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ABSTRACT 

When practice does not make perfect: Differentiating between productive and unproductive 

persistence 

Ma. Victoria Q. Almeda 

 

Research has suggested that persistence in the face of challenges plays an important 

role in learning. However, recent work on wheel-spinning—a type of unproductive persistence 

where students spend too much time struggling without achieving mastery of skills—has shown 

that not all persistence is uniformly beneficial for learning. For this reason, Study 1 used 

educational data-mining techniques to determine key differences between the behaviors 

associated with productive persistence and wheel-spinning in ASSISTments, an online math 

learning platform. This study’s results indicated that three features differentiated between these 

two modes of persistence: the number of hints requested in any problem, the number of bottom-

out hints in the last eight problems, and the variation in the delay between solving problems of 

the same skill. These findings suggested that focusing on number of hints can provide insight 

into which students are struggling, and encouraging students to engage in longer delays 

between problem solving is likely helpful to reduce their wheel-spinning. Using the same 

definition of productive persistence in Study 1, Study 2 attempted to investigate the relationship 

between productive persistence and grit using Duckworth and Quinn’s (2009) Short Grit Scale. 

Correlational results showed that the two constructs were not significantly correlated with each 

other, providing implications for synthesizing literature on student persistence across computer-

based learning environments and traditional classrooms.  
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CHAPTER I 

INTRODUCTION 

 

Background 

Persistence has been considered to be an important factor for achieving success in any 

endeavor. Recent studies have shown that persistence and similar constructs are associated with 

creativity (Prabhu, Sutton, & Sauser, 2008), academic achievement (Andersson & Bergman, 

2011; Duckworth, Peterson, Matthews, & Kelly, 2007), and success in the workplace 

(Wrzesniewski, 2012). 

Throughout the years, researchers and educators have used different terms to refer to the 

same ability of persevering, regardless of the person’s inclination towards the task. Of particular 

interest is the popular term grit, defined as perseverance and passion of interest over long periods 

of time, which has been associated with long-term outcomes such as educational attainment and 

retention (Duckworth et al., 2007).  

However, recent studies have suggested that not all persistence is uniformly positive. 

Within the context of computer-based learning environments, Beck and Gong (2013) asserted 

that some persistence may be “wheel-spinning,” defined as when a student spends too much time 

struggling to learn a topic without achieving mastery. A student who persists unsuccessfully may 

face eventual reduced motivation (Sedek & Kofta, 1990). Ultimately, wheel-spinning has also 

been linked to undesirable behaviors such as gaming the system, where students systematically 
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guess the correct answer or abuse the help functions within the online system (Beck & Rodrigo, 

2014).  

As such, we have two related phenomena—productive persistence and wheel-spinning, 

which is also referred to as unproductive persistence. The goal is to encourage students to persist 

productively and prevent them from persisting when the eventual outcome will be negative. 

Unfortunately, many students engage in unproductive persistence, often not taking the corrective 

action towards learning (Beck & Gong, 2013; Beck & Rodrigo, 2014; Gong & Beck, 2015). 

Specifically, as much as 35% of students were found to be wheel-spinning in two widely used 

math tutoring systems, ASSISTments and Cognitive Algebra Tutor (Beck & Gong, 2013). These 

findings suggest a need to distinguish between these two phenomena to refine the pedagogical 

theory on student persistence and to design intervention on their motivational experiences.  

Statement of the Problem 

 

Given the academic interest in measuring the role of persistence in academic achievement, 

researchers are increasingly exploring the development of methods and instruments that measure 

persistence, both quantitatively and qualitatively. However, most prior studies on persistence 

have not attempted to distinguish between students’ unproductive and productive struggle, until 

they have reached a point of failing or succeeding. This gap in the literature is problematic, as 

teachers may fail to understand that the same interventions that are appropriate for productively 

persistent students may not necessarily work for those who are unproductively persisting. For 

instance, students who engage in a negative cycle, repetitively using the same ineffective 

strategy to solve similar problems, are unlikely to benefit from demonstrating more grit. Further 

work is needed to understand the difference between productive and unproductive struggle to 

support persistence in a way that aligns with each student’s needs.  
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Another issue that has not been fully explored within persistence research is the 

integration of findings on key terms in the field (e.g., perseverance, academic tenacity, grit). 

While a few studies in computer-based learning environments (CBLEs) have investigated 

students’ incidence of wheel-spinning or unproductive persistence, the findings from these 

studies have been not been linked to research on more global measures of persistence—such as 

grit. The interest in grit is likely growing because this concept more readily allows for 

intervention, as opposed to the other cognitive (e.g., intelligence) or sociopolitical factors (e.g., 

socioeconomic status) of the student (Duckworth & Gross, 2014). However, the research on grit 

has been largely localized, with little research unifying findings from other similar constructs 

that target effort in the face of challenges. Synthesizing empirical findings between conceptual 

distinctions can help sharpen interventions for improving learning. For instance, Duckworth and 

Gross (2014) asserted that the psychological mechanisms underlying grit may be, in part, related 

to deliberate and focused practice. The research on wheel-spinning, which involves micro-level 

information of students’ problem solving within CBLEs, can help inform teachers about how 

and where deliberate practice can be more productive. As such, systematic work is needed to 

create a more consolidated framework about students’ persistence and to enhance teacher 

practice that helps support productive struggle across different contexts, whether or not 

technology is integrated into the classroom.  

Research Questions 
 

The first goal of this dissertation was to raise the importance of differentiating productive 

and unproductive persistence in CBLEs. In addition to this, the second goal of this dissertation 

was to extend persistence research by correlating the proportions of students’ productive 

persistence with measures of grit. To accomplish these goals, the researcher conducted two 
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studies that answered the following research questions within an online learning platform, 

ASSISTments:  

1. What are the key differences between productive and unproductive persistence in 

ASSISTments? (Study 1) 

2. What is the relationship between productive persistence and grit in ASSISTments? 

(Study 2) 
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CHAPTER II 

REVIEW OF LITERATURE 

 

This chapter summarizes the literature on persistence, integrating key findings and 

conclusions from studies on grit and academic tenacity. While the benefits of grit have been 

extensively discussed in the literature, the potential costs of persisting in the face of challenges 

have not gained as much traction or interest. Within computer-based learning environments 

(CBLEs), one of the few studies that investigated this issue revealed that persistence may 

actually be detrimental to student learning. Therefore, one of the primary goals of this 

dissertation was to emphasize the need to investigate the key differences between productive and 

unproductive persistence, using educational data-mining techniques. Adopting an educational 

data-mining perspective affords the opportunity to investigate students’ online interactions, 

revealing micro-level information about their learning struggles and processes. In understanding 

the trajectories of different modes of persistence, another major goal of this dissertation was to 

assert the importance of examining the relations between productive persistence and grit. 

Exploring these relations can help build a pedagogical framework that encourages and supports 

students’ productive struggle. 

Benefits of Persistence 

Persisting in the face of setbacks or challenges plays an important role in learning across 

various academic domains. Peterson and Seligman (2004) regarded persistence as one human 
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character strength that determines each of our unique profiles, defining it as “voluntary 

continuation of goal-directed action in spite of obstacles, difficulties, or discouragement”  

(p. 229). Based on this definition, time alone is not a good measure of persistence, as it also 

involves expending efforts on tasks that are not necessarily enjoyable (Peterson & Seligman, 

2004). Prior studies have shown a relationship between students’ ability to persist on a task and 

their achievement (Boe, May, & Boruch, 2002; Deater-Deckard, Petrill, Thompson, & 

DeThorne, 2005). For instance, Andersson and Bergman (2011) found that persistence during 

early adolescence predicted academic achievement 3 years later, even when controlling for 

previous GPA scores. Specifically, an increase of one standard deviation in student persistence 

was associated with a 0.19 standard deviation increase in academic achievement 3 years later, 

corresponding to a learning gain from an additional year in high school (Andersson & Bergman, 

2011).  

Many other terms have been used to describe the same process of persisting toward long-

term goals in the face of setbacks. Consistent with previous research on persistence, these similar 

modes of engagement have also demonstrated positive impacts on students’ academic success. 

For example, the burgeoning research on grit, defined as “perseverance and passion for long-

term goals,” has shown this construct to be a strong indicator of motivation and long-term 

accomplishment (Duckworth et al., 2007, p. 1087). For example, adults with higher grit scores 

attained higher levels of education and earned higher GPAs, as compared to adults with lower 

grit scores. Within an elite military academy, grit was also found to be the best performing 

predictor of summer retention among military cadets. Lastly, in a younger age group (i.e., 7-15 

years old), grittier children ranked higher in a National Spelling Bee competition than less gritty 
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counterparts. In general, these findings provided empirical evidence that illustrate an association 

between high achievers and their willingness to persist consistently towards a specific objective.  

Research has also shown that the concept of academic tenacity is a particularly important 

factor of students’ academic performance. In one of the most widely cited papers related to the 

topic on persistence, Dweck, Walton, and Cohen (2011) defined academic tenacity as “mindsets 

and skills that allow students to look beyond short-term concerns to long-term or higher order-

order goals, and withstand challenges and setbacks to persevere toward these goals” (p. 4). In 

this theoretical review, Dweck and colleagues asserted that motivational interventions, which 

teach that intelligence can be grown with effort, can boost academic performance. Specifically, 

previous studies have consistently shown that students who experience effort-oriented 

interventions obtain higher test scores than students who do not (Aronson, Fried, & Good, 2002; 

Blackwell, Trzesniewski, & Dweck, 2007; Good, Aronson, & Inzlicht, 2003). Drawing from 

interviews from prior literature, Dweck et al.’s (2011) review attributed these findings to changes 

in students’ effort, with increased tenacity from learners who received the motivational 

intervention.  

Because grit and academic tenacity are associated with gains in student outcomes, studies 

on these constructs have suggested a link between persistence and student achievement. In 

particular, these findings showed that there are strong benefits for persevering in terms of long-

term achievements. 

Limitations of Persistence 

Although persistence has been shown to be associated with student achievement, 

sustained effort in the face of challenge may not always be sufficient or useful for learning. In 

particular, persistence may be beneficial with attainable goals but detrimental when objectives 



 

8 

 

are unattainable. Early work by Janoff-Bulman and Brickman (1982) asserted that when the 

latter condition is experienced, there are graver negative consequences in persisting 

unproductively than in giving up too soon. Although withdrawing is typically seen as a negative 

response, it may actually be adaptive when it provides an opportunity to invest resources more 

effectively. For instance, Wrosch, Scheier, Miller, Schulz, and Carver (2003) indicated that 

giving up can lead participants to re-evaluate their aspirations and invest time on more 

manageable objectives—resulting in better psychological well-being. In contrast, persisting 

toward an unattainable goal may serve as a maladaptive response, due to resources being 

invested in a counterproductive fashion (Peterson & Seligman, 2004).  

In line with this argument, Shechtman, DeBarger, Dornsife, Rosier, and Yarnall (2013) 

suggested that there may be potential costs in overemphasizing grit at home and in school. 

