds
hyperparameter configuration candidates for each of the 25 nearest neighbours,
we only use the best hyperparameter configuration from the first nearest neigh-
bour.

The Python code for our experiments is available online 5 and makes use of the
DEAP module [90] for genetic programming.

5https://github.com/PGijsbers/symbolicdefaults

https://github.com/PGijsbers/symbolicdefaults

120 Meta-Learning for Symbolic Hyperparameter Defaults

6.6 Results

In this section, we will first analyse the quality of our surrogates models in
order to ensure their reliability. Next, we evaluate the performance of the found
symbolic defaults on both surrogates and real data.

6.6.1 Surrogates and Surrogate Quality

As described earlier, we use surrogate models to predict the performance of
hyperparameter configurations to avoid expensive evaluations. It is important
that the surrogate models perform well enough to substitute for real experi-
ments. For this optimization task, the most important quality of the surrogate
models is the preservation of relative order of hyperparameter configuration
performance. Error on predicted performance is only relevant if it causes the
optimization method to incorrectly treat a worse configuration as a better one
(or vice versa). The performance difference itself is irrelevant.

For that reason, we evaluate our surrogate models first on rank correlation
coefficients Spearman’s ρ and Kendall’s τ . For each task, we perform 10-fold
cross validation on our meta data, and calculate the rank correlation between
the predicted ranking and the true one. On the left in Figure 6.2 we show
the distribution of Spearman’s ρ and Kendall’s τ across 106 tasks for the SVM
surrogate. Due to the high number of observations all rank correlations have a
p-value of near zero. We observe high rank correlation for both measurements
on most tasks. That τ values are lower than ρ values indicates that the surrogate
model is more prone to making small mistakes than big ones. This is a positive
when searching for good performing configurations, but may prove detrimental
when optimizing amongst good configurations.

While it does not directly impact search, we also look at the difference be-
tween the predicted and true performances. For each task 10 configurations
were sampled as a test set, and a surrogate model was trained on the remainder
of the meta data for that task. On the right in Figure 6.2 the predicted normal-
ized performance is shown against the real normalized performance. Predictions
closer to the diagonal line are more accurate, points under and over the diagonal
indicate the surrogate model was optimistic and pessimistic respectively. Plots
for the other models can be found in Appendix C.2.

6.6. RESULTS 121

Spearman's ρ Kendall's τ0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

0.00 0.25 0.50 0.75 1.00
Predicted Norm. Logloss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tu

al
 N

or
m

. L
og

lo
ss

Figure 6.2: Comparison of performance predicted by the SVM surrogate against
the real performance across tasks. On the left by their rank correlation coeffi-
cients, on the right in normalized performance.

6.6.2 Experiment 1 - Benchmark on surrogates

In order to answer RQ1, we compare the performance of symbolic defaults,
constant defaults and existing implementation defaults on surrogates. Imple-
mentation defaults are default values currently used for the corresponding algo-
rithm implementations and can be obtained from Table C.1 in the appendix.
Note that random search in this context refers to per-task optimistic random-
search as described in 6.6.1. In the following, we analyze results for the SVM
and report normalized out-of-bag logistic loss on a surrogate if not stated oth-
erwise. We conduct an analysis of the other algorithms mentioned in Table 6.3
in Appendix C.2.

A comparison to baselines a − c) for the SVM can be obtained from Fig-
ure 6.3. We compare symbolic defaults (blue), existing implementation defaults
(green), constant defaults (purple) and several iterations of random search (or-
ange). Symbolic defaults slightly outperform existing implementation defaults
(mlr default and sklearn default) and compare favorably to random search with
up to 8 evaluations.

For significance tests we use a non-parametric Friedman test for differences
in samples at α = 0.05 using and a post-hoc Nemenyi test. The corresponding
critical differences diagram [65] is displayed in Figure 6.4. Methods are sorted
on the x-axis by their average rank across tasks (lower is better). For methods

122 Meta-Learning for Symbolic Hyperparameter Defaults

sk
lea

rn
 de

fau
lt

mlr
de

fau
lt

sy
mbo

lic
 de

fau
lt

co
ns

ta
nt

 de
fau

lt
op

tim
ist

ic
rs

2
op

tim
ist

ic
rs

4
op

tim
ist

ic
rs

8
op

tim
ist

ic
rs

16
op

tim
ist

ic
rs

32

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 N
or

m
al

ize
d

Lo
gl

os
s

Figure 6.3: Symbolic, static and implementation defaults for SVM, comparing
normalized logloss predicted by surrogates.

6.6. RESULTS 123

1 2 3 4 5 6 7 8 9

optimistic random search 32
optimistic random search 16

symbolic default
sklearn default

optimistic random search 8
mlr default
constant default
optimistic random search 4
optimistic random search 2

CD

Figure 6.4: Critical Differences Diagram for symbolic, static and implementation
defaults on surrogates

connected by a bold bar, significant differences could not be obtained. Symbolic
defaults do not perform significantly worse than random search with a budget
of 16 evaluations, however they also do not significantly outperform the hand-
crafted implementation defaults or an optimized constant default.

Figure 6.5 shows comparisons to baselines, again using normalized logistic
loss. The y-axis in both cases corresponds to symbolic defaults, while the x-axis
corresponds to constant defaults (left) and random search with a budget of 8
(right). We conduct a similar analysis on all other algorithms in the appendix.

We summarize the results across all experiments in Table 6.4, which shows
the mean normalized logistic loss and standard deviation across all tasks for
each algorithm. The symbolic and constant column denote the performance of
defaults found with our approach including and excluding symbolic terminals
respectively. The package column shows the best result obtained from either
the scikit-learn or mlr default, and the last column denotes the best found
performance sampling 8 random real world scores on the task for the algorithm.

We find that the symbolic default mean rank is never significantly lower than
that of other approaches, but in some cases it is significantly higher (in bold).
While the mean performance for symbolic solutions is lower for glmnet, random
forest and rpart, we observe that the average rank is only higher for glmnet (see
Section C.2).

The only implementation default which does not score a significantly lower
mean rank than the defaults found by search with symbolic terminals is the de-
fault for SVM, which has carefully hand-crafted defaults. This further motivates
the use of experiment data for tuning default hyperparameter configurations. In
three out of six cases the tuned defaults even outperform eight iterations of the

124 Meta-Learning for Symbolic Hyperparameter Defaults

0.0 0.5 1.0
constant default

0.0

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

0.5 1.0
optimistic random search 8

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

Figure 6.5: Performance comparison of symbolic defaults to constant defaults
(left) and budget 8 random search (right). Points above the red line indicate
symbolic defaults are better.

optimistic random search baseline, in the other cases they have a significantly
higher mean rank than 4 iterations of random search.

6.6.3 Experiment 2 - Benchmark on real data

We run the defaults learned on K − 1 surrogates for each hold-out dataset with
a true cross-validation and compare its performance to existing implementation
defaults. We again analyze results for SVM and provide results on other al-
gorithms in the appendix. Note, that instead of normalized log-loss (where 1
is the optimum), we report standard log-loss in this following section, which
means lower is better. Figure 6.6 shows box plot and scatter plot comparisons
between the better implementation default (sklearn) and symbolic defaults ob-
tained from our method. The symbolic defaults found by our method performs
slightly better to the two existing baselines in most cases, but outperforms the
sklearn default on some datasets while never performing drastically worse. This
small difference might not be all-too-surprising, as the existing sklearn defaults
are already highly optimized symbolic defaults in their second iteration [217].

6.6. RESULTS 125

algorithm symbolic constant package opt. RS 8

glmnet 0.917(.168) 0.928(.158) 0.857(.154) 0.906(.080)
knn 0.954(.148) 0.947(.156) 0.879(.137) 0.995(.009)
rf 0.946(.087) 0.951(.074) 0.933(.085) 0.945(.078)
rpart 0.922(.112) 0.925(.093) 0.792(.141) 0.932(.082)
svm 0.889(.178) 0.860(.207) 0.882(.190) 0.925(.084)
xgboost 0.995(.011) 0.995(.011) 0.925(.125) 0.978(.043)

Table 6.4: Mean normalized log-loss (standard deviation) across all tasks with
baselines. Boldface values indicate the average rank was not significantly worse
than the best (underlined) of the four settings.

symbolic d
efault

sklearn default
1-NN

Search Strategy

0

1

2

Lo
gl

os
s

0 1 2
implementation default

0.0

0.5

1.0

1.5

2.0

2.5

sy
m

bo
lic

 d
ef

au
lt

Figure 6.6: Comparison of symbolic and implementation default using log-loss
across all datasets performed on real data. Box plots (right) and scatter plot
(left)

126 Meta-Learning for Symbolic Hyperparameter Defaults

6.7 Conclusion and Future Work

In this chapter, we consider the problem of finding data-dependent hyperparam-
eter configurations, or symbolic hyperparameter defaults, that work well across
datasets. We define a grammar that allows for complex expressions that can use
data-dependent meta-features as well as constant values. Surrogate models are
trained on a large meta dataset to efficiently optimize over symbolic expressions.

We find that the data-driven approach to finding default configurations leads
to defaults as good as hand-crafted ones. The found defaults are generally
better than the defaults set by algorithm implementations. Depending on the
algorithm, the found defaults can be as good as performing 4 to 16 iterations of
random search. In some cases, defaults benefit from being defined as a symbolic
expression, i.e., in terms of data-dependent meta-features.

In future work, we aim to extend the search space in two ways: both in terms
of the meta-features available and the grammar. Dataset characteristics have to
reflect properties that are relevant to the algorithm hyperparameters, yet it is
not immediately clear what those relevant properties are. It is straightforward to
extend the number of meta-features, as many more have already been described
in the literature (cf. [207]). This might not only serve to find even better
symbolic defaults but it also reduces bias introduced by the small number of
meta-features considered in our work. By extending the grammar described
in Table 6.1 to include categorical terminals and operators more suitable for
categorical hyperparameters (e.g., if-else), the described procedure can extend
to categorical and hierarchical hyperparameters.

Another relevant aspect, which we do not study in this work is the runtime
associated with a given default, as we typically want default values to be fast
as well as good, and therefore this trade-off might be considered in optimizing
symbolic defaults. In this work, we address this by restricting specific hyper-
parameters to specific values, in particular the xgboost nrounds parameter to
500. In future research, we aim to take this into consideration for all methods.

Finally, we want to evaluate ways in which these improved defaults may be
used in AutoML design. Leveraging hyperparameter defaults to speed up Au-
toML has been exploited before, for example by sampling around the default
values [278] or using the default values to shrink the search space [6]. It would
be interesting to revisit these ideas with learned defaults that adapt to the task
at hand, after first learning symbolic hyperparameters on a larger set of algo-
rithms. While we learn the defaults over a large selection of datasets, it may be
possible that these datasets are not representative of preprocessed data as found

6.7. CONCLUSION AND FUTURE WORK 127

in an ML pipeline, and thus it is possible that the currently learned symbolic
hyperparameter defaults don’t transfer as well to ML pipelines. Future work in
this direction should evaluate the effect of preprocessing on the quality of the
learned symbolic hyperparameter defaults and to see if adding additional exper-
iments on preprocessed datasets to the meta-dataset is needed. Overall, having
access to better, symbolic defaults, makes machine learning more accessible and
robust to researchers from all domains.

128 Meta-Learning for Symbolic Hyperparameter Defaults

Chapter 7
Conclusion and Future Work

Automated machine learning (AutoML) enables novice users by abstracting
away the complexity of ML pipeline design and empowers the ML experts by
saving time that would be spent tuning ML pipelines. When building an Au-
toML framework there are many design choices, such as which optimization
algorithm to use or how to define the search space. Developing new methods
and analyzing those design decisions is currently a very active area of research,
with the first AutoML conference to take place in 2022.

Yet, in Chapter 1, we identified a few issues with current AutoML research.
These include obfuscated comparisons across multiple design decisions, evalua-
tions on inconsistent sets of datasets, and incorrect use of ‘competitor’ frame-
works. In this chapter, we revisit the research questions we posed and sum-
marize our contributions that address them in Section 7.1. In the two sections
thereafter we discuss the limitations of our work and outline future research
directions, respectively.

7.1 Conclusions

In this thesis, we presented work which we hope will improve the rate and
quality of AutoML research. First, in Chapter 3, we introduced the modular
AutoML tool GAMA to make implementing novel AutoML ideas easier (Q1). We
observed that it was common for novel ideas to be evaluated against previous
implementations that differed in more than one design decision, e.g., both the
optimization algorithm and search space, which made it impossible to evaluate

129

130 Conclusion and Future Work

the contribution of any individual component in AutoML design. We propose
that this is because current AutoML tools were not designed on a level of ab-
straction that easily allowed researchers to investigate novel ideas, which made
developing an entirely new AutoML tool an attractive idea. GAMA is designed to
allow AutoML researchers to quickly develop and evaluate novel AutoML ideas
in isolation and analyze their effectiveness.

By developing a modular AutoML tool that facilitates AutoML research,
we not only significantly lower the barrier to developing and evaluating new
AutoML ideas, but also ensure it is easy to evaluate each idea in isolation.
Additionally, GAMA automatically tracks experiments and compiles data which
researchers can use to better understand the workings of individual components,
e.g., by visualizing their optimization trace. GAMA currently features three dif-
ferent optimization methods (random search, asynchronous successive halving,
and an asynchronous evolutionary algorithm) and two different post-processing
methods (fit the best pipeline, and ensemble construction through hill-climbing)
which can be used in any combination.

The second issue we identified was the lack of standard benchmarking suites,
i.e., the sets of datasets and evaluation procedures used to evaluate AutoML
ideas. In Chapter 4, we presented an extension of the OpenML platform to allow
for the creation and use of common benchmark suites (Q2). On the one hand,
we provided easy programmatic access to the platform through openml-python,
and on the other, we developed the concept of an OpenML benchmark suite.
An OpenML benchmarking suite is a set of carefully selected OpenML tasks,
which precisely define an evaluation procedure, including a reference to an exact
dataset and evaluation splits.

We provided tools for researchers to construct their own benchmarking
suites and used those tools to propose the OpenML Curated Classification
suite (OpenML-CC18) for benchmarking classification algorithms on commodity
hardware. For benchmarking AutoML systems we proposed two benchmarking
suites (in Chapter 5), one with regression tasks and one with classification tasks.
We saw that both the OpenML-CC18 and the AutoML1 benchmarking suites
have already been used in many other publications, a clear sign that they are
useful but also that a continuous conversation with the research community is
essential to evolve benchmarks and make them better and more useful over time.

To allow for the evaluation of AutoML tools in a correct and reproducible
manner we developed the AutoML benchmark software tools and benchmarking
suites (Q3). In Chapter 5 we give an overview of the developed software and

1In particular an earlier version that was published at the ICML 2019 AutoML workshop.

7.1. CONCLUSIONS 131

report on the results of a large-scale evaluation of AutoML frameworks. We
allow for correct and reproducible experiments by fully automating all aspects
of the evaluation. We used openml-python to download and split the data in a
reproducible manner and use integration scripts, which are developed together
with the AutoML authors, to allow for the automated installation and usage of
the AutoML frameworks, which avoids pitfalls such as a framework misconfigu-
ration. The benchmarking framework can also build containers for even greater
reproducibility, or to perform cross-platform benchmarking, and can distribute
jobs to AWS which provides common hardware. Results are automatically ag-
gregated and evaluated and can be analyzed with an interactive visualization
tool.

We also proposed two OpenML benchmarking suites, one with 71 classifica-
tion tasks, and one with 33 regression tasks. These benchmarking suites span a
wide range of domains and dataset characteristics fit for tabular AutoML tools,
unlike previously used sets of datasets which were typically small or not rep-
resentative of the types of tasks the tools were designed to solve (e.g., image
classification). We carried out a large-scale evaluation of 8 AutoML frameworks
on these benchmarking suites and discuss the results, including the differences
in performance and an analysis of the framework errors.

The fact that no single hyperparameter configuration is optimal across all
tasks implies that there is a relationship between the dataset properties and
the optimal hyperparameter configuration. In Chapter 6 we proposed a method
based on symbolic regression to automatically find and leverage relationships be-
tween the dataset properties and good hyperparameter configurations, dubbed
symbolic hyperparameter defaults, in a data-driven way through meta-learning
over more than 100 tasks. To allow for the quick evaluation of symbolic hy-
perparameter defaults we trained surrogate models across tens of thousands of
experiments across more than one hundred tasks for each ML algorithm. We
showed that the proposed method is capable of finding symbolic hyperparame-
ter defaults which are as good as hand-crafted ones, at least as good as constant
hyperparameter defaults, and in almost all cases better than current implemen-
tation defaults. These defaults may be used to effectively warm-start search,
but could also be used in other ways that may speed up AutoML, e.g., by using
them in search space design (Q4).

132 Conclusion and Future Work

7.2 Limitations

The methods proposed in this thesis come with limitations. Some of these
limitations are inherent to the proposed methods or require further research,
while others are merely a limitation that can be resolved through engineering
effort. We will discuss the limitations in that order, with a focus on the former.

The core of this work focuses on enabling rigorous research on curated sets
of tasks. While it has not yet been demonstrated in longitudinal studies, we
assume that as more methods are being evaluated on benchmarking suites, over-
fitting on fixed suites is increasingly likely. To avoid a scenario where improved
performance on the benchmarking suites no longer represents an improvement
on other tasks, the benchmarking suites should be periodically updated.

