410 research outputs found

    Investigating the Essential of Meaningful Automated Formative Feedback for Programming Assignments

    Full text link
    This study investigated the essential of meaningful automated feedback for programming assignments. Three different types of feedback were tested, including (a) What's wrong - what test cases were testing and which failed, (b) Gap - comparisons between expected and actual outputs, and (c) Hint - hints on how to fix problems if test cases failed. 46 students taking a CS2 participated in this study. They were divided into three groups, and the feedback configurations for each group were different: (1) Group One - What's wrong, (2) Group Two - What's wrong + Gap, (3) Group Three - What's wrong + Gap + Hint. This study found that simply knowing what failed did not help students sufficiently, and might stimulate system gaming behavior. Hints were not found to be impactful on student performance or their usage of automated feedback. Based on the findings, this study provides practical guidance on the design of automated feedback

    Understanding and Supporting Vocabulary Learners via Machine Learning on Behavioral and Linguistic Data

    Full text link
    This dissertation presents various machine learning applications for predicting different cognitive states of students while they are using a vocabulary tutoring system, DSCoVAR. We conduct four studies, each of which includes a comprehensive analysis of behavioral and linguistic data and provides data-driven evidence for designing personalized features for the system. The first study presents how behavioral and linguistic interactions from the vocabulary tutoring system can be used to predict students' off-task states. The study identifies which predictive features from interaction signals are more important and examines different types of off-task behaviors. The second study investigates how to automatically evaluate students' partial word knowledge from open-ended responses to definition questions. We present a technique that augments modern word-embedding techniques with a classic semantic differential scaling method from cognitive psychology. We then use this interpretable semantic scale method for predicting students' short- and long-term learning. The third and fourth studies show how to develop a model that can generate more efficient training curricula for both human and machine vocabulary learners. The third study illustrates a deep-learning model to score sentences for a contextual vocabulary learning curriculum. We use pre-trained language models, such as ELMo or BERT, and an additional attention layer to capture how the context words are less or more important with respect to the meaning of the target word. The fourth study examines how the contextual informativeness model, originally designed to develop curricula for human vocabulary learning, can also be used for developing curricula for various word embedding models. We identify sentences predicted as low informative for human learners are also less helpful for machine learning algorithms. Having a rich understanding of user behaviors, responses, and learning stimuli is imperative to develop an intelligent online system. Our studies demonstrate interpretable methods with cross-disciplinary approaches to understand various cognitive states of students during learning. The analysis results provide data-driven evidence for designing personalized features that can maximize learning outcomes. Datasets we collected from the studies will be shared publicly to promote future studies related to online tutoring systems. And these findings can also be applied to represent different user states observed in other online systems. In the future, we believe our findings can help to implement a more personalized vocabulary learning system, to develop a system that uses non-English texts or different types of inputs, and to investigate how the machine learning outputs interact with students.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162999/1/sjnam_1.pd

    Facial and Bodily Expressions for Control and Adaptation of Games (ECAG 2008)

    Get PDF

    EDM 2011: 4th international conference on educational data mining : Eindhoven, July 6-8, 2011 : proceedings

    Get PDF

    Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief

    Get PDF
    Comprend des références bibliographiquesIn data mining and data analytics, tools and techniques once confined to research laboratories are being adopted by forward-looking industries to improve decision making. Higher education institutions are beginning to use analytics for improving the services they provide and for increasing student grades and retention. The U.S. Department of Education’s National Education Technology Plan, as one part of its model for learning powered by technology, envisions ways of using data from online learning systems to improve instruction. With analytics and data mining experiments in education starting to proliferate, sorting out fact from fiction and identifying research possibilities and practical applications are not easy. This issue brief is intended to help policymakers and administrators understand how analytics and data mining have been - and can be - applied for educational improvement while rigorously protecting student privacy

    Learning about Online Learning Processes and Students' Motivation through Web Usage Mining

    Get PDF

    Towards Integration of Cognitive Models in Dialogue Management: Designing the Virtual Negotiation Coach Application

    Get PDF
    This paper presents an approach to flexible and adaptive dialogue management driven by cognitive modelling of human dialogue behaviour. Artificial intelligent agents, based on the ACT-R cognitive architecture, together with human actors are participating in a (meta)cognitive skills training within a negotiation scenario. The agent  employs instance-based learning to decide about its own actions and to reflect on the behaviour of the opponent. We show that task-related actions can be handled by a cognitive agent who is a plausible dialogue partner.  Separating task-related and dialogue control actions enables the application of sophisticated models along with a flexible architecture  in which  various alternative modelling methods can be combined. We evaluated the proposed approach with users assessing  the relative contribution of various factors to the overall usability of a dialogue system. Subjective perception of effectiveness, efficiency and satisfaction were correlated with various objective performance metrics, e.g. number of (in)appropriate system responses, recovery strategies, and interaction pace. It was observed that the dialogue system usability is determined most by the quality of agreements reached in terms of estimated Pareto optimality, by the user's negotiation strategies selected, and by the quality of system recognition, interpretation and responses. We compared human-human and human-agent performance with respect to the number and quality of agreements reached, estimated cooperativeness level, and frequency of accepted negative outcomes. Evaluation experiments showed promising, consistently positive results throughout the range of the relevant scales
    • …
    corecore