Currently, 200 KIPP charter schools across the United States promote grit as one of the character 

strengths essential for students’ academic success. While character education can help drive 

achievement, too much emphasis on individual traits—such as grit—could potentially cause 

stress for students and impede their learning (Shechtman et al., 2013). For example, students may 

be blamed for lacking grit, even when giving up is potentially more strategic for their learning. 

Lucas, Gratch, Cheng, and Marsella (2014) demonstrated this possibility, finding that having 

more grit may be less helpful in achieving a goal. Lucas and colleagues designed an experiment 

that involved 37 difficult anagrams, including 16 items that were impossible to solve. The 

purpose of the anagram task was to solve as many items as possible within 20 minutes. To do 

well in this task and earn an entry to a $100 lottery, participants would need to skip unsolvable 

items and move on to easier ones. Results showed that scores on the grit measure were 

negatively associated with the number of anagrams completed. This suggested that grittier 
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individuals may have spent more time solving more difficult items at the cost of lowering their 

performance. Thus, having more grit was actually detrimental in performing well on this task, 

suggesting that persistence may not be uniformly beneficial across challenging conditions.  

Lastly, Beck and Gong (2013) also investigated the consequences of persistence in the 

context of Intelligent Tutoring Systems. In this study, the concept of unproductive persistence 

was referred to as “wheel-spinning,” defined as “a student who spends too much time struggling 

to learn a topic within achieving mastery” (p. 432). To put it another way, wheel-spinning 

describes the phenomenon of students who are given several opportunities to practice a skill but 

are unable to arrive at the correct solutions. Within the tutoring system, students who have not 

mastered the skills, despite 10 practice opportunities, are considered to be wheel-spinning. Using 

this operational definition, as much as 35% of students were found to wheel-spin across two 

tutoring systems (Beck & Gong, 2013). Given the considerable percentage of wheel-spinners, 

there is a need to minimize students’ unproductive persistence and guide them towards a more 

effective use of their learning opportunities.  

While previous studies have shown learning benefits in persistence, other prior research 

has indicated otherwise. At times, sustained effort may be detrimental for students’ learning, 

especially when the amount of time spent struggling is not used effectively. As such, the path 

towards successful learning is not necessarily contingent on whether or not one persists on a 

task; rather, it may be more related to the ability to distinguish when persistence is productive or 

unproductive (Janoff-Bulman & Brickman, 1982). Unfortunately, as unproductive persistence 

and wheel-spinning have not been thoroughly studied, there is a gap in the literature 

investigating what the differences are between learners who persist in a productive or 

unproductive manner. As a result, it becomes pertinent for researchers to investigate the 
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differentiation between productive and unproductive persistence. Understanding these key 

differences is important in providing insight into students’ struggles and how to best address 

challenges towards successful learning.  

Persistence Towards Productivity 

There have also been attempts in recent research to examine how students’ efforts can be 

productive for learning. For instance, Kapur (2014) compared posttest math performance 

between two types of teaching sequences: direct instruction and a contrasting method, where 

students engage in problem solving before being taught the concepts of the lesson. While 

students who first encountered the problem-solving phase initially struggled in finding the 

correct solutions, they eventually became successful in learning a new math topic. Kapur 

referred to this phenomenon as Productive Failure. In a sample of ninth-grade students, Kapur’s 

results indicated that students who engaged in productive struggle performed significantly better 

on tests of conceptual understanding and transfer, compared to students receiving direct 

instruction. Similar results were found in a second study, where a productive struggle condition 

led to significantly higher levels of cognitive load and conceptual understanding than a direct 

instruction condition or a vicarious failure condition, where students evaluated previous 

(unsuccessful) solutions from their peers. These findings suggested that there are advantages in 

persisting despite greater cognitive load, especially when mental efforts are directed towards the 

production and exploration of math solutions.  

In addition to this, Warshauer (2015) also investigated the role of productive struggle in 

learning among middle school students. Based on classroom observations, Warshauer developed 

a framework to categorize the different struggles that emerged as students engaged in tasks on 

proportional reasoning. The categories for the kinds of student struggles were as follows: Get 
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started involved confusion and uncertainty about the goal of the task; Carry out process occurred 

when students experienced an impasse, typically due to an inability to implement an algorithm or 

remember formulas; Give mathematical explanation entailed difficulty in explaining reasons 

behind solutions; and Express misconception or error occurred when students used 

misconceptions to carry out solutions to problems. Without the appropriate response from the 

teacher, each kind of struggle could result in an unproductive resolution, where students 

continued to struggle without achieving any progress. Based on this definition, Warshauer’s 

results indicated that 18% of students’ struggles were resolved in an unproductive fashion. 

Additionally, she found the same type of struggle can lead to different resolutions, depending on 

how a teacher responds to the student. For instance, in an activity that required the comparison of 

quantities between two different containers, students struggled to Give mathematical 

explanations. Productive resolutions for this type of struggle were achieved in different ways: 

one teacher helped a student by guiding him or her to use a more appropriate representation of 

the problem, while another teacher encouraged the student to reflect on his or her answer. These 

findings suggested that the path to a productive resolution appears to be more nuanced than 

associating one type of struggle to one particular teacher response. Varying responses can work 

for different students, as teachers have to take into account individual student factors (e.g., prior 

knowledge). In general, the findings from this study provided more information on the different 

kinds of struggles that can occur within middle school math classroom; however, more research 

is still needed to elucidate which factors contribute to students’ productive struggle.  

The work of Yeager, Muhich, Torres, and Asers (2012) provided further insight into this 

area of research by developing a framework, known as productive persistence, to help direct 

students towards academic success. Specifically, the goal of productive persistence is to develop 
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students’ tenacity and their use of good learning strategies (i.e., study habits and skills). 

Preliminary findings on Carnegie’s Pathways, which provide year-long math courses within 

college community settings, showed promising results in applying the productive persistence 

framework. Historically, only about 21% of students in the Pathways courses completed their 

math course requirements within a year of continuous enrollment. When the productive 

persistence framework was integrated, 56% of students fulfilled the math course requirements in 

a span of one semester—considerably increasing the previous success rate in a shorter timeframe 

(Strother, Van Campen, & Grunow, 2013). Although persistence and the effective use of 

learning strategies have each been previously studied, the combination of these factors presented 

an innovative and actionable framework to investigate how students can learn more productively. 

More importantly, the work on productive persistence has suggested there are primary drivers 

that push students towards academic success (e.g., academic mindsets). These primary drivers 

provide actionable information for educators to intervene and support student performance, 

extending the implications from prior research on productive struggle and productive failure. 

With early signs of success, the productive persistence framework can potentially inform 

interventions to help students persist and learn successfully.  

Factors Impacting Productive Persistence 

To guide the design of effective interventions, it may be worthwhile to investigate which 

factors influence students’ productive persistence. Previous research has revealed that non-

cognitive factors, such as students’ beliefs and learning strategies, play an important role in 

students’ academic success. Given this association, Yeager, Bryk, Muhich, Hausman, and 

Morales (2013) asserted that the same non-cognitive factors linked to student achievement are 

also likely related to students’ productive persistence. These non-cognitive individual factors 
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may include students’ self-regulated learning and academic mindsets (Yeager et al., 2013) as 

well as their academic emotions (Pekrun & Linnenbrink-Garcia, 2012). Drawing from prior 

literature, the following section discusses each of these factors in detail.  

Self-regulation of Learning Strategies 

Skills related to students’ self-regulated learning may be an important contributor to their 

productive persistence. Aligned with the concept of self-reflective practice, previous research on 

social cognitive theory has focused on the importance of self-regulated learning, which is defined 

as “self-generated thoughts, feelings, and actions that are planned and cyclically adapted to the 

attainment of personal goals” (Zimmerman, 2000, p. 14). Using a three-phase model, 

Zimmerman and Campillo (2003) argued that self-regulation takes place in the following phases: 

the first phase, forethought, refers to the goal-setting processes and motivational beliefs that 

precede and prepare the stage for a learning effort; the second phase, performance, refers to 

processes related to self-control and self-observation that occur during a learning effort; the third 

phase, self-reflection, refers to processes related to self-judgment and self-reaction that occur 

after a learning effort. In particular, the third phase completes the cycle and influences the 

succeeding forethought phase—informing subsequent learning. As a whole, self-regulation 

entails a cyclical process, as learners modify current solutions based on feedback from previous 

performance.  

For more than a decade, previous studies have shown significant associations between 

self-regulated learning and academic performance (Schoenfeld, 1992; Zimmerman & Martinez-

Pons, 1988; Zimmerman & Schunk, 2001). More recent studies have indicated that self-regulated 

learning interventions related to goal-setting can potentially impact students’ persistence. For 

instance, Duckworth et al. (2011) examined the effects of MCII, mental contrasting (i.e., 
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elaboration of an ideal future and potential obstacles that impede on the goal) combined with 

implementation intentions (i.e., proposal of solutions for potential obstacles), on the completion 

of Preliminary SAT (PSAT) workbooks. Results from this randomized study showed that the 

students in the MCII intervention significantly completed more practice questions from the 

PSAT workbook than students in the control group, while controlling for PSAT course 

participation and gender. Similar findings were also found in the work of Gollwitzer, Oettingen, 

Kirby, Duckworth, and Mayer (2011), who compared the effects of two learning strategies—

mental contrasting and only thinking of positive future outcomes—on the acquisition of foreign 

words in elementary school children. The mental contrasting group had higher performance on 

vocabulary quizzes than a positive-future only group. As a consequence of implementing a self-

regulatory strategy such as mental contrasting, these positive outcomes could have likely 

stemmed from realizing that obstacles can be surpassed with sustained effort, encouraging the 

intervention group to persist in the completion of tasks (Gollwitzer et al., 2011). As a whole, 

these findings suggested that self-regulated learning strategies could serve as a potentially 

effective technique to deal with challenges and promote persistence in learning.  

Academic Mindsets 

In addition to self-regulated learning, another factor that may impact the path towards 

productive persistence is the students’ academic mindset. According to Dweck, Walton, and 

Cohen (2011), some students may possess a “fixed mindset,” viewing intelligence as an inherent, 

fixed quantity, whereas other students may possess a “growth mindset” and believe that 

intelligence is a malleable quantity that can be changed with hard work. These theories of 

intelligence have been shown to influence students’ efforts in the face of academic challenges, as 

well as corresponding academic outcomes. For instance, in a longitudinal study on seventh-grade 
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students, Blackwell, Trzesniewski, and Dweck (2007) found that students who endorsed growth 

mindsets significantly reported higher grades over 2 years in high school than students who 

endorsed fixed mindsets, even when controlling for prior achievement scores. Their findings also 

revealed that effort beliefs (i.e., extent to which a student believes hard work will lead to positive 

outcomes) and positive strategies (i.e., extent to which a student would try harder in response to 

failure) mediated the relationship between academic mindsets and student achievement. In other 

words, students who viewed intelligence as a malleable quantity were also more likely to engage 

in effort-oriented strategies and to believe in the benefits of hard work, relative to students who 

viewed intelligence as a fixed quantity. These differential motivational patterns between varying 

academic mindsets resulted in differences in student performance, such that students with fixed 

mindsets and positive motivational beliefs about efforts and persistence obtained improvements 

in grades.  