Moreover, while benchmarking suites are an excellent tool to analyze quan-
titative differences between different methods, it provides no insight into the
qualitative differences. In particular, for the AutoML benchmark, which evalu-
ates tools designed to be used by end-users, an informed choice is often made
on more than just performance reports. For example, the user may specifically
be interested in the model’s interpretability, the level of support provided by
the developers, or insight into why the final ML pipeline is designed the way it
is.

The conducted set of experiments on AutoML frameworks in Chapter 5 are
deliberately designed to reflect the out-of-the-box experience that regular users
will encounter. This means that based on the experiments no conclusion can be
drawn about the quality of any individual design decision. Another limitation
of the experimental results is that only final performance is measured. While in
some cases the final performance may not be statistically significantly different,
it may be that one tool converges to a solution much faster than others.

In principle, the AutoML benchmark allows for performing ablation studies,
though this also requires a high level of configurability of the AutoML frame-
works. Modular AutoML tool GAMA features this configurability and may be used
to evaluate along one design axis at a time. However, the measured performance
is still affected by other choices in the design and experimental evaluation. If in
an ablation study method A outperforms method B, this still comes with the
caveat that the results only hold for e.g., the used search space or resource bud-
get, and the extent to which they generalize across those decisions is unknown.
It should be noted that this limitation is not unique to GAMA, but indeed any
experiment with sufficiently many design decisions.

Finally, in our work on the automated discovery of symbolic hyperparame-

7.3. FUTURE WORK 133

ter defaults, we used a limited set of meta-features and mathematical operators
from which to compose the defaults. Given these design choices, we were un-
able to find suitable symbolic defaults for several algorithms and did not signif-
icantly outperform tuned constant defaults for them. Further research should
include more dataset properties, though it is not immediately obvious which
these should be. It also remains an open question if for all hyperparameters
there even exists a symbolic default that uses only meta-features which can be
computed efficiently.

There are also limitations imposed by the state of the software. The OpenML
platform, and by extension openml-python, OpenML benchmarking suites, and
the AutoML benchmark, offers only limited support for settings outside of i.i.d.
classification and regression, such as clustering or time series prediction. GAMA

allows for modular configuration and isolated development for search algorithms
and post-processing, though it does not yet offer the same flexibility in other
parts of the AutoML pipeline design. For example, the data sanitation step is
fixed and the search space design assumes scikit-learn compatible workflows.
None of these limitations are inherent to the respective designs and can be
overcome with additional engineering effort.

7.3 Future Work

As outlined in the last section, we can overcome some limitations through ad-
ditional engineering effort. In this section, we focus on interesting future work
which can not be overcome by engineering alone.

7.3.1 Meta-learning for AutoML

In Chapter 6 we presented a method to use meta-learning to find symbolic
hyperparameter defaults. How to incorporate these symbolic hyperparameter
defaults in AutoML tools is an interesting open research question. Possible
applications include transforming the search space, shrinking the search space
to speed up the search, or using symbolic hyperparameter defaults to evaluate
ML pipeline architecture design. We hope to find symbolic hyperparameter
defaults for more algorithms and hyperparameters by extending the set of meta-
features and the formulas which may be considered. Moreover, we aim to extend
the notion of defaults into sets of defaults, which can serve as complementary
starting points for hyperparameter optimization.

134 Conclusion and Future Work

Many other approaches to include meta-learning in AutoML methods have
already been proposed [82, 88, 144, 149, 279]. Unfortunately, it is unclear
how to evaluate AutoML methods which use meta-learning on benchmarking
suites in a practical manner. The task on which a method is evaluated should
not be included in learning the meta-model used by the method. While some
meta-learning methods, such as nearest-neighbor dataset lookups [88], allow for
the easy exclusion of specific tasks from the meta-model, this is not the case
for meta-models in general. A clean evaluation would then involve training as
many meta-models as there are (chosen subsets of) tasks in the benchmarking
suite, which may become prohibitively expensive for more complex meta-models.
Additionally, it is not always easy to identify which task is being used in the
evaluation. While the specific dataset may be easily identified, all variants
derived from the dataset should also be accounted for and excluded from the
meta-model. More research is required to address these issues and allow for the
correct evaluation of AutoML systems that use meta-learning.

7.3.2 Benchmark Design

While the tools presented with the introduction of OpenML benchmarking suites
allow for some automated curation of tasks, the proposed benchmarking suites
are still mostly designed by humans. The design process may lead to unneces-
sarily large benchmarking suites, which is undesirable not only because it wastes
resources, but also because the increased computational demand will prohibit
some people from using the proposed suites. Some post-hoc analysis methods
of benchmarking suites exist [47], but we hope additional techniques will be
developed and in particular for them to already be applicable during the design
process.

It remains an open question if and when methods may start to overfit to
a static benchmarking suite. For this reason, and to keep the benchmarking
suites reflective of modern challenges, we propose to periodically update the
benchmarking suites (e.g., as done for computer vision research [201]) and invite
the community to partake in this process. Developing new methods to analyze
whether overfitting on benchmark suites occurs, and how many or which tasks
would need to be replaced to alleviate the issue, is interesting future work.

7.3. FUTURE WORK 135

7.3.3 Trust in AutoML

Interpretable [171] and explainable [240] ML has gained attention recently, in
part because of new legislature that requires explainability [21], e.g., GDPR2.
As this pertains to the final model produced, AutoML can directly benefit from
ideas and techniques for general interpretability and explainability in ML, such
as training interpretable models to mimic complex ones found by AutoML [3,
133] or post-hoc model-agnostic explanation methods such as LIME [205]. How-
ever, AutoML may also be used to generate interpretable models, by using
existing AutoML frameworks with an altered search space that produces in-
terpretable models [91], or by using autocompboost [58], which is specifically
developed to build interpretable models.

In AutoML not only the final model but also how it was found, is important
for a user’s trust [69, 220]. To this end, Moosbauer et al. [173] propose to use
adapted partial dependence plots to visualize what the surrogate model learned
about the search space. Providing the users with generated code that builds the
final model also increases trust in the system, because it helps them understand
the model that is used and to verify if specific changes affect the results as
expected [266].

In certain settings it is important that the model follows some notion of fair-
ness [13], e.g., when the model affects humans, it shouldn’t discriminate. This
can be expressed through metrics that make a distinction between a protected
and unprotected group. Examples include demographic parity [42], which stip-
ulates the average predictions for the two groups should be equal, and equalized
odds [113], which dictate the false negative and positive rates should be equal
between the groups. However, it should be noted that while different notions
of fairness exist, they may not all be satisfied simultaneously [57, 134]. While
this is also true for performance metrics, the choice of fairness metric has a
significant effect on how the model treats the protected group.

To allow AutoML to find fairer models, it has been treated as a multi-
objective optimization problem, optimizing a fairness metric and a performance
metric together (e.g., [60, 214, 215]). However, this approach ignores the de-
velopment of fairness specific preprocessing, in-processing, and post-processing
algorithms (e.g., [44], [19], and [113], respectively), which seems like it would
lead to sub-optimal pipelines3.

Still, only changing the optimization objective, or even the search space,

2https://gdpr-info.eu/
3To the best of my knowledge, there is no AutoML system which includes these algorithms

in its search space, so there is no evidence that excluding them leads to worse solutions.

https://gdpr-info.eu/

136 Conclusion and Future Work

largely ignores the problems present in other parts of the model creation. Blind
optimization without regard for other aspects, such as the data and its collection
process or the users ultimately using the model, may only lead to perceived
progress [11]. On the one hand, AutoML may exacerbate that problem. If,
at times, even ML experts fail to identify biases in their models [96], how will
the novice AutoML user pick up on these errors? On the other hand, AutoML
may alleviate some of these issues by allowing the domain experts themselves
to build models. With a much better understanding of the data, the relevant
performance metrics, and the ability to assess model predictions, domain experts
using AutoML may be able to deploy better models than an ML expert could.
These two scenarios are not mutually exclusive, and both user groups would
benefit from support for fair learning and interpretability in both the AutoML
procedure and the model it produces.

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, et al. “TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Distributed Systems”. In: Proc. of OSDI’16. 2016.

[2] D. W. Aha. “Generalizing from case studies: A case study”. In: Pro-
ceedings of the International Conference on Machine Learning (ICML)
(1992), pp. 1–10.

[3] Ahmed Alaa and Mihaela van der Schaar. “AutoPrognosis: Automated
Clinical Prognostic Modeling via Bayesian Optimization with Structured
Kernel Learning”. In: Proceedings of the 35th International Conference
on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, July 2018, pp. 139–
148. url: https://proceedings.mlr.press/v80/alaa18b.html.

[4] J. Alcala, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, and
F. Herrera. “Keel datamining software tool: Data set repository, integra-
tion of algorithms and experimental analysis framework.” In: Journal of
Multiple-Valued Logic and Soft Computing 17.2-3 (2010), pp. 255–287.

[5] Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Lúıs Paulo F Garcia,
Jefferson Tales Oliva, André CPLF de Carvalho, et al. “MFE: Towards re-
producible meta-feature extraction.” In: J. Mach. Learn. Res. 21 (2020),
pp. 111–1.

[6] Marie Anastacio, Chuan Luo, and Holger Hoos. “Exploitation of default
parameter values in automated algorithm configuration”. In: Workshop
Data Science meets Optimisation (DSO), IJCAI. 2019.

137

https://proceedings.mlr.press/v80/alaa18b.html

138 BIBLIOGRAPHY

[7] Noor Awad, Neeratyoy Mallik, and Frank Hutter. “DEHB: Evolutionary
Hyberband for Scalable, Robust and Efficient Hyperparameter Optimiza-
tion”. In: arXiv preprint arXiv:2105.09821 (2021).

[8] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro
Azevedo, Vinicius B Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel,
Thiago M Paixao, Filipe Mutz, et al. “Self-driving cars: A survey”. In:
Expert Systems with Applications 165 (2021), p. 113816.

[9] Adithya Balaji and Alexander Allen. “Benchmarking Automatic Machine
Learning Frameworks”. In: (Aug. 2018). arXiv: 1808.06492 [cs.LG].

[10] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Fran-
cone. Genetic programming: an introduction: on the automatic evolution
of computer programs and its applications. Morgan Kaufmann Publishers
Inc., 1998.

[11] Michelle Bao, Angela Zhou, Samantha Zottola, Brian Brubach, Sarah
Desmarais, Aaron Horowitz, Kristian Lum, and Suresh Venkatasubra-
manian. “It’s COMPASlicated: The Messy Relationship between RAI
Datasets and Algorithmic Fairness Benchmarks”. In: CoRR abs/2106.05498
(2021). arXiv: 2106.05498. url: https://arxiv.org/abs/2106.05498.

[12] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michèle Sebag. “Col-
laborative Hyperparameter Tuning”. In: Proceedings of the 30th Inter-
national Conference on International Conference on Machine Learning
- Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org, 2013, pp. II-199–
II-207. url: http://dl.acm.org/citation.cfm?id=3042817.3042916.

[13] Solon Barocas, Moritz Hardt, and Arvind Narayanan. “Fairness in ma-
chine learning”. In: Nips tutorial 1 (2017), p. 2017.

[14] Hilan Bensusan and Alexandros Kalousis. “Estimating the predictive ac-
curacy of a classifier”. In: European Conference on Machine Learning.
Springer. 2001, pp. 25–36.

[15] J. Bergstra, N. Pinto, and D.D. Cox. “SkData: data sets and algorithm
evaluation protocols in Python”. In: Computational Science & Discovery
8.1 (2015).

[16] James Bergstra, Rémi Bardenet, B Kégl, and Y Bengio. “Implementa-
tions of algorithms for hyper-parameter optimization”. In: NIPS Work-
shop on Bayesian optimization. 2011, p. 29.

[17] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization.” In: Journal of machine learning research 13.2 (2012).

https://arxiv.org/abs/1808.06492
https://arxiv.org/abs/2106.05498
https://arxiv.org/abs/2106.05498
http://dl.acm.org/citation.cfm?id=3042817.3042916

BIBLIOGRAPHY 139

[18] James Bergstra, Daniel Yamins, and David Cox. “Making a science of
model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures”. In: International conference on machine learn-
ing. PMLR. 2013, pp. 115–123.

[19] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael
Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. “A convex
framework for fair regression”. In: arXiv preprint arXiv:1706.02409 (2017).

[20] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution strategies–a com-
prehensive introduction”. In: Natural computing 1.1 (2002), pp. 3–52.

[21] Adrien Bibal, Michael Lognoul, Alexandre De Streel, and Benôıt Frénay.
“Legal requirements on explainability in machine learning”. In: Artificial
Intelligence and Law 29.2 (2021), pp. 149–169.

[22] Aurélien Bibaut, Antoine Chambaz, Maria Dimakopoulou, Nathan Kallus,
and Mark van der Laan. “Post-Contextual-Bandit Inference”. In: arXiv:2106.00418
[stat.ML] (2021).

[23] Aurélien Bibaut, Antoine Chambaz, Maria Dimakopoulou, Nathan Kallus,
and Mark van der Laan. “Risk Minimization from Adaptively Collected
Data: Guarantees for Supervised and Policy Learning”. In: arXiv:2106.01723
[stat.ML] (2021).

[24] Albert Bifet and Ricard Gavalda. “Adaptive learning from evolving data
streams”. In: International Symposium on Intelligent Data Analysis. Springer.
2009, pp. 249–260.

[25] Mauro Birattari, Thomas Stützle, Luis Paquete, Klaus Varrentrapp, et al.
“A Racing Algorithm for Configuring Metaheuristics.” In: Gecco. Vol. 2.
2002. 2002.

[26] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G.
Casalicchio, and Z. M. Jones. “mlr: Machine learning in R”. In: Journal
of Machine Learning Research 17.170 (2016).

[27] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter,
Stefan Coors, Janek Thomas, Theresa Ullmann, Marc Becker, Anne-
Laure Boulesteix, Difan Deng, and Marius Lindauer. “Hyperparameter
Optimization: Foundations, Algorithms, Best Practices and Open Chal-
lenges”. In: (July 2021). arXiv: 2107.05847 [stat.ML].

https://arxiv.org/abs/2107.05847

140 BIBLIOGRAPHY

[28] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers,
Frank Hutter, Michel Lang, Rafael Gomes Mantovani, Jan N van Rijn,
and Joaquin Vanschoren. “OpenML Benchmarking Suites”. In: Thirty-
fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2). 2021.

[29] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel
Lang, Rafael G. Mantovani, Jan N. van Rijn, and Joaquin Vanschoren.
“OpenML Benchmarking Suites”. In: (Aug. 2017). arXiv: 1708 . 03731
[stat.ML].

[30] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri
Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-
Brown, Kevin Tierney, and Joaquin Vanschoren. “ASlib: A benchmark
library for algorithm selection”. en. In: Artificial Intelligence 237 (Aug.
2016), pp. 41–58. issn: 0004-3702. doi: 10.1016/j.artint.2016.04.003. url:
https://www.sciencedirect.com/science/article/pii/S0004370216300388
(visited on 10/21/2021).

[31] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham
Gutiérrez. “Recommender systems survey”. In: Knowledge-based systems
46 (2013), pp. 109–132.

[32] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A train-
ing algorithm for optimal margin classifiers”. In: Proceedings of the fifth
annual workshop on Computational learning theory. 1992, pp. 144–152.

[33] Pavel Brazdil, Joāo Gama, and Bob Henery. “Characterizing the applica-
bility of classification algorithms using meta-level learning”. In: European
conference on machine learning. Springer. 1994, pp. 83–102.

[34] Pavel B Brazdil and Carlos Soares. “A comparison of ranking methods for
classification algorithm selection”. In: European conference on machine
learning. Springer. 2000, pp. 63–75.

[35] Pavel B Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. “Ranking
learning algorithms: Using IBL and meta-learning on accuracy and time
results”. In: Machine Learning 50.3 (2003), pp. 251–277.

[36] L Breiman, JH Friedman, R Olshen, and CJ Stone. “Classification and
Regression Trees”. In: (1984).

[37] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (Oct. 2001),
pp. 5–32. issn: 0885-6125. doi: 10.1023/A:1010933404324. url: https:
//doi.org/10.1023/A:1010933404324.

https://arxiv.org/abs/1708.03731
https://arxiv.org/abs/1708.03731
https://doi.org/10.1016/j.artint.2016.04.003
https://www.sciencedirect.com/science/article/pii/S0004370216300388
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

BIBLIOGRAPHY 141

[38] Leo Breiman and Adele Cutler. Random Forests Manual. 2020. url:
https://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm
(visited on 05/01/2020).

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba. “OpenAI Gym”. In: arXiv:1606.01540 [cs.LG]
(2016).

[40] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Müller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derplas, A. Joly, B. Holt, and G. Varoquaux. “API design for machine
learning software: experiences from the scikit-learn project”. In: ECML
PKDD Workshop: Languages for Data Mining and Machine Learning.
2013, pp. 108–122.

[41] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A lim-
ited memory algorithm for bound constrained optimization”. In: SIAM
Journal on scientific computing 16.5 (1995), pp. 1190–1208.