Academic Emotions 

Lastly, students’ academic emotions may play a potentially important role in the 

incidence of productive persistence. Pekrun and Linnebrink-Garcia (2012) argued that academic 

emotions, such as boredom and enjoyment, are associated with student engagement in an 

activity. Students who typically persist on a task may also experience flow, defined as “a holistic 

sensation that people feel when they act with total involvement, when there is a balance between 

their skills and level of difficulty” (Csikszentmihalyi, 1975, p. 72). On the basis of flow theory, 

this balance appears to be unstable, such that a student’s emotional state may likely shift towards 

boredom or anxiety. For instance, students may experience boredom when they find the task too 

easy, suggesting that the level of skill exceeds the level of difficulty. Conversely, students may 

also become anxious or frustrated when the level of difficulty is much higher relative to their 
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skill and capacity. These conditions illustrate that experiencing boredom and frustration could 

impact how students engage and persist on a task. 

Other studies on affect have indicated that different levels of emotions can lead to 

varying responses to learning successes and failures. For instance, some students may experience 

moderate levels of frustration, “pleasurable frustrations,” in which challenges are difficult yet 

doable—motivating learners to persevere through hard problems (Gee, 2007). In contrast, 

prolonged or intense frustration during learning activities could potentially lead to detrimental 

learning effects. D’Mello and Graesser (2012) suggested that when students experience 

persistent frustration due to an unresolved impasse, they are more likely to become bored and 

disengaged from the task. Contrary to flow theory, however, San Pedro, Baker, Gowda, and 

Heffernan (2013) found that boredom was more prevalent when problems were overly difficult, 

not easy. In addition to this, frustration was found to be more common for easy than moderately 

challenging problems—a result that is difficult to explain using flow theory (San Pedro et al., 

2013).  

In general, these findings suggested a potential link between students’ emotions and their 

ability to sustain effort and engagement during learning tasks. Although the relationship between 

emotions and persistence has not been fully explored, it may be helpful to investigate the 

relations between these constructs. The ability to navigate through difficult emotions, such as 

frustration, can potentially help students persist and confront challenges in the face of adversity.  

Studying Persistence Using Educational Data-Mining Methods  

While a handful of factors is potentially associated with productive persistence, these 

factors are likely difficult to study and address in traditional classrooms, where teachers need to 

manage individual student progress as well as the needs of the entire class. For this reason, 
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investigating productive persistence in CBLEs may be useful, given the opportunity to study 

learning processes across different types of learners in real time. In addition, CBLEs can provide 

a wealth of data about students’ online behaviors, which can help contribute to a better 

understanding of their motivational and cognitive processes. As such, CBLEs provide an 

environment conducive for investigating which factors are most associated with persisting 

productively in the face of challenging problems.  

With the growing interest in integrating computer-based learning into K-12 classrooms, 

the field of educational data mining (EDM) provides the means to analyze students’ detailed log 

data and develop models of student attributes (e.g., student’s current knowledge, motivation, and 

attitudes) that are potentially pertinent to learning (Baker & Yacef, 2009). For example, student 

modeling in previous EDM research has been used to infer and automatically predict student 

disengagement (Baker & Rossi, 2013) and affective states (Baker & Ocumpaugh, 2014). 

Modeling student characteristics plays an important role in personalizing computer-based 

learning, as it allows educational computer software to adapt automatically to students based on 

their individual differences (Baker & Yacef, 2009).  

Considering the scarce literature investigating the differences between unproductive and 

unproductive persistence, the emergent EDM methods used within CBLEs provides a promising 

analytic approach for differentiating between these two types of persistence. Insights from fine-

grained data (i.e., student’s online interactions) can help advance pedagogical theory about the 

ways in which students persist when learning, informing instructional interventions within and 

beyond the context of CBLEs.  

Understanding the divergent paths of persistence involves a variety of reasons for why a 

wide range of learners continue to persist without learning. Arguably, one potential reason is that 
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it may be difficult for teachers to determine which students are unproductively persisting and 

what interventions are appropriate to support them better. Another plausible reason entails 

students’ lack of self-regulation, such that they fail to monitor which strategies lead to further 

confusion versus learning. Analytic approaches in EDM present potentially actionable 

information for encouraging productive persistence and reducing wheel-spinning or 

unproductive persistence. For example, the analysis of students’ online interactions can help 

teachers identify struggling students and determine when to best intervene, encouraging 

instructional support at more targeted and opportune moments during learning (Baker & Yacef, 

2009). Additionally, findings from students’ online performance can potentially empower design 

researchers to develop learning environments that promote balance between persistence and the 

use of effective learning strategies.  

Modeling Persistence in Intelligent Tutoring Systems 

There have a few attempts to model student persistence within the context of CBLEs, 

such as Intelligent Tutoring Systems. As previously mentioned, Beck and Gong (2013) used 

students’ log data in ASSISTments and Cognitive Tutor—both online tutoring systems—to 

model wheel-spinning. Specifically, their criteria for wheel-spinning were as follows: a mastery 

criterion, which entailed getting three correct problems in a row, and a time criterion, which 

referred to a threshold of 10 practice opportunities. While the threshold selected was somewhat 

arbitrary, Beck and Gong showed that the distribution of students who achieved mastery 

remained flat after encountering 10 problems. This suggested that students’ proportions of 

mastery were unlikely to vary considerably with a higher threshold. Additionally, ASSISTments 

prevents students from making a large number of attempts in a short period of time, by locking 

out learners after 10 problems on a skill within a day. For these reasons, they argued that 10 
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practice opportunities served as a reasonable threshold for modeling wheel-spinning. According 

to this definition, results revealed a considerable percentage of wheel-spinning, with between 

9.8% and 35% of students engaging in unproductive behavior across both systems.  

Following this approach, Beck and Rodrigo (2014) used the same definition of wheel-

spinning to model unproductive persistence in a sample of Philippine students who worked on 

the scatterplot generation and interpretation unit in Cognitive Tutor; that is, students were 

considered wheel-spinning if they encountered 10 problems without achieving mastery (i.e., 

getting three responses correct in a row). Their results indicated that wheel-spinning is also 

prevalent outside American classrooms, specifically in the Philippines. Their findings also 

suggested that wheel-spinning is associated with specific affective states, namely confusion and 

flow, but not with boredom. To explain this pattern of findings, Beck and Rodrigo argued that 

the phenomenon of wheel-spinning may be more related to affective factors that involve some 

cognitive reflection when learning content materials, rather than the lack of motivation to do the 

work. Given the smaller sample used in their study, further work is needed to explore fully the 

relations between unproductive persistence and affect, especially frustration, which has been 

previously linked to how students continue to engage in learning. 

Using the same definition as wheel-spinning in Beck and Gong (2013), Gong and Beck 

(2015) built a logistic regression model to predict whether a student will wheel-spin or master a 

skill at each practice opportunity. They adopted this approach to track the likelihood of wheel-

spinning over time using log data from two tutoring systems, with 96,919 problems attempted by 

567 students in Cognitive Tutor and 133,061 problems attempted by 5,103 students in 

ASSISTments. They built additional features into their wheel-spinning detectors relevant to the 

following aspects: student in-tutor performance (e.g., number of prior problems solved correctly 
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on the first attempt); features argued to represent the seriousness of the learner’s attitude (e.g., 

number of previous problems that the student solved correctly and responding more than one 

standard deviation faster than the mean response time for the current problem); and the number 

of prior problems practiced by the students for a given skill. Gong and Beck conducted a three-

fold cross-validation at the student level, where the model was repeatedly built on two groups of 

students and tested on the remaining group. Results showed that as students encountered more 

practice opportunities without achieving mastery, they were more likely to wheel-spin. 

Additionally, this combination of aspects in a multi-feature model achieved high values of Area 

Under Curve (AUC) and Percent Correct in both the training and test groups. In general, these 

findings suggested that this model generalizes well to new and unseen students of Cognitive 

Tutor and ASSISTments.  

Lastly, Matsuda, Chandrasekaran, and Stamper (2016) also developed a wheel-spinning 

detector from 122 students who used Cognitive Tutor Geometry. They built a neural network 

model to detect wheel-spinning as classified by expert coders, from data on students’ response 

accuracy while learning a skill during the fifth through tenth practice opportunity. Matsuda and 

colleagues argued that the data were insufficient to identify wheel-spinning in student-skill pairs 

with fewer than five practice opportunities. Thus, only student-skill responses that had five or 

more practice opportunities were included in analysis, resulting in 2,883 student-skill sequences. 

As a first step, two human coders were asked to identify cases of wheel-spinning based on 

students’ response data. Using this human coding system, a set of neural-network models were 

built to classify response sequences into wheel-spinning or non-wheel-spinning, out of all the 

students who had not mastered the skill. The detectors were developed using 10-fold cross-

validation and assessed using model precision and recall. As Matsuda and colleagues were trying 
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to figure out the best number of practice opportunities to predict wheel-spinning, they built a 

separate model for each number of practice opportunities a student had encountered on a specific 

skill (i.e., from 5 to 10). Overall, each of these neutral-network models achieved high recall but 

low precision, with the model for the eighth practice opportunity performing slightly better than 

the rest. These findings suggested that the neural-network detectors were able to detect wheel-

spinning early in the learning process (i.e., as early as five practice opportunities), but with a 

high false-positive rate.  

In sum, automatically detecting wheel-spinning can spare teachers the impossible task of 

assessing and monitoring each student’s likelihood of struggling unproductively on a 

considerable number of problems. In general, modeling wheel-spinning offers the potential for 

scalability because researchers have previously built detectors of unproductive behaviors across 

many students in two different tutoring platforms. However, efforts to improve wheel-spinning 

modeling approaches have been made, no research has focused on the ability of these detectors 

to differentiate between productive and unproductive persistence. While previous studies based 

their detectors on whether or not a student reached 10 problems without achieving mastery (Beck 

& Gong, 2013; Beck & Rodrigo, 2014; Gong & Beck, 2015), this definition of wheel-spinning 

did not take into account whether the student ever reached mastery—in ASSISTments, correctly 

responding to three consecutive problems of the same skill following this threshold of 10 

practice opportunities. This limitation raises questions about the validity of the models because 

they treated a student who mastered on the 11th problem the same as one who never mastered 

after 141 problems. Additionally, this wheel-spinning definition also did not take into 

consideration students who may have asked for external help or were lucky in getting three 

answers in a row correctly—thereby potentially overestimating the incidence of productive 
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persistence. Additional work should be done in refining the definitions of productive and 

unproductive persistence to help ensure the validity of these constructs.  

Summary of the Literature Review  

Previous studies on grit and academic tenacity have demonstrated that persistence plays a 

significant role in supporting students’ successful learning. However, despite the learning 

benefits associated with tenacity, sustained effort may not always lead towards academic 

success. For instance, persisting on a task may not be helpful if students are struggling 

fruitlessly, with little or no progress in their learning. Recent studies on wheel-spinning, where 

too much time is spent struggling without achieving mastery, have indicated that a considerable 

percentage of learners engage in this mode of unproductive persistence within CBLEs. This 

suggests that the key to successful learning is not necessarily contingent on continued effort, but 

also on the ability to determine when effort is not productive and when to change strategy. 

Unfortunately, because the concept of unproductive persistence has been largely understudied, 

no research has yet compared productive persistence to wheel-spinning or how to support 

students who engage in either mode of persistence.  

Thus, it becomes increasingly important to differentiate between productive and 

unproductive persistence to help support struggling learners. Understanding the key differences 

between these modes of engagement can begin to fill the gap in the literature and help teachers 

identify and support students who wheel-spin, while encouraging students to continue persisting 

if that persistence is productive. Findings in this area can potentially provide insight into 

unbundling the concept of persistence by encouraging students to work hard when it is beneficial 

and support them when it is not.  
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While recent modeling approaches on wheel-spinning have shown considerable efforts in 

detecting unproductive persistence within Intelligent Tutoring Systems, further work is still 

needed to understand better how this construct correlates with more global measures of tenacity.  

To the best of the author’s knowledge, no systematic research has examined the relationships 

between productive persistence and grit. Exploring these relations could enhance the literature on 

how the expanding research on grit can be best applied to students identified as productively 

persisting.  

By investigating how these constructs relate to one another, we can better understand the 

different trajectories of student persistence and identify potential protective factors to support 

successful learning. The key next step is to differentiate unproductive persistence from 

productive persistence—towards developing motivational research-based practice that enhances 

productive struggle and minimizes wheel-spinning. 
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CHAPTER III 

METHODOLOGY 

 

Modeling in the ASSISTments System  

The main objective of this dissertation was to differentiate between students’ productive 

and unproductive persistence, towards understanding the relationship between productive 

struggle and grit. This chapter describes the ASSISTments tutoring system, which is the primary 

source of data for this dissertation. Specifically, the data used in this dissertation consisted of 

students’ online log data recording their online interactions with ASSISTments and their online 

responses to the Short Grit Scale (Grit-S), which was embedded in the tutor. To address the first 

research question, Study 1 discusses how models of wheel-spinning were created to differentiate 

students who productively and unproductively persisted in the tutoring system. To address the 

second research question, Study 2 discusses how students’ proportions of wheel-spinning and 

productive persistence were correlated with their grit survey scores.  

The ASSISTments System 

This section describes the ASSISTments tutoring system, with particular attention to two 

functions that are particularly relevant to this dissertation: Skill Builders and the Automatic 

Reassessment and Relearning System (ARRS). Detailed descriptions of ASSISTments’ goals 

and functions are provided below. 
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Goals of ASSISTments 

ASSISTments has been primarily used for assessing and assisting learning in middle 

school mathematics. In 2014, about 600 teachers across 43 states implemented ASSISTments, 

with approximately 50,000 students using the system each school year. Consistent with its goal 

to give out reports on student learning and performance to teachers, ASSISTments provides 

formative assessments of students’ acquisition of specific math skills. Additionally, as an 

authoring tool, it allows teachers to create their own math content or choose from a library of 

ASSISTments problem sets that align with U.S. Mathematics Core Standards. In particular, 

problem sets contain a list of problems that tackle one of the following broad math topics in a 

grade level: Grades 6 and 7 (Ratios and Proportional Relationship, Number System, Expressions 

and Equations, Geometry, and Statistics and Probability) and Grade 8 (Number System, 

Expression and Equations, Functions, Geometry, and Statistics and Probability).  

Functions of ASSISTments  

The system also utilizes a mastery-based learning approach in one of its popular features, 

Skill Builders. In Skill Builders, students are given the opportunity to practice on related 

problems until they master the associated math skill. By default, a student is considered to have 

mastered a skill in ASSISTments if he or she is able to get three questions correctly in a row 

within a Skill Builder, as illustrated in Figure 1. While students who know the skill may reach 

this proficiency threshold quickly, those who are struggling to learn the skill will have to work 

through more problems.  
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Figure 1. Mastery of a Skill Builder in ASSISTments 

For each problem (i.e., original problem), students have the opportunity to access hints or 

scaffolding questions. Hints provide a sequence of clues that explain to students how to solve an 

original problem. As shown in Figure 2, the last hint in each hint sequence (called the bottom-out 

hint) provides students with the answer to the original problem.  

 

 

 

 

 

 

 

Figure 2. Types of hints in ASSISTments 
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ASSISTments also consists of scaffolding questions that break down the original problem 

into individual steps. These scaffolds are answered in a linear progression, where students must 

correctly answer the first scaffolding question to proceed to the next one. Once all scaffolding 

questions are completed, students may be prompted to answer the original question again.  

Given the possibility that students may get lucky and correctly guess three questions in a 

row in a Skill Builder, or students may develop shallow knowledge that they fail to retain over 

time, the Automatic Reassessment and Relearning System (ARRS) was created to assess and aid 

in students’ skill retention (Heffernan et al., 2012). Upon achieving mastery on a particular skill, 

students are given a single-item test on the same skill following a spaced schedule, with an 

increase in intervals between re-assessments (i.e., 7 days, 14 days, 30 days, and 60 days). If a 

student fails on any of these reassessments, he or she will be assigned relearning assignments to 

re-master the forgotten skill. Findings indicate that reassessment using ARRS leads to higher 

academic performance, with nearly half a grade higher for students in the ARRS conditions 

compared to non-ARRS counterparts (Heffernan et al., 2012). 

As a whole, the features and functions of ASSISTments afford students the opportunity to 

practice as many problems as are needed to master a particular math skill. Such an opportunity 

would be difficult to recreate in a traditional classroom, where teachers have a limited time to go 

over a fixed number of problems. With the corpus of online data collected from students within 

ASSISTments, it becomes possible to examine closely and better understand how students 

persist through an ongoing series of problems. As a result, this structure of ASSISTments makes 

it an excellent platform to investigate student persistence. As indicated in previous wheel-

spinning studies, one can easily imagine a student persevering through many problems but still 

not learning the corresponding skill. While little research has been conducted to reduce this 
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phenomenon, continued research on ASSISTments could potentially provide insight into 

addressing unproductive persistence within CBLEs.  

Study 1 (Modeling Wheel-Spinning in ASSISTments: Methods and Results) 

To address the first research question, educational data-mining techniques were used to 

build models that differentiate between productive persistence and wheel-spinning in 

ASSISTments. The wheel-spinning model can indicate, after a student has completed 10 

mathematics problems, whether or not he or she will eventually master and be able to 

demonstrate the skill in review later on. The section below details the modeling approach and 

what was learned from it.  

Participants 

Study 1 included data from the ASSISTments Skill Builders during the school year of 

2014-2015. Data from a total of 26,497 students from a range of middle schools in the northeast 

United States were used in this set of analyses. The distribution of grade levels was as follows: 

14% in K-5, 58% in Grades 6-8, and 25% in high school or higher education; the remaining 2% 

of students did not provide any grade-level information. Based on the students’ user names, 

about 42% of students were inferred to be male, while 39% of students were inferred to be 

female. The gender of 19% of students could not be determined based on their user names. These 

26,497 students attempted 940 Skill Builders problem sets over the course of the 2014 school 

year.  

The objective of the analyses was to build machine learning models that differentiate 

between students who were persisting productively and those who were wheel-spinning during 

their work on the Skill Builders problem sets. Both of these groups are considered to be 
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persistent, but one group’s persistence appears to produce positive results while the other group’s 

persistence does not.  

The author operationally defined students who are “persistent” to be students who 

worked on 10 or more problems within a single problem set. This cut-off was selected in part 

based on the design of the system, where students are stopped from working on the problem set 

after they have attempted 10 problems in a problem set within a day. For a student to continue 

onto the 11th problem in the problem set, he or she must return to the same problem set on a 

subsequent day.  

From the set of persistent student-problem set pairs, instances of productive persistence 

and wheel-spinning were first identified. Given that the data were collected over the span of a 

whole year, there were instances in which students were able to attempt the same problem set 

more than once throughout the year. Students were thus able to achieve the mastery criteria of 

answering three problems correctly in a row—and then attempt the corresponding ARRS test—

more than once throughout the year within a single problem set. For tractability, the measure of 

whether a student is “productive” or “wheel-spinning” was limited to the student’s first ARRS 

test outcome and its corresponding set of three problems answered correctly in a row. 

Wheel-Spinning Behavior  

Operational definition. As shown in Table 1, the operational definitions of “productive 

persistence” and “wheel-spinning” were based on two measures of learning: mastery (three 

correct problems in a row) and retention of knowledge (ARRS test). Specifically, students were 

classified as “productively persistent” if they answered three problems correctly in a row on or 

after the 10th problem in a problem set and passed the ARRS test. Conversely, students were 

classified as “unproductively persistent” if they answered three problems correctly in a row on or  
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Table 1 

Criteria of Productive Persistence and Wheel-Spinning,  

Using Performance Metrics in the Skill Builders System 

 

10 or More 

Problems 

3 Correct in a Row 

(Mastery) on or 

After the 10th 

Problem 

First ARRS Test Definition 

Yes Yes Passed 
Productive persistence 

(this dissertation) 

Yes No N/A 
Wheel-spinning  

(this dissertation) 
Yes Yes Failed 

Yes Any Any 
Wheel-spinning  

(Beck & Gong) 

No Any Any 
Neither Wheel-Spinning 

nor Productive Persistence 

 

after the 10th problem but did not pass the ARRS test. These students demonstrated correct 

performance immediately on a problem set but not in the longer term. Similarly, students who 

completed 10 problems but did not answer three problems correctly in a row on or after the  

10th problem (and, as a result, never received an ARRS test) were also considered to be 

“unproductively persistent.” 

Since the administration of the ARRS test could be customized by teachers, data from 

students who successfully answered three problems correctly in a row but were not given an 

ARRS test due to teacher customizations were considered to be missing data. It is worth noting 

that success on the ARRS test can be noisy—it is possible to get an incorrect answer by slipping 

or a correct answer by guessing (Baker, Corbett, & Aleven, 2008). As with all operational 

measures, this measure is therefore imperfect, but can still provide a basis for attempting to 

predict whether a student’s persistence will be productive.  
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In sum, the original dataset consisted of a total of 287,093 student-problem set pairs. Of 

this initial dataset, however, 211,612 student-problem set pairs were removed because students 

achieved three correct problems in a row at any point in time but did not attempt a corresponding 

ARRS test. Of the remaining 75,481 student-problem set pairs, only 8,948 student-problem set 

pairs were considered persistent, i.e., having attempted 10 or more problems in a problem set, 

regardless of mastery.  