[42] Toon Calders and Sicco Verwer. “Three naive Bayes approaches for discrimination-
free classification”. In: Data mining and knowledge discovery 21.2 (2010),
pp. 277–292.

[43] Tadeusz Caliński and Jerzy Harabasz. “A dendrite method for clus-
ter analysis”. In: Communications in Statistics-theory and Methods 3.1
(1974), pp. 1–27.

[44] Flavio P Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Nate-
san Ramamurthy, and Kush R Varshney. “Optimized pre-processing for
discrimination prevention”. In: Proceedings of the 31st International Con-
ference on Neural Information Processing Systems. 2017, pp. 3995–4004.

[45] Israel Campero Jurado and Joaquin Vanschoren. “Multi-fidelity opti-
mization method with Asynchronous Generalized Island Model for Au-
toML”. In: (to appear) Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion (July 2022).

[46] B. Caputo, K. Sim, F. Furesjo, and A. Smola. “Appearance-based Object
Recognition using SVMs: Which Kernel Should I Use?” In: Procceedings
of NIPS workshop on Statitsical methods for computational experiments
in visual processing and computer vision, Whistler. 2002, pp. 1–10.

[47] Lucas FF Cardoso, Vitor CA Santos, Regiane S Kawasaki Francês, Ri-
cardo BC Prudêncio, and Ronnie CO Alves. “Data vs classifiers, who
wins?” In: arXiv:2107.07451 [cs.LG] (2021).

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

142 BIBLIOGRAPHY

[48] Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. “Getting
the most out of ensemble selection”. In: Sixth International Conference
on Data Mining (ICDM’06). IEEE. 2006, pp. 828–833.

[49] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes.
“Ensemble selection from libraries of models”. In: Proceedings of the
twenty-first international conference on Machine learning. 2004, p. 18.

[50] Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff,
Pascal Kerschke, Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren,
and Bernd Bischl. “OpenML: An R package to connect to the machine
learning platform OpenML”. In: 34 (2019), pp. 977–991. issn: 0943-4062.
doi: 10.1007/s00180-017-0742-2.

[51] Bilge Celik, Prabhant Singh, and Joaquin Vanschoren. Online AutoML:
An adaptive AutoML framework for online learning. 2022. arXiv: 2201.
09750 [cs.LG].

[52] Bilge Celik and Joaquin Vanschoren. “Adaptation strategies for auto-
mated machine learning on evolving data”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

[53] C. C. Chang and C. J. Lin. “LIBSVM: A library for support vector
machines”. In: ACM Transactions on Intelligent Systems and Technology
(TIST) 2.3 (2011), p. 27.

[54] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boost-
ing System”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16. San
Francisco, California, USA: ACM, 2016, pp. 785–794. isbn: 978-1-4503-
4232-2. doi: 10.1145/2939672.2939785. url: http://doi.acm.org/10.
1145/2939672.2939785.

[55] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang,
Hyunsu Cho, et al. “Xgboost: extreme gradient boosting”. In: R package
version 0.4-2 1.4 (2015), pp. 1–4.

[56] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G.
Batista. The UCR Time Series Classification Archive. www.cs.ucr.edu/
∼eamonn/time series data/. July 2015.

[57] Alexandra Chouldechova. “Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments”. In: Big data 5.2 (2017),
pp. 153–163.

https://doi.org/10.1007/s00180-017-0742-2
https://arxiv.org/abs/2201.09750
https://arxiv.org/abs/2201.09750
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

BIBLIOGRAPHY 143

[58] Stefan Coors, Daniel Schalk, Bernd Bischl, and David Rügamer. “Auto-
matic Componentwise Boosting: An Interpretable AutoML System”. In:
arXiv preprint arXiv:2109.05583 (2021).

[59] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In:
Machine learning 20.3 (1995), pp. 273–297.

[60] André F Cruz, Pedro Saleiro, Catarina Belém, Carlos Soares, and Pedro
Bizarro. “A Bandit-Based Algorithm for Fairness-Aware Hyperparame-
ter Optimization”. In: arXiv preprint arXiv:2010.03665 (2020).

[61] Casey Davis and Christophe Giraud-Carrier. “Annotative experts for
hyperparameter selection”. In: AutoML Workshop at ICML. 2018.

[62] George De Ath, Richard M Everson, Alma AM Rahat, and Jonathan
E Fieldsend. “Greed is good: Exploration and exploitation trade-offs in
Bayesian optimisation”. In: ACM Transactions on Evolutionary Learning
and Optimization 1.1 (2021), pp. 1–22.

[63] Gwendoline De Bie, Herilalaina Rakotoarison, Gabriel Peyré, and Michèle
Sebag. “Distribution-Based Invariant Deep Networks for Learning Meta-
Features”. In: arXiv:2006.13708 [stat.ML] (2020).

[64] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
“A fast and elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE
transactions on evolutionary computation 6.2 (2002), pp. 182–197.

[65] J. Demšar. “Statistical Comparisons of Classifiers over Multiple Data
Sets”. In: The Journal of Machine Learning Research 7 (2006), pp. 1–30.

[66] D. Dheeru and E. Karra Taniskidou. UCI Machine Learning Repository.
2017. url: http://archive.ics.uci.edu/ml.

[67] Elizabeth Ditton, Anne Swinbourne, Trina Myers, and Mitchell Scov-
ell. “Applying Semi-Automated Hyperparameter Tuning for Clustering
Algorithms”. In: arXiv preprint arXiv:2108.11053 (2021).

[68] Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni Lourenço,
Jorge One, Kyunghyun Cho, Claudio Silva, and Juliana Freire. “Al-
phaD3M: Machine learning pipeline synthesis”. In: 5th ICML Workshop
on Automated Machine Learning (AutoML). 2018.

http://archive.ics.uci.edu/ml

144 BIBLIOGRAPHY

[69] Jaimie Drozdal, Justin Weisz, Dakuo Wang, Gaurav Dass, Bingsheng
Yao, Changruo Zhao, Michael Muller, Lin Ju, and Hui Su. “Trust in Au-
toML: Exploring Information Needs for Establishing Trust in Automated
Machine Learning Systems”. In: Proceedings of the 25th International
Conference on Intelligent User Interfaces. IUI ’20. Cagliari, Italy: Associ-
ation for Computing Machinery, 2020, pp. 297–307. isbn: 9781450371186.
doi: 10.1145/3377325.3377501. url: https://doi.org/10.1145/3377325.
3377501.

[70] Russell Eberhart and James Kennedy. “Particle swarm optimization”.
In: Proceedings of the IEEE international conference on neural networks.
Vol. 4. Citeseer. 1995, pp. 1942–1948.

[71] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra,
Jasper Snoek, Holger Hoos, Kevin Leyton-Brown, et al. “Towards an
empirical foundation for assessing bayesian optimization of hyperparame-
ters”. In: NIPS workshop on Bayesian Optimization in Theory and Prac-
tice. Vol. 10. 3. 2013.

[72] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural archi-
tecture search: A survey”. In: The Journal of Machine Learning Research
20.1 (2019), pp. 1997–2017.

[73] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro
Larroy, Mu Li, and Alexander Smola. “AutoGluon-Tabular: Robust and
Accurate AutoML for Structured Data”. In: (Mar. 2020). arXiv: 2003.
06505 [stat.ML].

[74] Kutluhan Erol, James A Hendler, and Dana S Nau. “UMCP: A Sound
and Complete Procedure for Hierarchical Task-network Planning.” In:
Aips. Vol. 94. 1994, pp. 249–254.

[75] Hugo Jair Escalante, Manuel Montes, and Luis Enrique Sucar. “Particle
swarm model selection.” In: Journal of Machine Learning Research 10.2
(2009).

[76] Hugo Jair Escalante, Wei-Wei Tu, Isabelle Guyon, Daniel L. Silver, Eve-
lyne Viegas, Yuqiang Chen, Wenyuan Dai, and Qiang Yang. “AutoML
@ NeurIPS 2018 Challenge: Design and Results”. In: The NeurIPS ’18
Competition. Ed. by Sergio Escalera and Ralf Herbrich. Cham: Springer
International Publishing, 2020, pp. 209–229. isbn: 978-3-030-29135-8.

https://doi.org/10.1145/3377325.3377501
https://doi.org/10.1145/3377325.3377501
https://doi.org/10.1145/3377325.3377501
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505

BIBLIOGRAPHY 145

[77] Suilan Estévez-Velarde, Yoan Gutiérrez, Yudivián Almeida-Cruz, and
Andrés Montoyo. “General-purpose hierarchical optimisation of machine
learning pipelines with grammatical evolution”. In: Information Sciences
543 (2021), pp. 58–71.

[78] Manuel J.A. Eugster, Friedrich Leisch, and Carolin Strobl. “(Psycho-
)Analysis of Benchmark Experiments”. In: Comput. Stat. Data Anal.
71.C (Mar. 2014), pp. 986–1000. issn: 0167-9473.

[79] Raül Fabra-Boluda, Cesar Ferri, Fernando Mart́ınez-Plumed, José Hernández-
Orallo, and M José Ramı́rez-Quintana. “Family and prejudice: A be-
havioural taxonomy of machine learning techniques”. In: ECAI 2020 -
24th European Conference on Artificial Intelligence. IOS Press, 2020,
pp. 1135–1142.

[80] Stefan Falkner, Aaron Klein, and Frank Hutter. “BOHB: Robust and
efficient hyperparameter optimization at scale”. In: International Con-
ference on Machine Learning. PMLR. 2018, pp. 1437–1446.

[81] Mauricio Ferreira, Rafaela Ventorim, Eduardo Almeida, Sabrina Silveira,
and Wendel Silveira. “Protein Abundance Prediction Through Machine
Learning Methods”. In: Journal of molecular biology 433.22 (2021), p. 167267.

[82] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. “Auto-Sklearn 2.0: Hands-free AutoML via
Meta-Learning”. In: arXiv:2007.04074 [cs.LG] (2020).

[83] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. “Practical automated machine learning for the
automl challenge 2018”. In: International Workshop on Automatic Ma-
chine Learning at ICML. 2018, pp. 1189–1232.

[84] Matthias Feurer and Frank Hutter. “Hyperparameter Optimization”. In:
Automated Machine Learning. Springer, Cham, 2019, pp. 3–33.

[85] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Sprin-
genberg, Manuel Blum, and Frank Hutter. “Efficient and Robust Auto-
mated Machine Learning”. In: Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed. by
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and
Roman Garnett. 2015, pp. 2962–2970. url: https://proceedings.neurips.
cc / paper / 2015 / hash / 11d0e6287202fced83f79975ec59a3a6 - Abstract .
html.

https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html

146 BIBLIOGRAPHY

[86] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. “Scalable meta-
learning for Bayesian optimization”. In: stat 1050 (2018), p. 6.

[87] Matthias Feurer, Jan N van Rijn, Arlind Kadra, Pieter Gijsbers, Neer-
atyoy Mallik, Sahithya Ravi, Andreas Mueller, Joaquin Vanschoren, and
Frank Hutter. “Openml-python: an extensible python api for openml”.
In: Journal of Machine Learning Research 22.100 (2021), pp. 1–5.

[88] Matthias Feurer, Jost Springenberg, and Frank Hutter. “Initializing bayesian
hyperparameter optimization via meta-learning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 29. 1. 2015.

[89] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-
learning for fast adaptation of deep networks”. In: International confer-
ence on machine learning. PMLR. 2017, pp. 1126–1135.

[90] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. “DEAP: Evolutionary Algo-
rithms Made Easy”. In: Journal of Machine Learning Research 13 (July
2012), pp. 2171–2175.

[91] Alex A Freitas. “Automated machine learning for studying the trade-
off between predictive accuracy and interpretability”. In: International
Cross-Domain Conference for Machine Learning and Knowledge Extrac-
tion. Springer. 2019, pp. 48–66.

[92] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Regulariza-
tion Paths for Generalized Linear Models via Coordinate Descent”. In:
Journal of Statistical Software 33.1 (2010), pp. 1–22. url: http://www.
jstatsoft.org/v33/i01/.

[93] Jerome H Friedman. “Greedy function approximation: a gradient boost-
ing machine”. In: Annals of statistics (2001), pp. 1189–1232.

[94] N. Fusi, R. Sheth, and M. Elibol. “Probabilistic Matrix Factorization for
Automated Machine Learning”. In: Proc. of NeurIPS’18. 2018.

[95] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Ab-
delhamid Bouchachia. “A survey on concept drift adaptation”. In: ACM
computing surveys (CSUR) 46.4 (2014), pp. 1–37.

[96] Megan Garcia. “Racist in the Machine”. In: World Policy Journal 33.4
(2016), pp. 111–117.

[97] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wort-
man Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford.
“Datasheets for datasets”. In: arXiv:1803.09010 [cs.DB] (2018).

http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/

BIBLIOGRAPHY 147

[98] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

[99] P Gijsbers, J Vanschoren, and R Olson. “Layered TPOT: speeding up
tree-based pipeline optimization”. In: European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases,
September 18–22, 2017, Skopje, Macedonia. CEUR-WS. org. 2017, pp. 49–
68.

[100] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd
Bischl, and Joaquin Vanschoren. “An open source AutoML benchmark”.
In: arXiv preprint arXiv:1907.00909 (2019).

[101] Pieter Gijsbers, Florian Pfisterer, Jan N. van Rijn, Bernd Bischl, and
Joaquin Vanschoren. Meta-Learning for Symbolic Hyperparameter De-
faults. 2021. arXiv: 2106.05767 [stat.ML].

[102] Pieter Gijsbers, Florian Pfisterer, Jan N. van Rijn, Bernd Bischl, and
Joaquin Vanschoren. “Meta-learning for symbolic hyperparameter de-
faults”. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion (July 2021). doi: 10 . 1145 / 3449726 . 3459532.
url: http://dx.doi.org/10.1145/3449726.3459532.

[103] Pieter Gijsbers and Joaquin Vanschoren. “GAMA: A General Automated
Machine Learning Assistant”. In: Machine Learning and Knowledge Dis-
covery in Databases. Applied Data Science and Demo Track. Ed. by Yux-
iao Dong, Georgiana Ifrim, Dunja Mladenić, Craig Saunders, and Sofie
Van Hoecke. Cham: Springer International Publishing, 2021, pp. 560–
564. isbn: 978-3-030-67670-4.

[104] Pieter Gijsbers and Joaquin Vanschoren. “GAMA: genetic automated
machine learning assistant”. In: Journal of Open Source Software 4.33
(2019), p. 1132.

[105] Yolanda Gil, Ke-Thia Yao, Varun Ratnakar, Daniel Garijo, Greg Ver
Steeg, Pedro Szekely, Rob Brekelmans, Mayank Kejriwal, Fanghao Luo,
and I-Hui Huang. “P4ML: A phased performance-based pipeline planner
for automated machine learning”. In: 5th ICML Workshop on Automated
Machine Learning (AutoML). 2018.

[106] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. “Peek-
ing inside the black box: Visualizing statistical learning with plots of
individual conditional expectation”. In: journal of Computational and
Graphical Statistics 24.1 (2015), pp. 44–65.

https://arxiv.org/abs/2106.05767
https://doi.org/10.1145/3449726.3459532
http://dx.doi.org/10.1145/3449726.3459532

148 BIBLIOGRAPHY

[107] Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabŕıcio
Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem.
“Adaptive random forests for evolving data stream classification”. In:
Machine Learning 106.9 (2017), pp. 1469–1495.

[108] Silvio B Guerra, Ricardo BC Prudêncio, and Teresa B Ludermir. “Pre-
dicting the performance of learning algorithms using support vector ma-
chines as meta-regressors”. In: International Conference on Artificial
Neural Networks. Springer. 2008, pp. 523–532.

[109] Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera,
Damir Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz
Romaszko, Michèle Sebag, Alexander R. Statnikov, Sébastien Treguer,
and Evelyne Viegas. “A brief Review of the ChaLearn AutoML Chal-
lenge: Any-time Any-dataset Learning without Human Intervention”. In:
Proceedings of the 2016 Workshop on Automatic Machine Learning, Au-
toML 2016, co-located with 33rd International Conference on Machine
Learning (ICML 2016), New York City, NY, USA, June 24, 2016. Ed.
by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Vol. 64. JMLR
Workshop and Conference Proceedings. JMLR.org, 2016, pp. 21–30. url:
http://proceedings.mlr.press/v64/guyon review 2016.html.

[110] Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante,
Sergio Escalera, Zhengying Liu, Damir Jajetic, Bisakha Ray, Mehreen
Saeed, Michèle Sebag, Alexander Statnikov, Wei-Wei Tu, and Evelyne
Viegas. “Analysis of the AutoML Challenge Series 2015–2018”. In: Au-
tomated Machine Learning: Methods, Systems, Challenges. Ed. by Frank
Hutter, Lars Kotthoff, and Joaquin Vanschoren. Springer International
Publishing, 2019, pp. 177–219.

[111] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. “The WEKA data mining software”.
In: ACM SIGKDD Explorations Newsletter 11.1 (Nov. 2009), pp. 10–18.
doi: 10.1145/1656274.1656278.

[112] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersman, Tea Tušar,
and Dimo Brockhoff. “COCO: A Platform for Comparing Continuous
Optimizers in a Black-Box Setting”. In: Optimization Methods and Soft-
ware (2020).