The final dataset used in these analyses thus consisted of 8,948 student-problem set pairs 

that were defined as persistent student-problem set pairs and used to build the final models. 

Within this final dataset, 2,093 student-problem set pairs were instances defined as productive 

persistence, while 6,855 student-problem set pairs were defined as wheel-spinning based on the 

criteria.  

According to the study’s definition, then, 9.08% of the total of 75,481 student-problem 

set pairs involved wheel-spinning, a lower proportion of wheel-spinning than reported in earlier 

studies that defined wheel-spinning as whether the student took a large number of problems to 

learn a skill (Beck & Gong, 2013). According to Beck and Gong’s (2013) definition, where any 

student who completes 10 or more problems without getting three correct in a row and achieving 

mastery is wheel-spinning, 46.90% of the total 75,481 student-problem set pairs that had ARRS 

information would have been considered wheel-spinning. When considering the original dataset 

containing all student-problem set pairs, 12.33% of the original 287,093 student-problem set pairs 

would have been considered wheel-spinning, based on Beck and Gong’s definition. Since many 

students do indeed eventually get three correct in a row and are then able to pass a retention test, 

one would argue that Beck and Gong’s definition contains a great deal of productive persistence. 

Not all students who struggle are spinning their wheels.  
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However, even when using Beck and Gong’s definition, there is still a substantial 

discrepancy in the proportion of wheel-spinning. A plausible explanation for the discrepancies in 

wheel-spinning proportions between this study and Beck and Gong’s work lies in the choices of 

how the ASSISTments log data were aggregated. Whereas the present study focused on Skill 

Builders and the aggregation of student-problem set pairs, Beck and Gong’s analysis included 

problem set types other than Skill Builders and the aggregation of student-skill pairs. Due to the 

design of Beck and Gong’s analysis, many students might have seen a skill across a much wider 

range of time and contexts than in the present study. 

Feature engineering. To differentiate wheel-spinning from productive persistence, a 

feature set previously created for another analysis (Baker, Goldstein, & Heffernan, 2011) was 

leveraged for Study 1. The initial core set of features consisted of 25 student actions and 

attributes within the ASSISTments Skill Builders platform that provided evidence on student 

persistence and learning. Following Beck and Gong’s (2013) wheel-spinning threshold of 10 

practice opportunities, the actions across the first 10 problems were used for feature engineering 

to build early predictors of wheel-spinning (i.e., whether they did not master the problem set or 

fail the ARRS test later on). A total of 125 problem-set-level features were then generated from 

these core features, based on their minimum, maximum, average, sum, and standard deviation 

across the problem set prior to the student having reached the 10-problem threshold for being 

persistent. 

The features generated include attributes related to student use of hints in a problem set, 

number of student attempts, and features involving the time between these student actions. 

Examples of these attributes are listed below:  
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● number of last eight first responses that included a help request,  

● number of last five actions that were a first response to a problem and incorrect, 

● amount of time spent on the current problem so far,  

● amount of time since the current problem set was last seen by the student,  

● number of attempts made to solve each problem within a problem set, and 

● number of bottom-out hints requested in the last eight problems.  

Additionally, features related to the frequencies and occurrences of various student actions, and 

features related to the amount of time spent on/between certain student actions were created.   

Machine learning model. After developing the feature set, a model was built to predict a 

binary variable: whether the student persisted productively or unproductively (i.e., wheel-

spinning). The model was built using RapidMiner 5.3 data-mining software (Mierswa, Wurst, 

Klinkenberg, Scholz, & Euler, 2006) using the Weka J48 decision tree algorithm, which has been 

previously used in building detectors of engagement, affect, and meta-cognitive constructs. 

Feature selection was conducted using an outer-loop forward selection process, attempting to 

determine the cross-validated goodness of specific sets of features. It is worth noting that 

conducting outer-loop forward selection tends to have an upward bias on model goodness 

relative to true training-test splits. The final features selected were from the set of attributes from 

the work of Baker, Goldstein, and Heffernan (2011).  

The multi-feature model was validated using 10-fold student-level batch cross-validation, 

with AUC ROC as the primary measure of model goodness. The AUC ROC metric was 

computed using the A’ implementation (rather than computing the integral of the area under the 

curve) to avoid having artificially high AUC ROC estimates because of having multiple data 

points with the same goodness—a feature of the integration-based estimates currently available 
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in most packages (Baker, 2015). A model with AUC ROC of 0.5 performs at chance, and a 

model with AUC ROC of 1.0 performs perfectly. It is worth noting that AUC ROC takes model 

confidence into consideration.   

A precision-recall curve was created to identify the tradeoffs between precision and recall 

at different confidence thresholds of the model of unproductive persistence. Using a precision-

recall curve facilitates understanding of how well the model functions across its predictive range, 

rather than at just one point, and can also be used to choose an optimal threshold for 

interventions with different costs or benefits (Davis & Goadrich, 2006). Precision represents the 

proportion of instances identified as wheel-spinning that are true instances of wheel-spinning, 

while recall represents the proportion of instances of true wheel-spinning that were identified as 

wheel-spinning. To put it another way, precision indicates how good the model is at avoiding 

false positives, while recall indicates how good the model is at avoiding false negatives. 

Together, precision and recall provide an indication of the model’s balance between these two 

types of errors (Davis & Goadrich, 2006).  

After creating the J48 decision tree with the initial set of features, further analysis on its 

structure was conducted. Features selected in the top three nodes in the J48 decision tree were of 

particular interest, as these play an important role in the tree’s process of evaluating specific data 

points. Appendix A provides a complete summary of the very large decision tree structure.  

Results 

Multi-feature Model 

The J48 model achieved an AUC value of 0.684. The standard error for the AUC metric 

for J48 was computed to be 0.004 (using the approach in Hanley & McNeil, 1982). This J48-

based model used a combination of 15 features (see Appendix B for a description of each of 
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these features). The final decision tree generated using this algorithm had 95 leaf nodes and 189 

decision nodes. The precision-recall curve generated for the J48 model of wheel-spinning is 

shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A precision-recall curve for the J48 model’s predictions of wheel-spinning 

 

 

From the precision-recall curve shown in Figure 3, there appears to be a clear tradeoff 

between precision and recall across thresholds, although the relationship is non-monotonic. The 

highest precision (nearly 0.90) is seen for relatively low values of recall (between 0.20 and 0.40). 

These high precision values remain stable as recall increases to 0.7, and only drop slightly 
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afterwards. Overall, it can be seen that the precision of the J48 model (the proportion of true 

positive predictions out of all positive predictions) remains high (above 0.75) even at high recall 

values—up to 100% recall. 

When analyzing the features in the tree individually, only one feature from the J48  

multi-feature model performed at a goodness substantially above chance—the standard deviation 

of the amount of time since the current problem set was last encountered by the student 

(std-timeSince Skill: AUC = 0.554). As the 15-feature model achieved considerably better 

predictive performance than the performance of each single feature, this suggests that it is in the 

interaction of these features that wheel-spinning and productive persistence can be differentiated. 

Top three features in the J48 decision tree. One can better understand the pattern of 

relationships that distinguish wheel-spinning from productive persistence by examining the top 

nodes of the J48 decision tree. This tree only has leaves on one side of the first- and second-level 

nodes. As such, the author focused on the features in the three top nodes of the tree, which form 

a single branch. The tree spreads out below these levels. These features are as follows:  

• minimum number of hints requested in any problem in the problem set (min-hintTotal),  

• maximum number of bottom-out hints requested in the last eight problems  

(max-frPast8BottomOut), and 

• standard deviation of the amount of time since the current problem set was last seen 

by the student (std-timeSinceSkill). 

The second and third of these features deserve a bit of further examination. Both of these 

features only include actions in the current problem set—neither feature cuts across problem sets. 

Max-frPast8Bottomout refers to the maximum number of bottom-out hints requested in the  

past eight problems within the sequence of 10 problems in this problem set. Since the value of 
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max-frPast8BottomOut refers only to the number of bottom out hints in the most recent eight 

problems within a sequence of 10, a value of 1 could indicate that a student requests a bottom-out 

hint at any point within the sequence of 10 problems. It could also indicate more than one 

bottom-out hint requested in all 10 problems if the student requests one bottom-out hint at the 

beginning and one more at the end of the 10-problem sequence. In this case, the value of 1 will be 

obtained by the sequence {1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, where 1 refers to a problem in which a 

student requested a bottom-out, while 0 refers to when he or she does not.  

The std-timeSinceSkill variable gives the amount of variation in how much time the 

student took between each problem encountered in this problem set. A low value for  

std-timeSinceSkill indicates that the amount of time spent between problems in this problem set 

was relatively similar. For example, a student who attempted two to three problems in the same 

problem set every day over four consecutive days before achieving mastery and attempting the 

corresponding ARRS test would have a relatively low std-timeSinceSkill value, compared to 

other students in the dataset. In comparison, a student who attempted the maximum 10 problems 

allowed in a day and then only returned after 4 weeks to re-attempt the problem set before 

achieving mastery and trying the corresponding ARRS test would have a much higher  

std-timeSinceSkill value. 

Based on analyses of the top three nodes described above, a considerable proportion of 

the data is explained by two feature combinations of these three features. Both feature 

combinations were associated with high probabilities of wheel-spinning, indicating that there are 

two distinct types of students who are likely to persist unproductively in the tutoring system. 

The first feature combination indicates that students were likely to be wheel-spinning 

when they did not request any hints in at least one problem within the problem set but requested 
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more bottom-out hints in the last eight problems within the sequence of 10. 89.07% of the 

instances (2,544 out of 2,856 student-problem set pairs) (see Table 2).  

Table 2  

Relationships Between the First Combination of Features at the Top of the Tree  

and Wheel-Spinning Within the J48 Model 

 

While the first feature combination indicates that more bottom-out hint requests were 

associated with more wheel-spinning, wheel-spinning could still occur with fewer bottom-out hint 

requests. The second feature combination indicates that, even when the maximum number of 

bottom-out hint requests was 1 or 0, students could still wheel-spin if they did not request any 

hints in at least one problem and the standard deviation value of the amount of time since the 

current problem set was last seen was less than or equal to 2.53 days. The probability of wheel-

spinning for the second feature combination was lower than for the first feature combination. A 

total of 77.85% of the instances (5,027 out of 6,457 student-problem set pairs with this feature 

combination) were labeled as wheel-spinning (see Table 3).  

  

Selected Features Feature Descriptions 

Likely to Be 

Wheel-Spinning 

When 

 

min-hintTotal 
Minimum number of hints requested in 

any problem in the problem set 

 

= 0 

 
max-frPast8BottomOut 

Maximum number of bottom-out hints 

requested in the last eight problems 

within the current problem set 

 
> 1 
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Table 3 

Relationships Between the Second Combination of Features at the Top of the Tree  

and Wheel- Spinning Within the J48 Model  

 

Selected Features Feature Descriptions 

Likely to Be 

Wheel-Spinning 

When 

 

min-hintTotal 
Minimum number of hints requested in 

any problem in the problem set 

 

= 0 

 
max-frPast8BottomOut 

Maximum number of bottom-out hints 

requested in the last 8 problems within 

the current problem set 

 
<= 1 

 
std-timeSinceSkill 

Standard deviation of the amount of time 

since the current problem set was last seen 

by the student 

 
< = 2.53 days 

 

These three selected features (min-hintTotal, max-frPast8bottomOut, and  

std-timesinceSkill) and their relationships with student wheel-spinning in Skill Builders are 

discussed in greater detail in the next section.  

Exploring model features. To gain a better understanding of the range of values for the 

features at the top nodes of the prediction model, the author built histograms of min-hintTotal, 

max-frPast8BottomOut, and std-timeSinceSkill. Corresponding proportions of student wheel-

spinning across the value ranges for these features were also created (Figures 4, 5, and 6, 

respectively). 

In the case of min-hintTotal, Figure 4 shows a unimodal distribution. In general, most 

students did not request any hints in at least one problem. The corresponding proportion of 

student-problem set pairs that were wheel-spinning based on the operational definition for each 

range of values in min-hintTotal is represented by the line graph. Here, one can see that the 
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proportion of student wheel-spinning is much lower if the minimum number of hints requested in 

any problem increases beyond 1. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Showing (a) Histogram of the minimum number of hints requested in any problem 

across student-problem set pairs (min-hintTotal) and (b) Proportion of student-problem set pairs 

identified as wheel-spinning for each min-hintTotal range of values 

 

As shown in the histogram for max-past8BottomOut in Figure 5, the distribution for this 

feature is relatively skewed to the right. Most students did not make any bottom-out hint requests 

in the last eight problems within the sequence of 10 problems. The second most frequent number 

of bottom-out hint requests was 1, with 2 as the third most frequent. The proportion of students 

who were wheel-spinning across the values of bottom-out hints requested is represented with a 

line graph. This line graph shows a steady decrease in the proportion of student wheel-spinning as 

the maximum number of bottom-out hints requested in the past eight problems increases.  
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Figure 5. Showing (a) Histogram of the maximum number of bottom-out hints requested  

in the last eight problems across student-problem set pairs (max-past8BottomOut) and  

(b) Proportion of student-problem set pairs identified as wheel-spinning for each  

max-past8BottomOut range of values 

 

 

From Figure 6, the most frequent range of standard deviation values for the amount of 

time between problems of the same skill is 0; this means that the student started the next problem 

immediately after completing the previous problem in the system, for every case within the 

problem set. However, many student-problem set pairs have standard deviation values of 100,000 

minutes or more (approximately 69 days or more). The line graph shows that the proportion of 

students defined as wheel-spinning is highest at very low standard deviation values of the length 

of time spent between encountering problems in a problem set. As previously mentioned, low 

standard deviation values typically represent situations where a student experiences shorter 

periods of time between solving problems, while high standard deviation values typically 

represent situations where a student experiences longer periods of time between problem 
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attempts of the same problem set. As such, this finding implies that students who have shorter 

delays between solving problems are more likely to be wheel-spinning.  

Figure 6. Showing (a) Histogram of the standard deviation for the amount of time since 

the current set was last seen across student problem set pairs (std-timeSinceSkill) and  

(b) Proportion of student-problem set pairs identified as wheel-spinning for each  

max-past8BottomOut range of values 

 

 

Summary of Study 1 Results 

In general, these findings indicated (unsurprisingly) that no single-feature model 

performed as well as the multi-feature model. The J48 multi-feature model was reasonably 

effective in predicting whether or not a student will engage in wheel-spinning, achieving an AUC 

ROC of 0.684. By comparison, the AUC performance of gaming detectors was found to be 

around 0.80 (Baker, Corbett, Koedinger & Roll, 2006; Pardos, Baker, San Pedro, Gowda, & 

Gowda, 2014), which is only slightly better than the current performance. Sensor-free affect  
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detectors of student affective states in ASSISTments, found to be effective in several-year 

longitudinal predictions (San Pedro et al., 2013), have had AUC values ranging between from 

0.63-0.74 (Pardos et al., 2014), slightly lower than the current value of the multi-feature model. 

AUC values in the 0.74-0.81 range are used in medical decision making with real-world impact, 

such as the choice of which anti-retroviral therapy to use for HIV patients (Revell et al., 2013). 

As such, while there is considerable room for improvement in the model presented here, this is at 

the level of goodness where it can be used for basic research and intervention, given appropriate 

caution.  

The findings presented here suggest that there is more predictive power in the combination 

of features, rather than in each of the features alone. Upon further analysis of the J48 decision 

tree, three selected features differentiated particularly well between students productively and 

unproductively persisting after 10 or more problems in the ASSISTments. The minimum 

number of hints requested in any problem (min-hintTotal) and the standard deviation of the 

amount of time since the problem set was last seen (std-timeSinceSkill) are both negatively 

associated with wheel-spinning. Specifically, more wheel-spinning is likely to occur when 

there are no hints requested in any problem and there is lower variation in the delay between 

solving problems of the same problem set. In contrast, a nuanced relationship was found 

between the use of bottom-out hints and wheel-spinning. More wheel-spinning is likely to 

occur when students request too few or too many bottom-out hints in the last eight problems 

of a problem set.  

Understanding the relationship between productive persistence and grit. The 

findings of Study 1 extend prior wheel-spinning research by including a student’s eventual 

mastery and success on a delayed ARRS test as part of the wheel-spinning criteria. As prior 
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wheel-spinning research focused on whether or not students had reached 10 problems without 

achieving mastery (which may have included some students who were productively persistent), 

the new definition used in Study 1 arguably provided a clearer differentiation between students 

who productively and unproductively persisted following 10 problems. When considering 

eventual mastery and ARRS performance, Study 1 revealed that approximately three times as 

many student-problem set pairs involved wheel-spinning as productive persistence in 

ASSISTments (9.08% vs 2.77%). This finding suggests that some intervention designed to 

minimize students’ unproductive struggle is warranted to help better support struggling learners 

in ASSISTments.  

While some work has correlated students’ wheel-spinning to their affective states (Beck 

& Rodrigo, 2014), no research has examined the relationship of this construct to popular 

measures of tenacity, such as grit. Exploring how productive persistence relates to grit can 

potentially provide practical implications for supporting a variety of struggling learners across 

different learning environments. Determining which students are productively persisting could 

help indicate when research findings of how to enhance grit are most appropriate and helpful. 

Previous research has suggested that developing students’ growth mindset can be an effective 

strategy to promote grit (Laursen, 2015). As such, students who are already being productive 

when they are persistent (but are not being persistent frequently enough) may likely stick with 

challenging problems if teachers emphasize and praise their efforts over ability. As further work 

is needed to understand how productive persistence relates to grit, the next section, Study 2, 

discusses the methods to investigate the correlation between the two constructs.  
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Study 2 (Correlating Productive Persistence and Grit: Methods) 

To address the second research question, the author examined the relationship between 

productive persistence and grit. Using the same definition of productive persistence as used in 

Study 1, the incidence of productive struggle was correlated with grit scores on the Short Grit 

Scale (Grit-S). Findings in this study indicated the extent to which productive persistence was 

associated with grit, providing potential implications for synthesizing persistence research and 

designing interventions focused on supporting productive struggle across various learners.  

Participants  

The author leveraged log data from students who used ASSISTments during the middle 

school mathematics classes of schools in the United States throughout the school year of 2016-

2017. Through the help of the Worcester Polytechnic Institute (WPI) research team, the author 

collected and analyzed survey data from middle school students who took the grit survey in 

ASSISTments from May to June 2017. To ensure that an adequate number of students would 

take the online grit survey, the survey was embedded in 2017 into the Skill Builders most 

commonly used from May to June of 2016. These Skill Builders are as follows: Grade 6 

(“Finding the Surface Area of a Rectangular Prism” and “Finding the Mean, Median, Mode, or 

Range”); Grade 7 (“Probability of a Single Event” and “Combining like Terms”); and Grade 8 

(“Finding the Volume of a Cylinder” and “Square Roots”).  

A total of 486 students who took the grit survey and had ASSISTments log data during 

the academic school year 2016-2017 were included in Study 2. These 486 students attempted 

230 Skill Builders, resulting in 10,772 unique student-problem set pairs.  

Similar to Study 1, there were instances when teachers customized the administration of 

the ARRS test. Due to these customizations, the following were considered to be missing data: 
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instances when students successfully achieved mastery but were not given the ARRS test, and 

instances when students did not achieve mastery but were still given the ARRS test. Following 

these exclusion criteria, 6,568 student-problem set pairs were removed. A total of 4,204 student-

problem set pairs, with 213 students who attempted 192 Skill Builders, were included in the 

Study 2 analyses.  

Measures  

Short Grit Scale (Grit-S). Students’ grit levels were measured using the Short Grit Scale 

(Grit-S) (Duckworth et al., 2007; Duckworth & Quinn, 2009), an eight-item scale that was 

embedded in the ASSISTments tutoring system. The Grit-S Scale was designed to capture two 

latent factors: Consistency of Interest (i.e., a student’s passion over time) and Perseverance of 

Effort (i.e., a student’s ability to sustain effort in the face of challenges). Students were given a  

5-point response scale ranging from 1 (i.e., not at all like me) to 5 (i.e., very much like me). A 

complete version of Grit-S is shown in Appendix C. Example items included the following: 

“New ideas and projects sometimes distract me from previous ones” and “I am a hard worker.” 

Scores were averaged to obtain an index of students’ grit level, with a maximum score of 5 (very 

gritty) and minimum score of 1 (not at all gritty).  

Previous results have shown empirical evidence for the validity and reliability of Grit-S 

in a sample of young National Spelling Bee participants. For instance, Duckworth and Quinn 

(2009) revealed that the overall scale of Grit-S achieved high internal consistency (α = 0.80), 

with acceptable reliability for each of the factors: Consistency of Interest, α = 0.69; Perseverance 

of Effort; α = 0.76. In terms of predictive validity, Grit-S scores were found to be a significant 

predictor of GPA scores 1 year later, while controlling for age among Grace 7-11 students.  
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In the present study, the overall scale of Grit-S achieved an internal consistency 

coefficient of 0.59. As for the subscales, Consistency of Interest achieved a coefficient of 0.74, 

while Perseverance of Effort achieved a coefficient of 0.72. As both factors achieved moderate 

internal consistency, the author correlated proportions of students’ persistent behaviors to the 

scores of the overall scale as well as to the subscale scores on the Interest and Effort factors. 

Productive persistence and unproductive persistence. The same operational 

definitions of productive and unproductive persistence used in Study 1 were applied in Study 2. 