[113] Moritz Hardt, Eric Price, and Nati Srebro. “Equality of opportunity
in supervised learning”. In: Advances in neural information processing
systems 29 (2016), pp. 3315–3323.

http://proceedings.mlr.press/v64/guyon_review_2016.html
https://doi.org/10.1145/1656274.1656278

BIBLIOGRAPHY 149

[114] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,
Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime
Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. “Array programming with NumPy”. In:
Nature 585 (2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[115] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. “Learning
to Learn Using Gradient Descent”. In: Artificial Neural Networks —
ICANN 2001. Ed. by Georg Dorffner, Horst Bischof, and Kurt Hornik.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 87–94. isbn:
978-3-540-44668-2.

[116] Jeroen van Hoof and Joaquin Vanschoren. “Hyperboost: Hyperparameter
Optimization by Gradient Boosting surrogate models”. In: arXiv preprint
arXiv:2101.02289 (2021).

[117] M. Hutson. “Missing data hinder replication of artificial intelligence stud-
ies”. In: Science News (2018). url: https://www.science.org/content/
article/missing-data-hinder-replication-artificial-intelligence-studies.

[118] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. “An Efficient Ap-
proach for Assessing Hyperparameter Importance”. In: Proceedings of
the 31st International Conference on Machine Learning. Ed. by Eric P.
Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Re-
search 1. Bejing, China: PMLR, June 2014, pp. 754–762. url: https :
//proceedings.mlr.press/v32/hutter14.html.

[119] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential
Model-Based Optimization for General Algorithm Configuration”. In:
Learning and Intelligent Optimization. Ed. by Carlos A. Coello Coello.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 507–523. isbn:
978-3-642-25566-3.

[120] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. “Automated ma-
chine learning: methods, systems, challenges”. In: Springer Nature, 2019.
Chap. Preface.

[121] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. “Algo-
rithm runtime prediction: Methods & evaluation”. In: Artificial Intelli-
gence 206 (2014), pp. 79–111.

https://doi.org/10.1038/s41586-020-2649-2
https://www.science.org/content/article/missing-data-hinder-replication-artificial-intelligence-studies
https://www.science.org/content/article/missing-data-hinder-replication-artificial-intelligence-studies
https://proceedings.mlr.press/v32/hutter14.html
https://proceedings.mlr.press/v32/hutter14.html

150 BIBLIOGRAPHY

[122] Carl Hvarfner, Danny Stoll, Artur Souza, Luigi Nardi, Marius Lindauer,
and Frank Hutter. “πBO: Augmenting Acquisition Functions with User
Beliefs for Bayesian Optimization”. In: International Conference on Learn-
ing Representations. 2021.

[123] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic best arm iden-
tification and hyperparameter optimization”. In: Artificial Intelligence
and Statistics. PMLR. 2016, pp. 240–248.

[124] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-keras: An efficient neu-
ral architecture search system”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2019,
pp. 1946–1956.

[125] Hadi S Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. “Dataset2vec:
Learning dataset meta-features”. In: Data Mining and Knowledge Dis-
covery 35.3 (2021), pp. 964–985.

[126] Donald R Jones. “A taxonomy of global optimization methods based
on response surfaces”. In: Journal of global optimization 21.4 (2001),
pp. 345–383.

[127] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient
global optimization of expensive black-box functions”. In: Journal of
Global optimization 13.4 (1998), pp. 455–492.

[128] Zohar Karnin, Tomer Koren, and Oren Somekh. “Almost optimal explo-
ration in multi-armed bandits”. In: International Conference on Machine
Learning. PMLR. 2013, pp. 1238–1246.

[129] Marios Kefalas, Mitra Baratchi, Asteris Apostolidis, Dirk van den Herik,
and Thomas Bäck. “Automated Machine Learning for Remaining Useful
Life Estimation of Aircraft Engines”. In: 2021 IEEE International Con-
ference on Prognostics and Health Management (ICPHM). 2021, pp. 1–9.
doi: 10.1109/ICPHM51084.2021.9486549.

[130] E. Keogh and S. Kasetty. “On the need for time series data mining
benchmarks: A survey and empirical demonstration”. In: Data Mining
and Knowledge Discovery 7.4 (2003), pp. 349–371.

[131] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik
Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem,
Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Ad-
ina Williams. “Dynabench: Rethinking Benchmarking in NLP”. In: Pro-

https://doi.org/10.1109/ICPHM51084.2021.9486549

BIBLIOGRAPHY 151

ceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics, 2021, pp. 4110–4124.

[132] Jungtaek Kim, Saehoon Kim, and Seungjin Choi. “Learning to warm-
start Bayesian hyperparameter optimization”. In: arXiv preprint arXiv:1710.06219
(2017).

[133] SW Kim, Mira Jeong, and Byoung Chul Ko. “Is the surrogate model in-
terpretable?” In: Proc. Adv. Neural Inf. Process. Syst. Workshops (NIPSW).
2020, pp. 1–5.

[134] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. “Inherent
trade-offs in the fair determination of risk scores”. In: arXiv preprint
arXiv:1609.05807 (2016).

[135] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo plan-
ning”. In: European conference on machine learning. Springer. 2006,
pp. 282–293.

[136] Matthias König, Holger H Hoos, and Jan N van Rijn. “Towards Algorithm-
Agnostic Uncertainty Estimation: Predicting Classification Error in an
Automated Machine Learning Setting”. In: 7th ICML Workshop on Au-
tomated Machine Learning (AutoML). 2020.

[137] Igor Kononenko. “Machine learning for medical diagnosis: history, state
of the art and perspective”. In: Artificial Intelligence in Medicine 23.1
(2001), pp. 89–109. issn: 0933-3657. doi: https://doi.org/10.1016/S0933-
3657(01)00077-X. url: https://www.sciencedirect.com/science/article/
pii/S093336570100077X.

[138] Helena Kotthaus, Ingo Korb, Michel Lang, Bernd Bischl, Jörg Rah-
nenführer, and Peter Marwedel. “Runtime and memory consumption
analyses for machine learning R programs”. In: Journal of Statistical
Computation and Simulation 85.1 (2015), pp. 14–29. doi: 10 . 1080 /
00949655.2014.925192.

[139] J. Koza, M. A. Keane, and J. P. Rice. “Performance improvement of ma-
chine learning via automatic discovery of facilitating functions as applied
to a problem of symbolic system identification”. In: IEEE International
Conference on Neural Networks. 1993, 191–198 vol.1.

[140] John R Koza and John R Koza. Genetic programming: on the program-
ming of computers by means of natural selection. Vol. 1. MIT press, 1992.

https://doi.org/https://doi.org/10.1016/S0933-3657(01)00077-X
https://doi.org/https://doi.org/10.1016/S0933-3657(01)00077-X
https://www.sciencedirect.com/science/article/pii/S093336570100077X
https://www.sciencedirect.com/science/article/pii/S093336570100077X
https://doi.org/10.1080/00949655.2014.925192
https://doi.org/10.1080/00949655.2014.925192

152 BIBLIOGRAPHY

[141] Tomas Kren, Martin Pilat, and Roman Neruda. “Evolving Workflow
Graphs Using Typed Genetic Programming”. In: 2015 IEEE Sympo-
sium Series on Computational Intelligence. 2015, pp. 1407–1414. doi:
10.1109/SSCI.2015.200.

[142] Tomáš Křen, Martin Pilát, and Roman Neruda. “Multi-objective evolu-
tion of machine learning workflows”. In: 2017 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE. 2017, pp. 1–8.

[143] D. Kühn, P. Probst, J. Thomas, and B. Bischl. “Automatic Exploration
of Machine Learning Experiments on OpenML”. In: arXiv preprint arXiv:1806.10961
(2018).

[144] Doron Laadan, Roman Vainshtein, Yarden Curiel, Gilad Katz, and Lior
Rokach. “MetaTPOT: enhancing a tree-based pipeline optimization tool
using meta-learning”. In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 2020, pp. 2097–
2100.

[145] Michel Lang, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfis-
terer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and
Bernd Bischl. “mlr3: A modern object-oriented machine learning frame-
work in R”. In: Journal of Open Source Software 4.44 (2019), p. 1903.

[146] N. Lavesson and P. Davidsson. “Quantifying the impact of learning al-
gorithm parameter tuning”. In: AAAI. Vol. 6. 2006, pp. 395–400.

[147] Trang T Le, Weixuan Fu, and Jason H Moore. “Scaling tree-based auto-
mated machine learning to biomedical big data with a feature set selec-
tor”. In: Bioinformatics 36.1 (2020), pp. 250–256.

[148] Erin LeDell and Sebastien Poirier. “H2o automl: Scalable automatic
machine learning”. In: Proceedings of the AutoML Workshop at ICML.
Vol. 2020. 2020.

[149] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren. “Selecting classifi-
cation algorithms with active testing”. In: International workshop on
machine learning and data mining in pattern recognition. Springer. 2012,
pp. 117–131.

[150] Yu-Feng Li, Hai Wang, Tong Wei, and Wei-Wei Tu. “Towards automated
semi-supervised learning”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33. 01. 2019, pp. 4237–4244.

https://doi.org/10.1109/SSCI.2015.200

BIBLIOGRAPHY 153

[151] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A System for Massively
Parallel Hyperparameter Tuning. 2020. arXiv: 1810.05934 [cs.LG].

[152] Liam Li and Ameet Talwalkar. “Random Search and Reproducibility for
Neural Architecture Search”. In: CoRR abs/1902.07638 (2019). arXiv:
1902.07638. url: http://arxiv.org/abs/1902.07638.

[153] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. “Hyperband: A Novel Bandit-Based Approach to Hy-
perparameter Optimization”. In: Journal of Machine Learning Research
18 (2018) 1-52 (Mar. 2016). arXiv: 1603.06560 [cs.LG].

[154] M. Lindauer and F. Hutter. “Warmstarting of Model-based Algorithm
Configuration”. In: Proceedings of the AAAI conference. Feb. 2018, pp. 1355–
1362.

[155] Yue Liu, Shuang Li, and Wenjie Tian. “AutoCluster: Meta-learning Based
Ensemble Method for Automated Unsupervised Clustering.” In: PAKDD
(3). Springer. 2021, pp. 246–258.

[156] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro
Birattari, and Thomas Stützle. “The irace package: Iterated racing for
automatic algorithm configuration”. In: Operations Research Perspec-
tives 3 (2016), pp. 43–58.

[157] Y. A. Malkov and D. A. Yashunin. “Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
42.4 (2020), pp. 824–836.

[158] Yury A. Malkov and D. A. Yashunin. “Efficient and robust approxi-
mate nearest neighbor search using Hierarchical Navigable Small World
graphs”. In: CoRR abs/1603.09320 (2016). arXiv: 1603.09320. url: http:
//arxiv.org/abs/1603.09320.

[159] Rafael G Mantovani, Andre LD Rossi, Edesio Alcobaca, Joaquin Van-
schoren, and Andre CPLF de Carvalho. “A meta-learning recommender
system for hyperparameter tuning: Predicting when tuning improves
SVM classifiers”. In: Information Sciences 501 (2019), pp. 193–221.

https://arxiv.org/abs/1810.05934
https://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
https://arxiv.org/abs/1603.06560
https://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320

154 BIBLIOGRAPHY

[160] Rafael Gomes Mantovani, André Luis Debiaso Rossi, Edesio Alcobaça,
Jadson Castro Gertrudes, Sylvio Barbon Junior, and André Carlos Ponce
de Leon Ferreira de Carvalho. Rethinking Default Values: a Low Cost and
Efficient Strategy to Define Hyperparameters. 2020. arXiv: 2008.00025
[cs.LG].

[161] O. Maron and A.W. Moore. “The Racing Algorithm: Model Selection for
Lazy Learners”. In: Artificial Intelligence Review 11.1-5 (1997). Cited by:
142, pp. 193–225. doi: 10.1007/978-94-017-2053-3 8. url: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-0031069121&doi=10.1007%
2f978-94-017-2053-3 8&partnerID=40&md5=8906d29c0cc61ac2a77deb467618f72d.

[162] Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C. Freeman, Ben Poole,
and Jascha Sohl-Dickstein. “Using a thousand optimization tasks to learn
hyperparameter search strategies”. In: (Feb. 2020).

[163] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel,
and Friedrich Leisch. e1071: Misc Functions of the Department of Statis-
tics, Probability Theory Group (Formerly: E1071), TU Wien. R package
version 1.7-3. 2019. url: https://CRAN.R-project.org/package=e1071.

[164] Daniele Micci-Barreca. “A Preprocessing Scheme for High-Cardinality
Categorical Attributes in Classification and Prediction Problems”. In:
SIGKDD Explor. Newsl. 3.1 (July 2001), pp. 27–32. issn: 1931-0145. doi:
10.1145/507533.507538. url: https://doi.org/10.1145/507533.507538.

[165] Donald Michie, David J Spiegelhalter, and Charles C Taylor. “Machine
learning, neural and statistical classification”. In: (1994).

[166] Rory Mitchell, Eibe Frank, and Geoffrey Holmes. “An Empirical Study of
Moment Estimators for Quantile Approximation”. In: ACM Transactions
on Database Systems 46.1 (2021).

[167] Tom M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997.
isbn: 978-0-07-042807-2.

[168] Felix Mohr and Marcel Wever. “Replacing the Ex-Def Baseline in Au-
toML by Naive AutoML”. In: 8th ICML Workshop on Automated Ma-
chine Learning (AutoML). 2021.

[169] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. “ML-Plan: Automated
machine learning via hierarchical planning”. In: Machine Learning 107.8-
10 (July 2018), pp. 1495–1515. doi: 10.1007/s10994-018-5735-z.

https://arxiv.org/abs/2008.00025
https://arxiv.org/abs/2008.00025
https://doi.org/10.1007/978-94-017-2053-3_8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031069121&doi=10.1007%2f978-94-017-2053-3_8&partnerID=40&md5=8906d29c0cc61ac2a77deb467618f72d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031069121&doi=10.1007%2f978-94-017-2053-3_8&partnerID=40&md5=8906d29c0cc61ac2a77deb467618f72d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031069121&doi=10.1007%2f978-94-017-2053-3_8&partnerID=40&md5=8906d29c0cc61ac2a77deb467618f72d
https://CRAN.R-project.org/package=e1071
https://doi.org/10.1145/507533.507538
https://doi.org/10.1145/507533.507538
https://doi.org/10.1007/s10994-018-5735-z

BIBLIOGRAPHY 155

[170] Felix Mohr, Marcel Wever, Alexander Tornede, and Eyke Hullermeier.
“Predicting Machine Learning Pipeline Runtimes in the Context of Au-
tomated Machine Learning”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021).

[171] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. “Interpretable
machine learning–a brief history, state-of-the-art and challenges”. In:
Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer. 2020, pp. 417–431.

[172] Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier,
Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo Gomes, Jesse
Read, Talel Abdessalem, and Albert Bifet. River: machine learning for
streaming data in Python. 2020. arXiv: 2012.04740 [cs.LG].

[173] Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lin-
dauer, and Bernd Bischl. “Explaining Hyperparameter Optimization via
Partial Dependence Plots”. In: Advances in Neural Information Process-
ing Systems 34 (2021).

[174] Avanika Narayan, Piero Molino, Karan Goel, Willie Neiswanger, and
Christopher Re. “Personalized Benchmarking with the Ludwig Bench-
marking Toolkit”. In: Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks. 2021.

[175] M. O’Neill and C. Ryan. “Grammatical evolution”. In: IEEE Transac-
tions on Evolutionary Computation 5.4 (Aug. 2001), pp. 349–358. issn:
1089-778X.

[176] ChangYong Oh, Efstratios Gavves, and Max Welling. “Bock: Bayesian
optimization with cylindrical kernels”. In: International Conference on
Machine Learning. PMLR. 2018, pp. 3868–3877.

[177] Ivan Olier, Noureddin Sadawi, G Richard Bickerton, Joaquin Vanschoren,
Crina Grosan, Larisa Soldatova, and Ross D King. “Meta-QSAR: a large-
scale application of meta-learning to drug design and discovery”. In: Ma-
chine Learning 107.1 (2018), pp. 285–311.

[178] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H.
Moore. “PMLB: A Large Benchmark Suite for Machine Learning Evalu-
ation and Comparison”. In: BioData Mining 10.36 (2017).

[179] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H.
Moore. Evaluation of a Tree-based Pipeline Optimization Tool for Au-
tomating Data Science. 2016. doi: 10.1145/2908812.2908918.

https://arxiv.org/abs/2012.04740
https://doi.org/10.1145/2908812.2908918

156 BIBLIOGRAPHY

[180] Florian Pargent, Florian Pfisterer, Janek Thomas, and Bernd Bischl.
Regularized target encoding outperforms traditional methods in supervised
machine learning with high cardinality features. 2021. arXiv: 2104.00629
[stat.ML].

[181] Laurent Parmentier, Olivier Nicol, Laetitia Jourdan, and Marie-Eleonore
Kessaci. “TPOT-SH: A faster optimization algorithm to solve the automl
problem on large datasets”. In: 2019 IEEE 31st International Conference
on Tools with Artificial Intelligence (ICTAI). IEEE. 2019, pp. 471–478.

[182] Preston Parry. auto ml. https : / / github . com / ClimbsRocks / auto ml.
2018.

[183] T. Pedersen. “Empiricism is not a matter of faith”. In: Computational
Linguistics 34 (2008), pp. 465–470.

[184] Fabian Pedregosa. “Scikit-learn: Machine learning in Python”. In: the
Journal of machine Learning research 12 (2011), pp. 2825–2830.

[185] Yonghong Peng, Peter A Flach, Carlos Soares, and Pavel Brazdil. “Im-
proved dataset characterisation for meta-learning”. In: International Con-
ference on Discovery Science. Springer. 2002, pp. 141–152.

[186] V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau. “Scalable Hy-
perparameter Transfer Learning”. In: Proc. of NeurIPS’18. 2018.

[187] Bernhard Pfahringer, Hilan Bensusan, and Christophe G Giraud-Carrier.
“Meta-Learning by Landmarking Various Learning Algorithms.” In: ICML.
2000, pp. 743–750.

[188] Florian Pfisterer, Jan N van Rijn, Philipp Probst, Andreas C Mueller,
and Bernd Bischl. “Learning multiple defaults for machine learning algo-
rithms”. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. 2021, pp. 241–242.

[189] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. “Ef-
ficient neural architecture search via parameters sharing”. In: Interna-
tional Conference on Machine Learning. PMLR. 2018, pp. 4095–4104.

[190] Martin Pilát, Tomáš Křen, and Roman Neruda. “Asynchronous Evo-
lution of Data Mining Workflow Schemes by Strongly Typed Genetic
Programming”. In: 2016 IEEE 28th International Conference on Tools
with Artificial Intelligence (ICTAI). 2016, pp. 577–584. doi: 10.1109/
ICTAI.2016.0094.

https://arxiv.org/abs/2104.00629
https://arxiv.org/abs/2104.00629
https://github.com/ClimbsRocks/auto_ml
https://doi.org/10.1109/ICTAI.2016.0094
https://doi.org/10.1109/ICTAI.2016.0094

BIBLIOGRAPHY 157

[191] Bruno Almeida Pimentel and Andre CPLF De Carvalho. “A new data
characterization for selecting clustering algorithms using meta-learning”.
In: Information Sciences 477 (2019), pp. 203–219.

[192] Aleksandra P lońska and Piotr P loński. MLJAR: State-of-the-art Auto-
mated Machine Learning Framework for Tabular Data. Version 0.10.3.
 Lapy, Poland, 2021. url: https://github.com/mljar/mljar-supervised.

[193] Yannis Poulakis, Christos Doulkeridis, and Dimosthenis Kyriazis. “Au-
toClust: A Framework for Automated Clustering based on Cluster Va-
lidity Indices”. In: 2020 IEEE International Conference on Data Mining
(ICDM). IEEE. 2020, pp. 1220–1225.

[194] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential
evolution: a practical approach to global optimization. Springer Science
& Business Media, 2006.

[195] Philipp Probst and Anne-Laure Boulesteix. “To Tune or Not to Tune
the Number of Trees in Random Forest”. In: J. Mach. Learn. Res. 18.1
(Jan. 2017), pp. 6673–6690. issn: 1532-4435.

[196] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. “Tunability:
Importance of Hyperparameters of Machine Learning Algorithms”. In:
Journal of Machine Learning Research 20.53 (2019), pp. 1–32. issn:
1533-7928. url: http : / / jmlr . org / papers / v20 / 18 - 444 . html (visited
on 10/21/2021).

[197] Philipp Probst, Marvin N Wright, and Anne-Laure Boulesteix. “Hyper-
parameters and tuning strategies for random forest”. In: Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 9.3 (2019),
e1301.

[198] Herilalaina Rakotoarison, Louisot Milijaona, Andry Rasoanaivo, Michèle
Sebag, and Marc Schoenauer. “Learning Meta-features for AutoML”. In:
International Conference on Learning Representations. 2021.

[199] Herilalaina Rakotoarison, Marc Schoenauer, and Michèle Sebag. “Auto-
mated Machine Learning with Monte-Carlo Tree Search”. In: Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial In-
telligence Organization, July 2019, pp. 3296–3303. doi: 10.24963/ijcai.
2019/457. url: https://doi.org/10.24963/ijcai.2019/457.

[200] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In:
Summer school on machine learning. Springer. 2003, pp. 63–71.

https://github.com/mljar/mljar-supervised
http://jmlr.org/papers/v20/18-444.html
https://doi.org/10.24963/ijcai.2019/457
https://doi.org/10.24963/ijcai.2019/457
https://doi.org/10.24963/ijcai.2019/457

158 BIBLIOGRAPHY

[201] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.
“Do ImageNet Classifiers Generalize to ImageNet?” In: (Feb. 2019). arXiv:
1902.10811 [cs.CV].

[202] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-validation.” In:
Encyclopedia of database systems 5 (2009), pp. 532–538.

[203] Matthias Reif, Faisal Shafait, and Andreas Dengel. “Meta-learning for
evolutionary parameter optimization of classifiers”. In: Machine learning
87.3 (2012), pp. 357–380.

[204] Matthias Reif, Faisal Shafait, Markus Goldstein, Thomas Breuel, and
Andreas Dengel. “Automatic classifier selection for non-experts”. In: Pat-
tern Analysis and Applications 17.1 (2014), pp. 83–96.

[205] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why should
i trust you?” Explaining the predictions of any classifier”. In: Proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 2016, pp. 1135–1144.

[206] Rich Caruana. Research Opportunities in AutoML. url: https://indico.
ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/
CaruanaAutoMLWorkshopICML2015rev4.pdf. July 2015.

[207] J. N. van Rijn. “Massively collaborative machine learning”. PhD thesis.
Leiden University, 2016.

[208] Jan N van Rijn, Geoffrey Holmes, Bernhard Pfahringer, and Joaquin
Vanschoren. “Having a blast: Meta-learning and heterogeneous ensembles
for data streams”. In: 2015 ieee international conference on data mining.
IEEE. 2015, pp. 1003–1008.

[209] Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Mueller,
Bernd Bischl, and Joaquin Vanschoren. “Meta learning for defaults: sym-
bolic defaults”. In: Workshop on Meta-Learning @ NeurIPS2018. 2018.

[210] Joseph D Romano, Trang T Le, Weixuan Fu, and Jason H Moore. “TPOT-
NN: augmenting tree-based automated machine learning with neural net-
work estimators”. In: Genetic Programming and Evolvaaggggggle Ma-
chines (2021), pp. 1–21.

[211] Alex GC de Sá, Alex A Freitas, and Gisele L Pappa. “Automated se-
lection and configuration of multi-label classification algorithms with
grammar-based genetic programming”. In: International Conference on
Parallel Problem Solving from Nature. Springer. 2018, pp. 308–320.

https://arxiv.org/abs/1902.10811
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf
https://indico.ijclab.in2p3.fr/event/2914/contributions/6481/attachments/6048/7173/CaruanaAutoMLWorkshopICML2015rev4.pdf

BIBLIOGRAPHY 159

[212] Alex GC de Sá, Walter José GS Pinto, Luiz Otavio VB Oliveira, and
Gisele L Pappa. “RECIPE: a grammar-based framework for automati-
cally evolving classification pipelines”. In: European Conference on Ge-
netic Programming. Springer. 2017, pp. 246–261.

[213] Shubhra Kanti Karmaker Santu, Md. Mahadi Hassan, Micah J. Smith,
Lei Xu, Chengxiang Zhai, and Kalyan Veeramachaneni. “AutoML to
Date and Beyond: Challenges and Opportunities”. In: ACM Comput.
Surv. 54.8 (Oct. 2021). issn: 0360-0300. doi: 10 . 1145/3470918. url:
https://doi.org/10.1145/3470918.

[214] Robin Schmucker, Michele Donini, Valerio Perrone, Muhammad Bilal Za-
far, and Cédric Archambeau. “Multi-Objective Multi-Fidelity Hyperpa-
rameter Optimization with Application to Fairness”. In: NeurIPS Work-
shop on Meta-Learning. Vol. 2. 2020.

[215] Robin Schmucker, Michele Donini, Muhammad Bilal Zafar, David Sali-
nas, and Cédric Archambeau. Multi-objective Asynchronous Successive
Halving. 2021. arXiv: 2106.12639 [stat.ML].

[216] F. Schut, J. N. van Rijn, and H. Hoos. “Towards Automated Technical
Analysis for Foreign Exchange Data”. In: Workshop on Automating Data
Science @ ECML/PKDD. 2019.

[217] scikit-learn developers scikit-learn. sklearn.svm.SVC. url: https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html.

[218] Eric O. Scott and Kenneth A. De Jong. “Understanding Simple Asyn-
chronous Evolutionary Algorithms”. In: Proceedings of the 2015 ACM
Conference on Foundations of Genetic Algorithms XIII. FOGA ’15. Aberys-
twyth, United Kingdom: Association for Computing Machinery, 2015,
pp. 85–98. isbn: 9781450334341. doi: 10.1145/2725494.2725509. url:
https://doi.org/10.1145/2725494.2725509.

[219] D Sculley, J Snoek, A Wiltschko, and A Rahimi. Winner’s curse? On
pace, progress, and empirical rigor. en. Feb. 2018. url: https://openreview.
net/forum?id=rJWF0Fywf (visited on 11/30/2021).

[220] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. “Adop-
tion and effects of software engineering best practices in machine learn-
ing”. In: Proceedings of the 14th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). 2020,
pp. 1–12.

https://doi.org/10.1145/3470918
https://doi.org/10.1145/3470918
https://arxiv.org/abs/2106.12639
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://doi.org/10.1145/2725494.2725509
https://doi.org/10.1145/2725494.2725509
https://openreview.net/forum?id=rJWF0Fywf
https://openreview.net/forum?id=rJWF0Fywf

160 BIBLIOGRAPHY

[221] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan
Carlsson. “CNN features off-the-shelf: an astounding baseline for recog-
nition”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition workshops. 2014, pp. 806–813.

[222] Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J
Smola. “Benchmarking Multimodal AutoML for Tabular Data with Text
Fields”. In: arXiv preprint arXiv:2111.02705 (2021).

[223] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian
optimization of machine learning algorithms”. In: Advances in neural
information processing systems 25 (2012).

[224] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams.
“Scalable bayesian optimization using deep neural networks”. In: Inter-
national conference on machine learning. PMLR. 2015, pp. 2171–2180.

[225] C. Soares, P. Brazdil, and P. Kuba. “A Meta-Learning Method to Select
the Kernel Width in Support Vector Regression”. In: Mach. Learn. 54
(2004), pp. 195–209.

[226] Carlos Soares and Pavel B Brazdil. “Zoomed ranking: Selection of classi-
fication algorithms based on relevant performance information”. In: Eu-
ropean conference on principles of data mining and knowledge discovery.
Springer. 2000, pp. 126–135.

[227] Andrew Sohn, Randal S Olson, and Jason H Moore. “Toward the auto-
mated analysis of complex diseases in genome-wide association studies
using genetic programming”. In: Proceedings of the genetic and evolu-
tionary computation conference. 2017, pp. 489–496.

[228] Marcilio C. P. de Souto, Ricardo B. C. Prudencio, Rodrigo G. F. Soares,
Daniel S. A. de Araujo, Ivan G. Costa, Teresa B. Ludermir, and Alexan-
der Schliep. “Ranking and selecting clustering algorithms using a meta-
learning approach”. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence).
2008, pp. 3729–3735. doi: 10.1109/IJCNN.2008.4634333.

[229] Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius
Lindauer, and Frank Hutter. “Bayesian Optimization with a Prior for
the Optimum”. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. 2021, pp. 265–296.

https://doi.org/10.1109/IJCNN.2008.4634333

BIBLIOGRAPHY 161

[230] Alexander Statnikov, Constantin F Aliferis, and Ioannis Tsamardinos.
“Methods for multi-category cancer diagnosis from gene expression data:
a comprehensive evaluation to inform decision support system develop-
ment”. In: MEDINFO 2004. IOS Press. 2004, pp. 813–817.

[231] Alexander Statnikov, Ioannis Tsamardinos, Yerbolat Dosbayev, and Con-
stantin F Aliferis. “GEMS: a system for automated cancer diagnosis and
biomarker discovery from microarray gene expression data”. In: Interna-
tional journal of medical informatics 74.7-8 (2005), pp. 491–503.

[232] Douglas Steinley. “Properties of the Hubert-Arable Adjusted Rand In-
dex.” In: Psychological methods 9.3 (2004), p. 386.

[233] B. Strang, P. van der Putten, J. N. van Rijn, and F. Hutter. “Don’t Rule
Out Simple Models Prematurely: A Large Scale Benchmark Comparing
Linear and Non-linear Classifiers in OpenML”. In: Proc. of IDA XVII.
2018.

[234] Carolin Strobl, Florian Wickelmaier, and Achim Zeileis. “Accounting for
Individual Differences in Bradley-Terry Models by Means of Recursive
Partitioning”. In: Journal of Educational and Behavioral Statistics 36.2
(2011), pp. 135–153. doi: 10.3102/1076998609359791. eprint: https://
doi .org/10.3102/1076998609359791. url: https ://doi .org/10.3102/
1076998609359791.

[235] The pandas development team. pandas-dev/pandas: Pandas. Version lat-
est. Feb. 2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/10.
5281/zenodo.3509134.

[236] Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and
Regression Trees. R package version 4.1-13. 2018. url: https://CRAN.R-
project.org/package=rpart.

[237] Janek Thomas, Stefan Coors, and Bernd Bischl. “Automatic Gradient
Boosting”. In: (July 2018). arXiv: 1807.03873 [stat.ML].

[238] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“Auto-WEKA: combined selection and hyperparameter optimization of
classification algorithms”. In: Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. KDD
’13. Chicago, Illinois, USA: Association for Computing Machinery, Aug.
2013, pp. 847–855. isbn: 9781450321747. doi: 10.1145/2487575.2487629.
url: https://doi.org/10.1145/2487575.2487629.

https://doi.org/10.3102/1076998609359791
https://doi.org/10.3102/1076998609359791
https://doi.org/10.3102/1076998609359791
https://doi.org/10.3102/1076998609359791
https://doi.org/10.3102/1076998609359791
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
https://arxiv.org/abs/1807.03873
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629

162 BIBLIOGRAPHY

[239] Ryan J Tibshirani and Robert Tibshirani. “A bias correction for the min-
imum error rate in cross-validation”. In: The Annals of Applied Statistics
3.2 (2009), pp. 822–829.

[240] Erico Tjoa and Cuntai Guan. “A Survey on Explainable Artificial Intel-
ligence (XAI): Toward Medical XAI”. In: IEEE Transactions on Neu-
ral Networks and Learning Systems 32.11 (2021), pp. 4793–4813. doi:
10.1109/TNNLS.2020.3027314.

[241] Eric J Topol. “High-performance medicine: the convergence of human
and artificial intelligence”. In: Nature medicine 25.1 (2019), pp. 44–56.

[242] Tanja Tornede, Alexander Tornede, Marcel Wever, and Eyke Hüllermeier.
“Coevolution of Remaining Useful Lifetime Estimation Pipelines for Au-
tomated Predictive Maintenance”. In: Proceedings of the Genetic and
Evolutionary Computation Conference. New York, NY, USA: Associa-
tion for Computing Machinery, 2021, pp. 368–376. isbn: 9781450383509.
url: https://doi.org/10.1145/3449639.3459395.

[243] Tanja Tornede, Alexander Tornede, Marcel Wever, Felix Mohr, and Eyke
Hüllermeier. “Automl for predictive maintenance: One tool to rul them
all”. In: IoT Streams for Data-Driven Predictive Maintenance and IoT,
Edge, and Mobile for Embedded Machine Learning. Springer, 2020, pp. 106–
118.

[244] Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan E. Hines, C. Bayan
Bruss, and Reza Farivar. “Towards Automated Machine Learning: Evalu-
ation and Comparison of AutoML Approaches and Tools”. In: 31st IEEE
International Conference on Tools with Artificial Intelligence, ICTAI
2019, Portland, OR, USA, November 4-6, 2019. IEEE, 2019, pp. 1471–
1479. doi: 10.1109/ICTAI.2019.00209.

[245] Ioannis Tsamardinos, Paulos Charonyktakis, Georgios Papoutsoglou, Gio-
gos Borboudakis, Kleanthi Lakiotaki, Jean Claude Zenklusen, Hartmut
Juhl, Ekaterini Chatzaki, and Vincenzo Lagani. “Just Add Data: Auto-
mated Predictive Modeling for Knowledge Discovery and Feature Selec-
tion”. In: (to appear) npj Precision Oncology (2022).

[246] Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis.
“Bootstrapping the out-of-sample predictions for efficient and accurate
cross-validation”. In: Machine Learning 107.12 (2018), pp. 1895–1922.

https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1145/3449639.3459395
https://doi.org/10.1109/ICTAI.2019.00209

BIBLIOGRAPHY 163

[247] Ioannis Tsamardinos, Amin Rakhshani, and Vincenzo Lagani. “Performance-
estimation properties of cross-validation-based protocols with simultane-
ous hyper-parameter optimization”. In: International Journal on Artifi-
cial Intelligence Tools 24.05 (2015), p. 1540023.

[248] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas. “MU-
LAN: A Java Library for Multi-Label Learning”. In: Journal of Machine
Learning Research (July 2011), pp. 2411–2414.