From a total of 4,204 problem set pairs, the author identified 9.02% of these (n = 371 student-

problem set pairs) as persistent, defined previously as those who worked on 10 problems within a 

single problem set. Among these persistent students, 3.19% of student-problem set pairs (n = 

134) were productive: where the student answered three problems in a row on or after 10 

problems in a problem set and passed the ARRS test of the same problem set. In other words, 

student-problem set pairs were considered as productively persistent if, after completing 10 or 

more problems, students reached mastery and succeeded on the delayed test. In contrast, student-

problem set pairs were considered unproductively persistent if, after completing 10 or more 

problems, they were still unable to reach mastery or failed on the ARRS test. Following this 

definition, 5.83% of student-problem set pairs (n = 245) were identified as unproductively 

persistent. 

Once each persistent student-problem set pair was categorized as productive or 

unproductive, the ratio of how often the students’ persistence was productive was computed. 

This produced an average proportion of productive persistence per student across problem sets, 

which was used for the main correlational analysis. The author also explored the relationship 

between grit and unproductive persistence based on prior definitions in Study 1, using the 
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average proportion of wheel-spinning per student across problem sets. For these metrics, students 

who were never persistent were dropped. The remaining 213 persistent students were included in 

the correlational analysis.  

In addition, the author also computed the ratio of how often the student was productively 

persistent versus giving up prior to 10 problems without reaching mastery. For this metric, 

students who were never productively persistent or never gave up prior to 10 problems without 

reaching mastery were dropped. Only 39 students were included in this analysis.   

Procedure 

Main analyses. 

Student-level correlations. To examine the relationship between productive persistence 

and grit, the author used Spearman correlation to correlate students’ proportions of persistent 

behaviors to their average scores on the overall Short Grit Scale (Grit-S), Interest and Effort 

subscales. A standard two-tailed t-test was used to determine if relationships were statistically 

significant. The same methods were used to explore how grit related to students’ wheel-spinning 

and the ratio of how often they productively persisted versus gave up prior to 10 practice 

opportunities without achieving mastery. The Benjamini-Hochberg (1995) correction was used 

to control for multiple comparisons. 

These main correlational analyses can help provide insight into how grit relates to 

different modes of persistence, specifically whether grit is more strongly associated with 

students’ productive or unproductive struggle.  

Hierarchical linear modeling. In addition to the student-level correlations, the author 

also explored the existence of classroom-level variance in grit levels. Considering that distinct 

classrooms may have differing Skill Builders completion rates that could influence responses on 
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persistent measures, hierarchical linear modeling (HLM) addressed this issue by examining the 

role of classroom variables on grit levels. The existence of these classroom-level effects was 

evaluated by estimating the null model, where the variance in the grit survey responses was split 

into student- and classroom-level components. The intraclass correlation (ICC) indicated the 

extent to which differences in grit levels existed between classrooms. From the total of 213 

persistent students, 26 classrooms were included in the HLM analysis.  

Secondary analyses. As several factors may potentially contribute to the relationship 

between students’ grit levels and their online persistent behaviors in ASSISTments, the author 

conducted a set of secondary analyses. Specifically, the author explored the role of the following 

factors on the different measures of persistence: time of year, students’ mastery speed, difficulty 

of Skill Builders, and students’ grade level. 

Time of year. To better understand the progression of wheel-spinning and productive 

persistence over the course of a year, the author computed the average proportion of each mode 

of persistence for each month of the academic year (i.e., August 2016 to June 2017) across 4,204 

student-problem set pairs.  

Mastery speed. To account for how well each student performed on a specific math topic, 

the author correlated each student’s mastery speed on a Skill Builder (i.e., the average number of 

problems to master a specific problem set) to his or her corresponding Grit-S scores. Due to the 

non-normal distributions of mastery speed, Interest and Effort, and the overall scale of Grit-S, 

Spearman correlation was used. Instances when students did not a master a problem set were 

treated as missing data and excluded from consideration. As such, a total of 2,967 student-

problem set pairs were included in this analysis.  
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Difficulty of a Skill Builder. Considering that some math topics are likely easier to grasp 

than others, the difficulty level of different Skill Builders may influence students’ frequency of 

wheel-spinning or productive persistence. To obtain categories representative of math topics with 

different difficulty levels, the author applied clustering based on the average mastery speed of 

each problem set in the current sample (n = 156 Skill Builders). As this analysis involved the 

computation of mastery speed, instances when students never mastered a problem set were 

treated as missing data and excluded from consideration.  

Clustering is defined as the process of grouping a set of objects, such that those belonging 

to the same cluster share similarities in their attributes. K-means, the most straightforward and 

popular clustering algorithm, was used because of its fast and easy implementation and analysis. 

For ease of interpretation, the number of clusters was prescribed in advance (K = 3) to represent 

three levels of difficulty: sets of problems that are easy, moderately difficult, and hard.  

Once clusters were defined, the author used a one-way ANOVA to investigate the effect 

of Skill Builders difficulty level (i.e., easy, moderately difficult, and hard) on students’ 

proportions of wheel-spinning and productive persistence. Log data from 156 distinct Skill 

Builders were included in the ANOVA analysis.  

Grade level. Student grade level may also play a role in influencing grit levels and 

persistent behaviors. To investigate this issue, the author conducted a one-way ANOVA to 

analyze the effect of student grade level on grit levels. From the total of 4,204 student-problem 

set pairs, there were 433 unique students. Of these 433 students, the grade-level information was 

as follows: 1 student in Grade 5,145 students in Grade 6,145 students in Grade 7,120 students in 

Grade 8, 1 student in Grade 9, 1 student in Grade 10, and 20 had missing grade-level 

information. As the majority of the students in this sample were in middle school, 410 students in 
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Grades 6 to 8 were included in the one-way ANOVA analysis. Students who were not in middle 

school or had missing grade-level information were dropped from analysis.  

Results  

Main results  

Student-level correlations. In addressing the main research question, the author 

summarized the results of the Spearman correlations between each persistent behavior and the 

Grit-S scores in Table 4. Surprisingly, there was no significant relationship between students’ 

proportions of productive persistence and their grit levels (Interest, rs = 0.064, t(211) = 0.93,  

p = 0.351; Effort, rs = 0.023, t(211) = 0.33, p =0.740; Grit-S, rs = 0.059, t(211) = 0.86, p = 0.395). 

Similar to this, students’ wheel-spinning proportions were not significantly related to their grit 

levels (Interest, rs = -0.055, t(211) = -0.80, p = 0.426; Effort, rs = -0.088, t(211) = -1.28, p = 

0.203; Grit-S, rs = -0.106, t(211) = -1.55, p = 0.124). In addition, students’ ratios of productive 

persistence versus giving up prior to 10 problems were also not significantly associated with 

their grit levels (Interest, rs = -0.209, t(37) = -1.30, p = 0.202; Effort, rs = 0.189, t(37) = 1.17,  

p = 0.248; Grit-S, rs = -0.002, t(37) = -0.01, p = 0.989). Overall, the author did not find evidence 

to suggest that grit manifested behaviorally within ASSISTments. In other words, these results 

indicated that grit, a significant predictor of long-term outcomes, was not significantly related to 

persistent behaviors linked with short-term outcomes in an online learning platform. 

Hierarchical linear modeling. To examine whether there was systematic variance in grit 

levels between classrooms, the author conducted HLM on the scores for Interest, Effort, and 

Grit-S. Based on the intraclass correlations on Interest (ICC = 0.02), Effort (ICC = 0.03), and 

Grit-S (ICC = 0.03), the proportion of variance in grit explained by classrooms was extremely 

low. According to Heck and Thomas (2015), most researchers used an ICC value of 0.05 as the 
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cut-off for conducting multi-level analysis. As such, these findings suggested that there was no 

systematic classroom variance for grit levels, suggesting that HLM was likely unnecessary.  

 

Table 4 

Spearman Correlation of Persistent Behaviors to Grit-S Scores, Across Students 

Persistent Behavior Spearman Rho (rs) p-value Adjusted alpha 

 
Productive Persistence     

Consistency of Interest  0.064 0.351 0.028 

Perseverance of Effort  0.023 0.740 0.044 

Grit-S  0.059 0.395 0.033 

 
Wheel-spinning  

  

Consistency of Interest  -0.055 0.426 0.039 

Perseverance of Effort  -0.088 0.203 0.017 

Grit-S  -0.106 0.124 0.006 

 
Ratio of Productive Persistence 

versus Giving up 

  

Consistency of Interest  -0.209 0.202 0.011 

Perseverance of Effort  0.189 0.248 0.022 

Grit-S  -0.002 0.989 0.050 

Note: *marginally significant after using Benjamini-Hochberg correction   

Secondary results.  

Time of year. To examine temporal changes in students’ persistent behaviors, Figure 7 

presents a summary of students’ proportions of wheel-spinning and productive persistence for 

each month, from August 2016-June 2017. Specifically, productive persistence remained 

consistently low throughout the academic year, with the lowest incidence found in August and 
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the highest incidence found in September. With regard to unproductive struggle, wheel-spinning 

was found to be highest in the beginning of the fall term, followed by a steep decline in October. 

Throughout the fall term (October-December) and spring term (January-May), the proportions of 

wheel-spinning were relatively low (0.10 or below), except for a slight increase in June.  

 

 

Figure 7. Proportions of productive and unproductive persistence  

for each month in the academic year (2016-2017) 

 

Figure 8 shows the frequency of student-problem set pairs throughout August 2016-June 

2016. The lowest frequency occurred in August 2016 while the highest frequency occurred in 

May 2017. 
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Figure 8. Frequency of problem set pairs for each month in the academic year (2016-2017) 

 

 

Mastery speed. Table 5 presents the correlational results between the average number of 

problems needed for a student to master a specific problem set and his or her average Grit-S 

scores. Mastery speed was not significantly correlated with Interest (rs = -0.037, t(2965) =  

-2.02, p = 0.045, adjusted alpha = 0.017) or Effort (rs = -0.023, t(2965) = -1.25, p = 0.203). 