[249] Anton Vakhrushev, Alexander Ryzhkov, Maxim Savchenko, Dmitry Simakov,
Rinchin Damdinov, and Alexander Tuzhilin. “LightAutoML: AutoML
Solution for a Large Financial Services Ecosystem”. In: arXiv:2109.01528
[cs, stat] (Sept. 2021). arXiv: 2109.01528. url: http://arxiv.org/abs/
2109.01528 (visited on 10/18/2021).

[250] Roberto Valerio and Ricardo Vilalta. “Kernel selection in support vector
machines using gram-matrix properties”. In: NIPS Workshop on Modern
Nonparametrics: Automating the Learning Pipeline. Vol. 14. 2014.

[251] John Joseph Valletta, Colin Torney, Michael Kings, Alex Thornton, and
Joah Madden. “Applications of machine learning in animal behaviour
studies”. In: Animal Behaviour 124 (2017), pp. 203–220.

[252] Koen Van der Blom, Alex Serban, Holger Hoos, and Joost Visser. “Au-
toML Adoption in ML Software”. In: 8th ICML Workshop on Automated
Machine Learning (AutoML). 2021.

[253] Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. “Super
learner”. In: Statistical applications in genetics and molecular biology 6.1
(2007).

[254] Tony Van Gestel, Johan AK Suykens, Bart Baesens, Stijn Viaene, Jan
Vanthienen, Guido Dedene, Bart De Moor, and Joos Vandewalle. “Bench-
marking least squares support vector machine classifiers”. In: Machine
learning 54.1 (2004), pp. 5–32.

[255] Jan N Van Rijn and Frank Hutter. “Hyperparameter importance across
datasets”. In: Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining. 2018, pp. 2367–2376.

[256] Elia Van Wolputte and Hendrik Blockeel. “Missing Value Imputation
with MERCS: A Faster Alternative to MissForest”. In: Discovery Science
- 23rd International Conference. Vol. 12323. Lecture Notes in Computer
Science. Springer. 2020, pp. 502–516.

http://arxiv.org/abs/2109.01528
http://arxiv.org/abs/2109.01528

164 BIBLIOGRAPHY

[257] Joaquin Vanschoren. “Meta-learning”. In: Automated Machine Learning.
Springer, Cham, 2019, pp. 35–61.

[258] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo.
“OpenML: networked science in machine learning”. In: ACM SIGKDD
Explorations Newsletter 15.2 (2014), pp. 49–60.

[259] Sudhir Varma and Richard Simon. “Bias in error estimation when using
cross-validation for model selection”. In: BMC bioinformatics 7.1 (2006),
pp. 1–8.

[260] Alfredo Vellido. “The importance of interpretability and visualization
in machine learning for applications in medicine and health care”. In:
Neural computing and applications 32.24 (2020), pp. 18069–18083.

[261] Carlos Vieira, Adelson de Araújo, José E Andrade, and Leonardo CT
Bezerra. “iSklearn: Automated Machine Learning with irace”. In: 2021
IEEE Congress on Evolutionary Computation (CEC). IEEE. 2021, pp. 2354–
2361.

[262] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information The-
oretic Measures for Clusterings Comparison: Variants, Properties, Nor-
malization and Correction for Chance”. In: J. Mach. Learn. Res. 11 (Dec.
2010), pp. 2837–2854. issn: 1532-4435.

[263] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne
M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–
272. doi: 10.1038/s41592-019-0686-2.

[264] Kiri Wagstaff. “Machine learning that matters”. In: arXiv preprint arXiv:1206.4656
(2012).

[265] Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. “FLAML:
a fast and lightweight AutoML Library”. In: Proceedings of Machine
Learning and Systems 3 (2021), pp. 434–447.

https://doi.org/10.1038/s41592-019-0686-2

BIBLIOGRAPHY 165

[266] Dakuo Wang, Josh Andres, Justin D. Weisz, Erick Oduor, and Casey
Dugan. “AutoDS: Towards Human-Centered Automation of Data Sci-
ence”. In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. CHI ’21. Yokohama, Japan: Association for Com-
puting Machinery, 2021. isbn: 9781450380966. doi: 10.1145/3411764.
3445526. url: https://doi.org/10.1145/3411764.3445526.

[267] Hilde JP Weerts, Andreas C Mueller, and Joaquin Vanschoren. “Impor-
tance of tuning hyperparameters of machine learning algorithms”. In:
arXiv preprint arXiv:2007.07588 (2020).

[268] Marcel Wever, Felix Mohr, and Eyke Hüllermeier. Automated Multi-Label
Classification based on ML-Plan. 2018. arXiv: 1811.04060 [cs.LG].

[269] Fela Winkelmolen, Nikita Ivkin, H. Furkan Bozkurt, and Zohar Karnin.
Practical and sample efficient zero-shot HPO. 2020. arXiv: 2007.13382
[stat.ML].

[270] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. “Hyper-
parameter search space pruning–a new component for sequential model-
based hyperparameter optimization”. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer. 2015,
pp. 104–119.

[271] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. “Learning
hyperparameter optimization initializations”. In: Data Science and Ad-
vanced Analytics (DSAA), 2015. 36678 2015. IEEE International Con-
ference on. IEEE. 2015, pp. 1–10.

[272] Marvin N. Wright and Andreas Ziegler. “ranger: A Fast Implementation
of Random Forests for High Dimensional Data in C++ and R”. In: Jour-
nal of Statistical Software 77.1 (2017), pp. 1–17. doi: 10.18637/jss.v077.
i01.

[273] Qingyun Wu, Chi Wang, and Silu Huang. “Frugal optimization for cost-
related hyperparameters”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 35. 12. 2021, pp. 10347–10354.

[274] Qingyun Wu, Chi Wang, John Langford, Paul Mineiro, and Marco Rossi.
“ChaCha for Online AutoML”. In: 2021 International Conference on
Machine Learning (ICML 2021). July 2021. url: https://www.microsoft.
com/en-us/research/publication/chacha-for-online-automl/.

https://doi.org/10.1145/3411764.3445526
https://doi.org/10.1145/3411764.3445526
https://doi.org/10.1145/3411764.3445526
https://arxiv.org/abs/1811.04060
https://arxiv.org/abs/2007.13382
https://arxiv.org/abs/2007.13382
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/
https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/

166 BIBLIOGRAPHY

[275] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes,
Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. “Molecu-
leNet: a benchmark for molecular machine learning”. en. In: Chemical
Science 9.2 (2018), pp. 513–530. doi: 10.1039/C7SC02664A. url: https:
//pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc02664a (visited
on 10/21/2021).

[276] Iordanis Xanthopoulos, Ioannis Tsamardinos, Vassilis Christophides, Eric
Simon, and Alejandro Salinger. “Putting the Human Back in the AutoML
Loop.” In: EDBT/ICDT Workshops. 2020.

[277] Zhen Xu, Wei-Wei Tu, and Isabelle Guyon. “AutoML Meets Time Se-
ries Regression Design and Analysis of the AutoSeries Challenge”. In:
Machine Learning and Knowledge Discovery in Databases. Applied Data
Science Track. Ed. by Yuxiao Dong, Nicolas Kourtellis, Barbara Ham-
mer, and Jose A. Lozano. Cham: Springer International Publishing, 2021,
pp. 36–51. isbn: 978-3-030-86517-7.

[278] Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai,
Nikan Chavoshi, Venkatanathan Varadarajan, Sandeep R. Agrawal, Sam
Idicula, Tomas Karnagel, Sanjay Jinturkar, and Nipun Agarwal. “Oracle
AutoML: A Fast and Predictive AutoML Pipeline”. In: Proc. VLDB En-
dow. 13.12 (Aug. 2020), pp. 3166–3180. issn: 2150-8097. doi: 10.14778/
3415478.3415542. url: https://doi.org/10.14778/3415478.3415542.

[279] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell.
“OBOE: Collaborative Filtering for AutoML Initialization”. In: CoRR
abs/1808.03233 (2018). arXiv: 1808.03233. url: http://arxiv.org/abs/
1808.03233.

[280] Murat Onur Yildirim, Elif Ceren Gök, Pieter Gijsbers, and Joaquin
Vanschoren. GAMACluster: Robust Automated Clustering. (to appear)
arXiv. 2022.

[281] Dani Yogatama and Gideon Mann. “Efficient Transfer Learning Method
for Automatic Hyperparameter Tuning”. In: Proceedings of the Seven-
teenth International Conference on Artificial Intelligence and Statistics.
Ed. by Samuel Kaski and Jukka Corander. Vol. 33. Proceedings of Ma-
chine Learning Research. Reykjavik, Iceland: PMLR, Apr. 2014, pp. 1077–
1085.

https://doi.org/10.1039/C7SC02664A
https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc02664a
https://doi.org/10.14778/3415478.3415542
https://doi.org/10.14778/3415478.3415542
https://doi.org/10.14778/3415478.3415542
https://arxiv.org/abs/1808.03233
http://arxiv.org/abs/1808.03233
http://arxiv.org/abs/1808.03233

BIBLIOGRAPHY 167

[282] Achim Zeileis and Kurt Hornik. “Generalized M-fluctuation tests for pa-
rameter instability”. In: Statistica Neerlandica 61.4 (2007), pp. 488–508.
doi: https://doi.org/10.1111/j.1467-9574.2007.00371.x. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9574.2007.00371.x.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9574.2007.
00371.x.

[283] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. “Prac-
tical block-wise neural network architecture generation”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 2423–2432.

[284] Lucas Zimmer, Marius Lindauer, and Frank Hutter. “Auto-Pytorch: Multi-
Fidelity MetaLearning for Efficient and Robust AutoDL”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 43.9 (2021), pp. 3079–
3090.

[285] Marc-André Zöller and Marco F Huber. “Benchmark and survey of au-
tomated machine learning frameworks”. In: Journal of Artificial Intelli-
gence Research 70 (2021), pp. 409–472.

[286] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. “Learn-
ing transferable architectures for scalable image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 8697–8710.

[287] Hui Zou and Trevor Hastie. “Regularization and variable selection via the
elastic net”. In: Journal of the royal statistical society: series B (statistical
methodology) 67.2 (2005), pp. 301–320.

https://doi.org/https://doi.org/10.1111/j.1467-9574.2007.00371.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9574.2007.00371.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9574.2007.00371.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9574.2007.00371.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9574.2007.00371.x

168 BIBLIOGRAPHY

Appendix A
OpenML Benchmarking Suites

This appendix contains useful links for creating OpenML benchmarking suites,
a suggested curation protocol (both from Bischl et al. [28]), and an overview of
the different benchmarking suites presented in this thesis, including the full list
of tasks and corresponding meta-data.

A.1 Useful links

We now collect all relevant links in a single place to simplify access to online
material on OpenML benchmarking studies:

• General online documentation: https://docs.openml.org

• Online documentation on benchmarking suites: https://docs.openml.org/
benchmark

• Github repository with additional material, including a notebook to create
updated suites: https://github.com/openml/benchmark-suites

• Github organization for OpenML.org: https://github.com/openml

• Python package: OpenML (PyPI)

• R package: OpenML (CRAN)

• Java package: org.openml.openmlweka (Maven Central)

169

https://docs.openml.org
https://docs.openml.org/benchmark
https://docs.openml.org/benchmark
https://github.com/openml/benchmark-suites
https://github.com/openml
https://pypi.org/project/openml/
https://CRAN.R-project.org/package=OpenML
https://mvnrepository.com/artifact/org.openml/openmlweka

170 OpenML Benchmarking Suites

A.2 Suggested Curation Protocol

In this section we give an exemplary curation protocol for constructing new
benchmarking suites. It is based on our experience constructing the OpenML-
CC18 and its predecessor, the OpenML100. Steps can be removed or added
depending on the desired benchmark purpose, the steps below serve as a guide-
line.

1. Steps that can be automated:

(a) Specify the OpenML task type, for example supervised classification
or supervised regression.

(b) Specify criteria on dataset properties, such as the size of the dataset,
the number of features or the number of classes.

(c) Specify criteria on the data modalities that are supposed to be in the
data. Currently, OpenML supports numerical, categorical, date and
string.

(d) Specify whether the data should be sparse or not.

(e) Specify whether the data should contain missing values or not.

(f) Check whether tasks are too easy, either by querying for existing re-
sults on OpenML or by running machine learning algorithms locally.

2. Steps that cannot be automated and should be performed on the outcome
of the previous, automated steps. For our benchmark the following manual
steps were added:

(a) Check for artificial datasets.

(b) Check for dataset that require grouped or time-aware splitting.

(c) Check for datasets that are subsets of larger datasets (or binarized
datasets in case of classification).

(d) Check for other forms of derived datasets, for example versions that
do no longer contain feature names or only a subset of features.

(e) Check that all remaining datasets feature a reference.

A.3. OPENML-CC18 171

A.3 OpenML-CC18

A classification benchmarking suite for benchmarking ML algorithms.

Table A.1: Tasks OpenML-CC18.

Task ID name instances features classes class
ratio

7592 adult 48842 15 2 0.31
3549 analcatdata authorship 841 71 4 0.17
3560 analcatdata dmft 797 5 6 0.79

11 balance-scale 625 5 3 0.17
14965 bank-marketing 45211 17 2 0.13

10093 banknote-authentication 1372 5 2 0.80
9910 Bioresponse 3751 1777 2 0.84

10101 blood-transfusion-serv... 748 5 2 0.31
15 breast-w 699 10 2 0.53

146821 car 1728 7 4 0.05

167141 churn 5000 21 2 0.16
167124 CIFAR 10 60000 3073 10 1.00
146819 climate-model-simulati... 540 21 2 0.09

23 cmc 1473 10 3 0.53
9981 cnae-9 1080 857 9 1.00

146195 connect-4 67557 43 3 0.15
29 credit-approval 690 16 2 0.80
31 credit-g 1000 21 2 0.43

14954 cylinder-bands 540 40 2 0.73
167121 Devnagari-Script 92000 1025 46 1.00

37 diabetes 768 9 2 0.54
167140 dna 3186 181 3 0.46
125920 dresses-sales 500 13 2 0.72

219 electricity 45312 9 2 0.74
2079 eucalyptus 736 20 5 0.49

146825 Fashion-MNIST 70000 785 10 1.00
9985 first-order-theorem-pr... 6118 52 6 0.19

172 OpenML Benchmarking Suites

Tasks OpenML-CC18 (continued).

Task ID name instances features classes class
ratio

14969 GesturePhaseSegmentati... 9873 33 5 0.34
14970 har 10299 562 6 0.72
9971 ilpd 583 11 2 0.40

167125 Internet-Advertisements 3279 1559 2 0.16
3481 isolet 7797 618 26 0.99
3904 jm1 10885 22 2 0.24

167119 jungle chess 2pcs raw ... 44819 7 3 0.19
3917 kc1 2109 22 2 0.18

3913 kc2 522 22 2 0.26
3 kr-vs-kp 3196 37 2 0.91
6 letter 20000 17 26 0.90

9976 madelon 2600 501 2 1.00
12 mfeat-factors 2000 217 10 1.00

14 mfeat-fourier 2000 77 10 1.00
16 mfeat-karhunen 2000 65 10 1.00
18 mfeat-morphological 2000 7 10 1.00

146824 mfeat-pixel 2000 241 10 1.00
22 mfeat-zernike 2000 48 10 1.00

146800 MiceProtein 1080 82 8 0.70
3573 mnist 784 70000 785 10 0.80
9977 nomao 34465 119 2 0.40

167120 numerai28.6 96320 22 2 0.98
28 optdigits 5620 65 10 0.97

9978 ozone-level-8hr 2534 73 2 0.07
3918 pc1 1109 22 2 0.07
3903 pc3 1563 38 2 0.11
3902 pc4 1458 38 2 0.14

32 pendigits 10992 17 10 0.92

14952 PhishingWebsites 11055 31 2 0.80
9952 phoneme 5404 6 2 0.42
9957 qsar-biodeg 1055 42 2 0.51

A.4. AUTOML BENCHMARK REGRESSION 173

Tasks OpenML-CC18 (continued).

Task ID name instances features classes class
ratio

2074 satimage 6430 37 6 0.41
146822 segment 2310 20 7 1.00

9964 semeion 1593 257 10 0.96
3021 sick 3772 30 2 0.07

43 spambase 4601 58 2 0.65
45 splice 3190 61 3 0.46

146817 steel-plates-fault 1941 28 7 0.08

125922 texture 5500 41 11 1.00
49 tic-tac-toe 958 10 2 0.53
53 vehicle 846 19 4 0.91

3022 vowel 990 13 11 1.00
9960 wall-robot-navigation 5456 25 4 0.15

9946 wdbc 569 31 2 0.59
146820 wilt 4839 6 2 0.06

A.4 AutoML Benchmark Regression

A regression benchmarking suite for benchmarking AutoML frameworks.

Table A.2: Tasks in the AutoML regression suite.

Task ID name instances features

359944 abalone 4177 9
359929 Airlines DepDelay 10M 10000000 10
233212 Allstate Claims Severity 188318 131
359937 black friday 166821 10
359950 boston 506 14

359938 Brazilian houses 10692 13
233213 Buzzinsocialmedia Twit... 583250 78
359942 colleges 7063 45

174 OpenML Benchmarking Suites

Tasks in the AutoML regression suite (continued).

Task ID name instances features

233211 diamonds 53940 10
359936 elevators 16599 19

359952 house 16H 22784 17
359951 house prices nominal 1460 80
359949 house sales 21613 22
233215 Mercedes Benz Greener ... 4209 377
360945 MIP-2016-regression 1090 145

167210 Moneyball 1232 15
359943 nyc-taxi-green-dec-2016 581835 19
359941 OnlineNewsPopularity 39644 60
359946 pol 15000 49
360933 QSAR-TID-10980 5766 1026

360932 QSAR-TID-11 5742 1026
359930 quake 2178 4
233214 Santander transaction ... 4459 4992
359948 SAT11-HAND-runtime-reg... 4440 117
359931 sensory 576 12

359932 socmob 1156 6
359933 space ga 3107 7
359934 tecator 240 125
359939 topo 2 1 8885 267
359945 us crime 1994 127

359935 wine quality 6497 12
317614 Yolanda 400000 101
359940 yprop 4 1 8885 252

A.5 AutoML Benchmark Classification

A classification benchmarking suite for benchmarking AutoML frameworks.
Compared to OpenML-CC18, it features bigger datasets which harder data
characteristics (e.g., greater class imbalances).

A.5. AUTOML BENCHMARK CLASSIFICATION 175

Table A.3: Tasks in the AutoML classification suite.

Task ID name instances features classes class
ratio

190411 ada 4147 49 2 0.33
359983 adult 48842 15 2 0.31
189354 airlines 539383 8 2 0.80
189356 albert 425240 79 2 1.00
10090 amazon-commerce-reviews 1500 10001 50 1.00

359979 Amazon employee access 32769 10 2 0.06
168868 APSFailure 76000 171 2 0.02
190412 arcene 100 10001 2 0.79
146818 Australian 690 15 2 0.80
359982 bank-marketing 45211 17 2 0.13

359967 Bioresponse 3751 1777 2 0.84
359955 blood-transfusion-serv... 748 5 2 0.31
359960 car 1728 7 4 0.05
359973 christine 5418 1637 2 1.00
359968 churn 5000 21 2 0.16

359992 Click prediction small 39948 12 2 0.20
359959 cmc 1473 10 3 0.53
359957 cnae-9 1080 857 9 1.00
359977 connect-4 67557 43 3 0.15

7593 covertype 581012 55 7 0.01

168757 credit-g 1000 21 2 0.43
211986 Diabetes130US 101766 50 3 0.21
168909 dilbert 10000 2001 5 0.93
189355 dionis 416188 61 355 0.36
359964 dna 3186 181 3 0.46

359954 eucalyptus 736 20 5 0.49
168910 fabert 8237 801 7 0.26
359976 Fashion-MNIST 70000 785 10 1.00
359969 first-order-theorem-pr... 6118 52 6 0.19
359970 GesturePhaseSegmentati... 9873 33 5 0.34

189922 gina 3153 971 2 0.97

176 OpenML Benchmarking Suites

Tasks in the AutoML classification suite (continued).

Task ID name instances features classes class
ratio

359988 guillermo 20000 4297 2 0.67
359984 helena 65196 28 100 0.03
360114 Higgs 1000000 29 2 0.89
359966 Internet-Advertisements 3279 1559 2 0.16

211979 jannis 83733 55 4 0.04
168911 jasmine 2984 145 2 1.00
359981 jungle chess 2pcs raw ... 44819 7 3 0.19
359962 kc1 2109 22 2 0.18
360975 KDDCup09-Upselling 50000 14892 2 0.08

3945 KDDCup09 appetency 50000 231 2 0.02
360112 KDDCup99 4898431 42 23 0.00
359991 kick 72983 33 2 0.14
359965 kr-vs-kp 3196 37 2 0.91
190392 madeline 3140 260 2 0.99

359961 mfeat-factors 2000 217 10 1.00
359953 micro-mass 571 1301 20 0.18
359990 MiniBooNE 130064 51 2 0.39
359980 nomao 34465 119 2 0.40
167120 numerai28.6 96320 22 2 0.98

359993 okcupid-stem 50789 20 3 0.13
190137 ozone-level-8hr 2534 73 2 0.07
359958 pc4 1458 38 2 0.14
190410 philippine 5832 309 2 1.00
359971 PhishingWebsites 11055 31 2 0.80

168350 phoneme 5404 6 2 0.42
360113 porto-seguro 595212 58 2 0.04
359956 qsar-biodeg 1055 42 2 0.51
359989 riccardo 20000 4297 2 0.33
359986 robert 10000 7201 10 0.92

359975 Satellite 5100 37 2 0.01
359963 segment 2310 20 7 1.00

A.5. AUTOML BENCHMARK CLASSIFICATION 177

Tasks in the AutoML classification suite (continued).

Task ID name instances features classes class
ratio

359994 sf-police-incidents 2215023 9 2 0.14
359987 shuttle 58000 10 7 0.00
168784 steel-plates-fault 1941 28 7 0.08

359972 sylvine 5124 21 2 1.00
190146 vehicle 846 19 4 0.91
359985 volkert 58310 181 10 0.11
146820 wilt 4839 6 2 0.06
359974 wine-quality-white 4898 12 7 0.00

2073 yeast 1484 9 10 0.01

178 OpenML Benchmarking Suites

Appendix B
AutoML Benchmark Results

B.1 Simple Bradley-Terry Trees

The Bradley-Terry trees in Figure B.1 and B.2 show trees generated on all results
from 1 and 4 hour experiments, respectively. Only ‘instances’ and ‘features’ were
considered as split criteria in making these trees and the maximum tree depth
was kept at 3 to keep the trees interpretable.

In congruence with general results, AutoGluon is typically the preferred
framework. The one exception is FLAML which is identified as more useful for
large datasets (more than ≈ 180k instances) with a one hour constraint. This
is in line with FLAML’s design goal to work especially well in time constrained
settings (as the datasets are relatively large for the time budget).

As we saw in the Section 5.5, different preferences may be obtained for
other subsets of the data (e.g., binary classification) and considering other meta-
features (e.g., balance ratio). When using the BT trees to interpret the results,
one should pay attention to the number of tasks in each leaf. Leafs based on
particularly small sets of tasks may not generalize that well.

179

180 AutoML Benchmark Results

number.of.instances
p < 0.001

1

≤ 8885 > 8885

number.of.features
p < 0.001

2

≤ 1559 > 1559

Node 3 (n = 520)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.35
Node 4 (n = 50)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.35

number.of.instances
p < 0.001

5

≤ 188318 > 188318

Node 6 (n = 340)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.35
Node 7 (n = 120)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.35

Figure B.1: A BT tree generated with only ‘features’ and ‘instances’ for split
criteria, based on all results for one hour experiments.

B.1. SIMPLE BRADLEY-TERRY TREES 181

number.of.instances
p < 0.001

1

≤ 39948 > 39948

number.of.features
p < 0.001

2

≤ 2001 > 2001

Node 3 (n = 660)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.38
Node 4 (n = 60)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.38

number.of.instances
p < 0.001

5

≤ 130064 > 130064

Node 6 (n = 170)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k

−0.03

0.38
Node 7 (n = 140)

A
ut

oG
lu

on
_b

en
ch

m
ar

k

G
A

M
A

_b
en

ch
m

ar
k

H
2O

A
ut

oM
L

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
lig

ht
au

to
m

l

m
lja

rs
up

er
vi

se
d_

be
nc

hm
ar

k
−0.03

0.38

Figure B.2: A BT tree generated with only ‘features’ and ‘instances’ for split
criteria, based on all results for four hour experiments.

182 AutoML Benchmark Results

B.2 AutoML Framework Errors

B.2.1 Class Imbalance

The two classification tasks with a large amount of failures despite being small
are ‘yeast’ and ‘wine-quality-white’, which feature a minority class with only 5
instances. This means that within the 10-fold cross-validation we perform in
our experiments, either 4 or 5 of those instances are available in the training
splits. We see that only in the case where one of those samples is in the test
set failures occur. The exact error message differs per framework, though they
indicate that evaluating pipelines fails. This is likely due to e.g., using 5-fold
cross-validation out of the box. Failure on these specific datasets (and folds) is
only observed for GAMA, LightAutoML, and TPOT.

B.2.2 MLJarSupervised

Two thirds of all ‘implementation errors’ observed are failures of MLJarSupervised.
All 190 failures are caused by variations of the following two unique errors:

25 times [’Ensemble prediction 0 for neg 1 for pos’, . . .,
’2 DecisionTree prediction 0 for neg 1 for pos’] not in index"

165 times catboost/libs/data/model dataset compatibility.cpp:81:

At position 6 should be feature with name 60 NeuralNetwork prediction 0 for 1 1 for 2

(found 60 NeuralNetwork prediction).

While we can only guess, we assume it is related to the extensive AutoML
pipeline MLJarSupervised has. It includes 10 different steps, including three
steps for feature generation and selection and three steps for ensembling and
stacking. These steps are not turned on by default1, feature engineering is only
turned on for ‘performance’ and ‘compete’, and ensembling and stacking is only
used in ‘compete’ mode, which we used.

B.2.3 Errors by Framework and Benchmark

Tables B.1 and B.2 display for each framework the number of errors per bench-
mark and time constraint. The ‘task’ column denotes in how many unique
tasks an error was encountered and the ‘total’ column denotes the total number

1https://supervised.mljar.com/features/modes/

https://supervised.mljar.com/features/modes/

B.2. AUTOML FRAMEWORK ERRORS 183

Table B.1: An overview of errors for framework (A-H). ‘tasks’ denote how many
unique tasks are affected, and ‘total’ how frequent the error occurred in total.

Tasks Total
framework task type constraint error

autogluon Classification 4h Memory 2 3

autosklearn
Classification

1h Memory 1 1
4h Timeout 1 5

Regression
1h Data 1 1
4h Data 1 1

autosklearn2 Classification 4h Timeout 1 10

flaml

Classification
1h Memory 4 18

4h
Memory 10 51
Timeout 4 8

Regression 4h
Memory 6 7
Timeout 1 3

gama
Classification

1h
Data 1 2
Implementation 4 26
Memory 2 9

4h
Data 1 2
Implementation 4 28
Memory 5 25

Regression 4h Memory 2 7

h2oautoml Classification
1h Timeout 1 10
4h Timeout 1 10

of failures. Because the experiments are 10-fold cross-validation, at most 10
failures per task (per framework per constraint) may occur.

184 AutoML Benchmark Results

Table B.2: An overview of errors for framework (I-Z). ‘tasks’ denote how many
unique tasks are affected, and ‘total’ how frequent the error occurred in total.

Tasks Total
framework task type constraint error

lightautoml
Classification

1h
Memory 8 41
Timeout 2 2

4h
Memory 10 69
Timeout 2 2

Regression
1h Memory 1 1
4h Memory 1 5

mljarsupervised

Classification

1h
1 1

Implementation 14 72
Memory 1 7

4h
Implementation 15 118
Memory 2 9
Timeout 3 13

Regression
1h Data 1 8

4h
Data 1 5
Timeout 1 1

tpot

Classification

1h
Data 3 12
Implementation 4 12
Timeout 6 27

4h
Data 3 14
Implementation 5 10
Timeout 9 29

Regression
1h

Implementation 3 4
Timeout 1 1

4h
Implementation 1 4
Memory 1 1

Appendix C
Symbolic Hyperparameter De-
faults

C.1 Implementation defaults

Table C.1 contains existing implementation defaults used in our experiments.
They have been obtained from the current versions of the implementations.
We analyze algorithms from the following algorithm implementations: Elastic
Net: glmnet [92] , Decision Trees: rpart [236], Random Forest: ranger [272],
SVM: LibSVM via e1071 ([53], [163]) and xgboost [55]. We investigate HNSW

[157] as an approximate k-Nearest-Neighbours algorithm. Additional details on
the exact meaning of the different hyperparameters can be obtained from the
respective software’s documentation. We assume that small differences due to
implementation details e.g. between the LibSVM and sklearn implementations
exist, but try to compare to existing default settings nonetheless, as they might
serve as relevant baselines.

185

186 Symbolic Hyperparameter Defaults

Algorithm Package Default

Elastic Net glmnet α : 1, λ : 0.01
Decision Tree rpart cp : 0.01, max.depth : 30,

minbucket : 1, minsplit : 20
Random Forest ranger mtry :

√
po, sample.fraction : 1,

min.node.size : 1
SVM e1071 C : 1, γ : 1

po

sklearn C : 1, γ : 1
p∗xvar

Approx. kNN mlr k : 10, M : 16, ef : 10, efc : 200
Gradient Boosting xgboost η : 0.1, λ : 1, γ : 0, α : 0, subsample : 1,

max depth : 3, min child weight : 1,
colsample bytree : 1, colsample bylevel : 1

Table C.1: Baseline b): Existing defaults for algorithm implementations. Fixed
parameters described in Table 6.3 apply.

C.2. EXPERIMENTAL RESULTS 187

C.2 Experimental Results

The following section describes the results of the Experiments conducted to an-
swer RQ1 and RQ2 across all other algorithms analyzed in this paper. Results
and a more detailed analysis for the SVM can be obtained from Section 6.6.2.

C.2.1 Elastic Net

mlr
de

fau
lt

sy
mbo

lic
 de

fau
lt

co
ns

ta
nt

 de
fau

lt
op

tim
ist

ic
rs

2
op

tim
ist

ic
rs

4
op

tim
ist

ic
rs

8
op

tim
ist

ic
rs

16
op

tim
ist

ic
rs

32

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 N
or

m
al

ize
d

Lo
gl

os
s

(a) Symbolic, static and implementa-
tion defaults, comparing scaled logloss
predicted by surrogates.

1 2 3 4 5 6 7 8

optimistic random search 32
optimistic random search 16

constant default
symbolic default optimistic random search 8

mlr default
optimistic random search 4
optimistic random search 2

CD

(b) Critical Differences Diagram of sym-
bolic, static and implementation defaults
on surrogates

0.0 0.5 1.0
constant default

0.0

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

0.5 1.0
optimistic random search 8

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

(c) Performance comparison of symbolic
defaults to constant defaults (left) and bud-
get 8 optimistic random search (right).

Figure C.1: Results for the elastic net algorithm on surrogate data.

188 Symbolic Hyperparameter Defaults

C.2.2 Decision Trees

mlr
de

fau
lt

sy
mbo

lic
 de

fau
lt

co
ns

ta
nt

 de
fau

lt
op

tim
ist

ic
rs

2
op

tim
ist

ic
rs

4
op

tim
ist

ic
rs

8
op

tim
ist

ic
rs

16
op

tim
ist

ic
rs

32

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 N
or

m
al

ize
d

Lo
gl

os
s

(a) Symbolic, static and implementa-
tion defaults, comparing scaled logloss
predicted by surrogates.

1 2 3 4 5 6 7 8

optimistic random search 32
optimistic random search 16

optimistic random search 8
symbolic default constant default

optimistic random search 4
mlr default
optimistic random search 2

CD

(b) Critical Differences Diagram of sym-
bolic, static and implementation defaults
on surrogates

0.4 0.6 0.8 1.0
constant default

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sy
m

bo
lic

 d
ef

au
lt

0.4 0.6 0.8 1.0
optimistic random search 8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sy
m

bo
lic

 d
ef

au
lt

(c) Performance comparison of symbolic
defaults to constant defaults (left) and bud-
get 8 optimistic random search (right).

Figure C.2: Results for the decision tree algorithm on surrogate data.

C.2. EXPERIMENTAL RESULTS 189

C.2.3 Approximate k-Nearest Neighbours

mlr
de

fau
lt

sy
mbo

lic
 de

fau
lt

co
ns

ta
nt

 de
fau

lt
op

tim
ist

ic
rs

2
op

tim
ist

ic
rs

4
op

tim
ist

ic
rs

8
op

tim
ist

ic
rs

16
op

tim
ist

ic
rs

32
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 N
or

m
al

ize
d

Lo
gl

os
s

(a) Symbolic, static and implementa-
tion defaults, comparing scaled logloss
predicted by surrogates.

1 2 3 4 5 6 7 8

optimistic random search 32
optimistic random search 16

optimistic random search 8
symbolic default optimistic random search 4

constant default
optimistic random search 2
mlr default

CD

(b) Critical Differences Diagram of sym-
bolic, static and implementation defaults
on surrogates

0.0 0.5 1.0
constant default

0.0

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

0.0 0.5 1.0
optimistic random search 8

0.0

0.2

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

(c) Performance comparison of symbolic
defaults to constant defaults (left) and bud-
get 8 optimistic random search (right).

Figure C.3: Results for the approximate k-nearest neighbours algorithm on
surrogate data.

190 Symbolic Hyperparameter Defaults

C.2.4 Random Forest

mlr
de

fau
lt

sy
mbo

lic
 de

fau
lt

co
ns

ta
nt

 de
fau

lt
op

tim
ist

ic
rs

2
op

tim
ist

ic
rs

4
op

tim
ist

ic
rs

8
op

tim
ist

ic
rs

16
op

tim
ist

ic
rs

32

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 N
or

m
al

ize
d

Lo
gl

os
s

(a) Symbolic, static and implementa-
tion defaults, comparing scaled logloss
predicted by surrogates.

1 2 3 4 5 6 7 8

optimistic random search 32
symbolic default
constant default

optimistic random search 16 mlr default
optimistic random search 8
optimistic random search 4
optimistic random search 2

CD

(b) Critical Differences Diagram of sym-
bolic, static and implementation defaults
on surrogates

0.6 0.8 1.0
constant default

0.6

0.7

0.8

0.9

1.0

sy
m

bo
lic

 d
ef

au
lt

0.25 0.50 0.75 1.00
optimistic random search 8

0.4

0.6

0.8

1.0

sy
m

bo
lic

 d
ef

au
lt

(c) Performance comparison of symbolic
defaults to constant defaults (left) and bud-
get 8 optimistic random search (right).

Figure C.4: Results for the random forest algorithm on surrogate data.

C.3. REAL DATA EXPERIMENTS 191

C.2.5 eXtreme Gradient Boosting (XGBoost)

sk
lea

rn
 de

fau
lt

sy
mbo

lic
 de

fau
lt

co
ns

ta
nt

 de
fau

lt
op

tim
ist

ic
rs

2
op

tim
ist

ic
rs

4
op

tim
ist

ic
rs

8
op

tim
ist

ic
rs

16
op

tim
ist

ic
rs

32
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
ed

 N
or

m
al

ize
d

Lo
gl

os
s

(a) Symbolic, static and implementa-
tion defaults, comparing scaled logloss
predicted by surrogates.

1 2 3 4 5 6 7 8

symbolic default
optimistic random search 32

constant default
optimistic random search 16 optimistic random search 8

optimistic random search 4
optimistic random search 2
sklearn default

CD

(b) Critical Differences Diagram of sym-
bolic, static and implementation defaults
on surrogates

0.925 0.950 0.975 1.000
constant default

0.92

0.94

0.96

0.98

1.00

sy
m

bo
lic

 d
ef

au
lt

0.8 1.0
optimistic random search 8

0.7

0.8

0.9

1.0

sy
m

bo
lic

 d
ef

au
lt

(c) Performance comparison of symbolic
defaults to constant defaults (left) and bud-
get 8 optimistic random search (right).

Figure C.5: Results for the XGBoost algorithm on surrogate data.

C.3 Real Data Experiments

In analogy to the presentation of the results for the SVM of the main text, we
present results for Decision Tree and Elastic Net here.

C.3.1 Decision Tree

C.3.2 Elastic Net

192 Symbolic Hyperparameter Defaults

symbolic d
efault

mlr default
1-NN

Search Strategy

0

2

4

6

8
Lo

gl
os

s

0 2 4 6 8
implementation default

0

2

4

6

8

sy
m

bo
lic

 d
ef

au
lt

Figure C.6: Results for the decision tree algorithm. Comparison of symbolic
and implementation default using log-loss across all datasets performed on real
data. Box plots (right) and scatter plot (left)

symbolic d
efault

mlr default
1-NN

Search Strategy

0

1

2

3

Lo
gl

os
s

0 2 4
implementation default

0

1

2

3

4

sy
m

bo
lic

 d
ef

au
lt

Figure C.7: Results for the Elastic Net algorithm. Comparison of symbolic and
implementation default using log-loss across all datasets performed on real data.
Box plots (right) and scatter plot (left)

Curriculum Vitae

Pieter Gijsbers was born in Eindhoven, the Netherlands
on the 26th of June 1992. He obtained his bachelor’s
degree in 2015 at Fontys University of Applied Sciences
with a focus on software engineering for embedded sys-
tems. For this bachelor’s thesis, he interned at Van Dores
MES, Veghel, where he stayed as a part-time manufac-
turing execution system developer until 2017.

In 2017 Pieter obtained his master’s degree at Eind-
hoven University of Technology in Eindhoven, the Nether-
lands within the data mining group on automated ma-
chine learning. In 2017 he started a PhD project at Eind-
hoven University of Technology of which the results are
presented in this dissertation. Since 2021 Pieter is employed at Eindhoven Uni-
versity of Technology as AI engineer.

Pieter joined the OpenML project as a contributor in 2016 and is now one of
two openml-python core contributors, co-organized OpenML hackathons, and
joined the OpenML steering committee in 2021. He obtained 8th place at the
ChaLearn Lifelong AutoML Challenge in 2018. During his PhD trajectory he
started two new open source projects, the modular AutoML tool GAMA and the
open source AutoML benchmark. Together with Joaquin Vanschoren he has
given invited talks at multiple editions of the Open Data Science Conference,
where he demonstrated how to use OpenML and AutoML in Python.

193

List of Publications

A chronologically ordered list of publications by Pieter Gijsbers, papers used in
the making of this thesis indicated with ‘▷’:

▷ B. Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang, R. G.
Mantovani, J. N. van Rijn, and J. Vanschoren, “Openml benchmarking suites,”
in Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021

▷ P. Gijsbers, F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren,
“Meta-learning for symbolic hyperparameter defaults,” Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, Jul. 2021.

▷ M. Feurer, J. N. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi,
A. Müller, and J. Vanschoren, “Openml-python: An extensible python api for
openml,” Journal of Machine Learning Research, vol. 22, no. 100, pp. 1–5, 2021

▷ P. Gijsbers and J. Vanschoren, “Gama: A general automated machine learn-
ing assistant,” Lecture Notes in Computer Science, pp. 560–564, 2021, issn:
1611-3349

▷ P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Vanschoren,
“An open source automl benchmark,” arXiv preprint arXiv:1907.00909, 2019,
accepted at ICML 2019 AutoML workshop.

▷ P. Gijsbers and J. Vanschoren, “Gama: Genetic automated machine learn-
ing assistant,” Journal of Open Source Software, vol. 4, no. 33, p. 1132, 2019

195

M. Konzack, P. Gijsbers, F. Timmers, E. van Loon, M. A. Westenberg, and
K. Buchin, “Visual exploration of migration patterns in gull data,” Information
Visualization, vol. 18, no. 1, pp. 138–152, 2019.

P. Gijsbers, J. Vanschoren, and R. Olson, “Layered tpot: Speeding up tree-
based pipeline optimization,” in European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, September 18–22,
2017, Skopje, Macedonia, CEUR-WS. org, 2017, pp. 49–68

SIKS Dissertations

2016

01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and
Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication re-
views through decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered
Knowledge Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Contain-

ment and an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environ-

ment
07 Jeroen de Man (VU), Measuring and modeling negative emotions

for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing His-

torical Social Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information

on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Al-

gorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative

Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural

Development in West Africa - An ICT4D Approach

197

14 Ravi Khadka (UU), Revisiting Legacy Software System Moderniza-
tion

15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical
Aspects, Algorithms and Experiments

16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that
Learn from Human Reward

17 Berend Weel (VU), Towards Embodied Evolution of Robot Organ-
isms

18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical

Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive

Playspaces: Automatic Analysis of Player Behavior in the Inter-
active Tag Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-
Foraging Systems

23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of

Data; An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand

Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Com-

putational Models to Study the Role of Human Awareness and Con-
trol in Behavioural Choices, with Applications in Aviation and En-
ergy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social
Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation
- A study on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity
systems - Markets and prices for flexible planning

30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Avail-

ability Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning

from just one example

34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation,
Analysis, and Enactment

35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization,
Classification and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal
interaction behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and
computational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet
Art & Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and
Interpersonal Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework

for Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional As-

pects of Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-

Management: From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Explo-

ration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface

Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dy-

namic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A

Game-Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for

Operational Performance Alignment in IT-enabled Service Supply
Chains

2017

01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic

Bayesian Networks using Argumentation

03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical
Approach with Autonomous Products and Reconfigurable Manufac-
turing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web

Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to

Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining

in Health Insurance Data using Outlier Detection and Subgroup
Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Compu-
tational Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion

in Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach

of social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are:

Modelling Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of

Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vec-

tors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowl-

edge Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and

Serious Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital

Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learn-

ing

25 Veruska Zamborlini (VU), Knowledge Representation for Clinical
Guidelines, with applications to Multimorbidity Analysis and Lit-
erature Search

26 Merel Jung (UT), Socially intelligent robots that understand and
respond to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors
of Social Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to

Performance: A Moderated Mediation Model of Social Innovation,
and Enterprise Governance of IT”

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT cal-

culations
32 Thaer Samar (RUN), Access to and Retrievability of Content in

Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software

Documentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning An-

alytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation

from High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adap-

tation Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory

system and compressive sensing methods to increase noise robust-
ness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Ex-
ploration of Human Control in Relation to Emotions, Desires and
Social Support For applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Explo-
ration of Mental Processes and a Smart Environment to Provide
Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing
data with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

44 Garm Lucassen (UU), Understanding User Stories - Computational
Linguistics in Agile Requirements Engineering

45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018

01 Han van der Aa (VUA), Comparing and Aligning Process Repre-
sentations

02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge

Modeling, Model-Driven Development of Context-Aware Applica-
tions, and Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis
Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the
Information Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assess-
ment of Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent
systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software
Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical ac-

tivity behavior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented

Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal

Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emo-

tion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak

19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for author-

ing and playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the

Spread of Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment

Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for

Semi-Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made:

Motivational Messages for Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable

Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel

and how they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”:

scaling semantics to the web

2019

01 Rob van Eijk (UL),Web privacy measurement in real-time bidding
systems. A graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualiza-
tions for Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on
Databases: Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clin-
ical data

05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to

Linked Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning

Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov De-

cision Processes

09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy
efficiency in software systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for
Allocation and Prediction

11 Yue Zhao (TUD), Learning Analytics Technology to Understand
Learner Behavioral Engagement in MOOCs

12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and

Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling

Learner Behavior & Improving Learning Outcomes in Massive Open
Online Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained
and Partially Observable Environments

16 Guangming Li (TUE), Process Mining based on Object-Centric Be-
havioral Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from mi-
crotexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human

collective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model

Discovery and Design Pattern Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise

Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting,

Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing

Labeled Data for Natural Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image

description
26 Prince Singh (UT), An Integration Platform for Synchromodal

Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process ap-

plied to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning

to prepare airline pilots for critical situations

29 Daniel Formolo (VU), Using virtual agents for simulation and train-
ing of social skills in safety-critical circumstances

30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General

Intelligence in Games
33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in

Artificial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Net-

work Features for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learn-

ing programming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to

Master Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual

representations

2020

01 Armon Toubman (UL), Calculated Moves: Generating Air Combat
Behaviour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using
Probabilistic Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for
Language Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking dur-

ing Requirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for

reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte

Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data

Quality for Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process

Mining

11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Aug-
mentationMethods for Long-Tail Entity Recognition Models

12 Ward van Breda (VU), Predictive Modeling in E-Mental Health:
Exploring Applicability in Personalised Depression Treatment

13 Marco Virgolin (CWI), Design and Application of Gene-pool Opti-
mal Mixing Evolutionary Algorithms for Genetic Programming

14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational
Databases

15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for
Configurable Assessments in Serious Games

16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feed-

back from Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in

Markets with Uncertainties: Electricity Markets in Renewable En-
ergy Systems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender
Systems

20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisa-
tions

21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life
as it could be

22 Maryam Masoud Khamis (RUN), Understanding complex systems
implementation through a modeling approach: the case of e-
government in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics
approach to studying writing processes using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, hu-
man? Towards emotionally supportive chatbots

25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for

Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent

in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice:

Training complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better

32 Jason Rhuggenaath (TUE), Revenue management in online mar-
kets: pricing and online advertising

33 Rick Gilsing (TUE), Supporting service-dominant business model
evaluation in the context of business model innovation

34 Anna Bon (MU), Intervention or Collaboration? Redesigning Infor-
mation and Communication Technologies for Development

35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software
Production

2021

01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games
for Social Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating So-
cial Practice Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with
Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adap-
tive learning analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous
Systems

06 Daniel Davison (UT), ”Hey robot, what do you think?” How chil-
dren learn with a social robot

07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Pro-

gramming on Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-

Anthropomorphic and Non-Verbal Robots to Promote Children’s
Collaboration Through Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learn-
ing

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in
Robotic Vision

12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Under-

standing and Facilitating Predictability for Engagement in Learning
14 Negin Samaeemofrad (UL), Business Incubators: The Impact of

Their Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions
into Resource Re-Configurations through the Business Services
Paradigm

16 Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNITION
FROM AUDIO-VISUAL CUES

17 Dario Dotti (UM), Human Behavior Understanding from motion
and bodily cues using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-
Making Tools and Formal Systems - Facilitating the Construction
of Bayesian Networks and Argumentation Frameworks

19 Roberto Verdecchia (VU), Architectural Technical Debt: Identifica-
tion and Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-
Sided Exposure Bias in Recommender Systems

21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proença (LIACS), Robust rules for prediction and

description
24 Kaijie Zhu (TUE), On Efficient Temporal Subgraph Query Process-

ing
25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Com-

bining AI and Self-Adaptation to Create Adaptive E-Health Mobile
Applications

26 Benno Kruit (CWI & VUA), Reading the Grid: Extending Knowl-
edge Bases from Human-readable Tables

27 Jelte van Waterschoot (UT), Personalized and Personal Conversa-
tions: Designing Agents Who Want to Connect With You

28 Christoph Selig (UL), Understanding the Heterogeneity of Corpo-
rate Entrepreneurship Programs

2022

1 Judith van Stegeren (UT), Flavor text generation for role-playing
video games

2 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Op-
timisation: A Deep Learning Journey

3 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away:
Reinforcement Learning For Personalized Healthcare

4 Ünal Aksu (UU), A Cross-Organizational Process Mining Frame-
work

5 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time
Over-Parameterization

6 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in
Real Time Bidding

7 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Au-
tomatic Co-located Collaboration Analytics

8 Maikel L. van Eck (TU/e), Process Mining for Smart Product De-
sign

9 Oana Andreea Inel (VUA), Understanding Events: A Diversity-
driven Human-Machine Approach

10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Col-
laborative Search Engines

11 Mirjam de Haas (UT), Staying engaged in child-robot interaction,
a quantitative approach to studying preschoolers’ engagement with
robots and tasks during second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun
Phrases

13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowl-
edge Graphs: Opportunities, Challenges, and Methods for Learning
on Real-World Heterogeneous and Spatially-Oriented Knowledge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms
15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning

using Process Mining
16 Pieter Gijsbers (TU/e), Systems for AutoML Research

	Acknowledgements
	Summary
	List of Figures
	List of Tables
	Introduction
	Automated Machine Learning
	Meta-learning
	Challenges and Research Questions
	Thesis Outline and Contributions

	Automated Machine Learning
	Problem Definition
	Search Space Design
	Search Strategies
	Grid- and Random Search
	Evolutionary Algorithms
	Bayesian Optimization
	Successive Halving and Hyperband
	Other Methods

	Post-Processing
	Weighted Voting
	Stacking
	Model Information

	AutoML in Other Settings
	Online Learning
	Unsupervised AutoML
	Multi-Label Classification
	Remaining Useful Life Estimation

	GAMA - Modular AutoML
	Related Work
	The Modular AutoML Pipeline
	Search
	Post-processing
	Configuring an AutoML Pipeline

	Accelerating Research
	Interface
	Artifacts

	Use in Research
	Online AutoML
	Multi-fidelity Evolution
	Clustering

	Conclusion, Limitations, and Future Work

	Reproducible Benchmarks
	OpenML
	OpenML-Python
	Design and Development
	Related Work
	Use Cases

	Benchmarking Suites
	OpenML Benchmarking Suites
	How to Use OpenML Benchmarking Suites
	OpenML-CC18

	Conclusion and Future Work

	The AutoML Benchmark
	Related Work
	AutoML Tools
	Integrated Frameworks
	Baselines

	Software
	Extensible Framework Structure
	Extensible Benchmarks
	Running the tool

	Benchmark Design
	Benchmark Suites
	Experimental Setup
	Limitations
	Overfitting the Benchmark

	Results
	Performance
	BT-Trees
	Model Accuracy vs. Inference Time Trade-offs
	Observed AutoML Failures

	Conclusion and Future Work

	Meta-Learning for Symbolic Hyperparameter Defaults
	A Motivating Example
	Related Work
	Problem Definition
	Supervised Learning and Risk of a Configuration
	Learning an Optimal Configuration
	Learning a Symbolic Configuration
	Metadata and Surrogates

	Finding Symbolic Defaults
	Grammar
	Algorithm

	Experimental Setup
	General setup
	Experiments for RQ1 & RQ2

	Results
	Surrogates and Surrogate Quality
	Experiment 1 - Benchmark on surrogates
	Experiment 2 - Benchmark on real data

	Conclusion and Future Work

	Conclusion and Future Work
	Conclusions
	Limitations
	Future Work
	Meta-learning for AutoML
	Benchmark Design
	Trust in AutoML

	Bibliography
	Appendices
	OpenML Benchmarking Suites
	Useful links
	Suggested Curation Protocol
	OpenML-CC18
	AutoML Benchmark Regression
	AutoML Benchmark Classification

	AutoML Benchmark Results
	Simple Bradley-Terry Trees
	AutoML Framework Errors
	Class Imbalance
	MLJarSupervised
	Errors by Framework and Benchmark

	Symbolic Hyperparameter Defaults
	Implementation defaults
	Experimental Results
	Elastic Net
	Decision Trees
	Approximate k-Nearest Neighbours
	Random Forest
	eXtreme Gradient Boosting (XGBoost)

	Real Data Experiments
	Decision Tree
	Elastic Net

	Curriculum Vitae
	List of Publications
	SIKS Dissertations