There was a marginally significant and negative association between mastery speed and overall 

scores on Grit-S (rs = -0.036, t(2965) = -1.96, p = 0.047, adjusted alpha = 0.033, marginal 

adjusted alpha = 0.066). However, it is important to note the strength of this correlation was 

very weak, indicating that the number of problems needed for a student to achieve mastery was 

not closely associated with his or her overall grit scores.  
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Table 5 

Spearman Correlation of Mastery Speed to Grit-S Scores, Across Student-problem Set Pairs 

Spearman Rho (rs) p-value Adjusted alpha 

Consistency of Interest  
  

rs = -0.037 0.045 0.017 

Perseverance of Effort  
  

rs = -0.023 0.203 0.050 

Grit-S  
  

rs = -0.036 0.047 0.033* 

Note: *marginally significant after using Benjamini-Hochberg correction   

 

Difficulty of a Skill Builder. K-means clustering was conducted to obtain categories of 

difficulty levels across Skill Builders, using mastery speed as a proxy for difficulty (i.e., problem 

sets that take more problems for students to master can be viewed as being more difficult). With 

the prescribed number of clusters (K = 3), the resultant clusters varied in size (cluster 1, n = 92; 

cluster 2, n = 49; cluster 3, n = 15). Table 6 provides a summary of the descriptives for each 

cluster. Cluster 1 represents easier problems sets (mastered more quickly), Cluster 2 represents 

problem sets with moderate difficulty, and Cluster 3 represents harder problem sets (mastered 

more slowly).  
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Table 6 

Mean and Standard Deviation of the average mastery speed across Skill Builders  

Cluster Mean Standard Deviation 

Cluster 1 (n = 92) 3.87 0.51 

Cluster 2 (n = 49) 5.74 0.73 

Cluster 3 (n = 15)  9.12 1.33 

 

Using the groups from the cluster analysis, the author conducted a one-way ANOVA to 

test whether difficulty level (i.e., easy, moderately difficult, and hard Skill Builders) was 

significantly associated with students’ average proportions of productive persistence and wheel-

spinning. Levene’s tests indicated that assumptions of homogeneity were not met for productive 

persistence and wheel-spinning. As such, the Welch F statistic was used for both variables. There 

was a significant effect of difficulty level on proportions of productive persistence, Welch F  

(2, 30.31) = 21.84, p < 0.0001, η2 = 0.487. Similarly, there was a significant difference in 

proportions of wheel-spinning between difficulty levels of Skill Builders, Welch F (2, 29.54) = 

11.57, p < 0.0001, η2 = 0.293.  

In general, hard Skill Builders had the highest proportions of productive persistence of all 

problem sets. Planned contrasts using Games-Howell procedures indicated that Skill Builders 

with hard levels (M = 0.241, SD = 0.176) had higher proportions of productive persistence than 

Skill Builders with moderately difficult (M = 0.057, SD = 0.064) and easy levels (M = 0.013,  

SD = 0.029, all ps < 0.01. Additionally, proportions of productive persistence were significantly 

higher in moderately difficult Skill Builders than in easy Skill Builders, p < 0.0001.  
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In terms of unproductive struggle, hard Skill Builders also had the highest proportions of 

wheel-spinning of all problem sets. Planned contrasts using Games-Howell procedures revealed 

that Skill Builders with hard levels (M = 0.148, SD = 0.176) had significantly higher proportions 

of wheel-spinning than Skills Builders with easy levels (M = 0.004, SD = 0.019), p < 0.0001. 

However, there was no significance difference in wheel-spinning proportions between hard Skill 

Builders and moderately difficult Skill Builders (M = 0.039, SD = 0.064), p = 0.078. 

Additionally, moderately difficult Skill Builders had higher proportions of wheel-spinning than 

easy Skill Builders, p < 0.01.  

While the greater proportions of unproductive struggle found in hard Skill Builders was 

expected, the similar finding found for productive persistence was surprising. One might have 

expected higher proportions of productive persistence with easy Skill Builders. A possible 

explanation for this finding is that problem sets that take longer to master are more likely to have 

students who achieve mastery and skill retention on or after 10 problems. In sum, these findings 

suggested that hard Skill builders are likely important to focus on, given the high incidences of 

both wheel-spinning and productive persistence found in these problem sets.  

Grade level. A one-way ANOVA was conducted to test the statistical difference in 

average grit scores between middle school grade levels. Levene’s tests revealed that the 

assumption of homogeneity was met for Effort but not for Interest and Grit-S. As a result, the 

Welch F statistic was used for the two latter variables. There was a significant effect of student 

grade level on the Interest subscale scores (Welch F (2, 267.88) = 4.61, p < 0.05, η2 = 0.19) and 

Grit-S scores (Welch F (2, 269.37) = 6.86, p < 0.01, η2 = 0.027). In contrast, there were no 

significant differences in the average scores on the Effort subscale between grade levels,  

F (2, 407) = 1.51, p = 0.210, η2 = 0.008.  
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Planned contrasts using Games-Howell procedures revealed that seventh graders  

(M = 3.06, SD = 0.90) had significantly higher average grit scores than eighth graders (M = 2.73, 

SD = 0.89) on the Interest subscale, p < 0.01. However, there were no significant differences in 

Interest scores between seventh graders and sixth graders (M = 2.95, SD = 1.08), p = 0.610. In 

addition, sixth graders did not have significantly different Interest scores relative to eighth 

graders, p = 0.160.  

Similarly, sixth graders (M = 3.31, SD = 0.70) and seventh graders (M = 3.36, SD = 0.58) 

had significantly higher average grit scores than eighth graders (M = 3.11, SD = 0.53) on the 

overall Grit-S scale, both ps > 0.05. In contrast, there were no significant differences in Grit-S 

scores between sixth and seventh graders, p = 0.800. 

Overall, students’ reports of effort were not significantly different between grade levels. 

However, eighth graders reported significantly less passion and less grit than sixth and seventh 

graders. This pattern of results was not consistent with Duckworth et al.’s (2007) assertion that 

grit tends to grow with age. While one would expect older middle school students to report more 

grit than their younger counterparts, the author found the opposite result in the current sample.   

Summary of Study 2 Results 

In general, students’ proportions of productive persistence and wheel-spinning were not 

significantly associated with their Grit-S scores. In other words, grit did not appear to be 

associated with persistent behaviors in an online platform. While grit was marginally correlated 

with mastery speed (the average number of problems to master a Skill Builder), the strength of 

this relationship was very weak. In contrast, grit was significantly associated with student grade 

level. Findings indicated that eighth graders reported significantly lower overall grit levels and 

effort, as compared to sixth and seventh graders.  



 

59 

 

When looking at factors related to persistent behaviors, the findings from Study 2 

suggested that the difficulty levels of Skill Builders and the time of year may play a role in 

influencing students’ productive and unproductive persistence. In particular, productive 

persistence was found to be relatively low throughout the entire academic term, 2016-2017. In 

contrast, high proportions of wheel-spinning were found in the beginning of the fall term (i.e., 

August to September) and at the end of the Spring term (i.e., June). Lastly, hard Skill Builders 

had the highest incidence of both productive and unproductive persistence. In other words, 

problems that took longer to master were more likely to have students both productively and 

unproductively struggling on or after 10 problems.   
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CHAPTER IV 

DISCUSSION  

 

Persistence in Computer-based Learning Environments  

 

As persistence plays a significant role in learning, it is important for teachers and 

researchers to understand whether sustained effort is productive or unproductive. This topic is 

increasingly pertinent to investigate in the context of CBLEs, such as Intelligent Tutoring 

Systems, where students have been found to engage in wheel-spinning (Beck & Gong, 2013; 

Beck & Rodrigo, 2014; Gong & Beck, 2015; Matsuda et al., 2016). Results from both Study 1 and 

Study 2 suggested that specific factors, such as hint use and difficulty of a Skill Builder, 

contributed to students’ persistent behaviors in ASSISTments. As both factors are closely tied to 

functions in ASSISTments and other related platforms, the findings on these factors can provide 

insight into how to better identify and support wheel-spinning students in CBLEs.  

Hint Use  

In Study 1, the findings from the J48 multi-feature model indicated that three key 

features—the minimum number of hints requested in any problem (min-hintTotal), the 

maximum number of bottom-out hints requested in the last eight problems (max-frPast8 

BottomOut), and the standard deviation of the amount of time since the current problem set was 

last seen by the student (std-timeSinceSkill)—distinguish students who productively persisted 

from those who did wheel-spinning. Specifically, features related to hint usage (i.e., min-hintTotal 
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and max-frPast8BottomOut) were particularly important for distinguishing persistent behaviors in 

online learning systems.  

First, results involving min-hintTotal indicated that not requesting any hints in at least one 

problem was related to greater wheel-spinning. In other words, students who did not always 

request hints in the first 10 problems were more likely to wheel-spin later on, suggesting that 

early hint usage is likely beneficial for students. This result aligned with what previous literature 

has shown about the relationship between students’ help avoidance and their learning. In 

particular, Aleven et al. (2006) found that avoiding the use of help was negatively correlated with 

posttest scores, while controlling for pretest scores. Additionally, Almeda, Baker, and Corbett 

(2017) found that help avoidance had a generally stable negative correlation with aspects of 

robust learning, specifically transfer, retention, and preparation for learning. As such, students 

who wheel-spin and avoid hints could potentially be failing to realize they need support to learn 

the math content.  

Second, the findings on max-frPast8BottomOut showed that the relationship between the 

number of bottom-out hints requested and wheel-spinning was more nuanced than min-hintTotal. 

In particular, the heavy use of bottom-out hints in the last eight problems was related to greater 

wheel-spinning. It is possible that some of these students were gaming the system (Baker, 

Corbett, Koedinger, & Wagner, 2004) and were less likely to read the intermediate hints (i.e., 

clues about how to solve the problem) because requesting bottom-out hints provided them with 

the answer (Aleven & Koedinger, 2000). Similarly, scarce use of bottom-out hint requests in the 

last eight problems was also associated with more wheel-spinning. It is possible that struggling 

students who infrequently use bottom-out hints are not checking the correct answers from these 

hints to learn the math content effectively. Given these findings, it is not hard to imagine that 
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students who avoid or abuse the bottom-out hint are more likely to struggle unproductively in 

ASSISTments.  

Overall, min-hintTotal and max-frPast8BottomOut are features specific to student choices 

during problem solving in a tutoring system. It may be worthy of teachers’ time to pay attention 

to students’ use of intermediate and bottom-out hints in ASSISTments and other similar online 

learning platforms. Actionable information on the use of different types of hints is potentially 

helpful for teachers to identify students who are at risk of wheel-spinning and in need of 

additional support towards content mastery and skill retention.  

In particular, these findings about hint use provide implications for developing 

randomized controlled trials that help students be more aware of their help-seeking behaviors in 

online learning systems. For instance, it may be useful to investigate whether online prompts, 

which remind students to request help within the first 10 problems, lead to reduced wheel-

spinning in ASSISTments. Additionally, when students have reached the threshold for wheel-

spinning at 10 practice opportunities, the tutoring system can quickly ask them to reflect on why 

they have not succeeded, and ask them what types of hints they would like to receive moving 

forward. Asking them to articulate why they are struggling can likely encourage self-reflection 

and allow teachers to create more effective hints that support student problem solving.   

Difficulty of a Skill Builder  

In Study 2, the results indicated that the difficulty level of a Skill Builder had a significant 

effect on wheel-spinning and productive persistence. In particular, hard Skill Builders (i.e., 

problem sets that took a longer time to master) were associated with the highest proportions of 

unproductive and productive persistence (see Appendix D for a list of the 15 Skill Builders with 

hard difficulty levels). These findings suggested that struggling on challenging Skill Builders or 
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math topics is critical for students’ learning, as this could eventually lead to either wheel-spinning 

or unproductive persistence. In particular, 11 out of 15 Skill Builders classified as hard involved 

problem sets with word problems. These results were consistent with the preponderance of math 

research that stressed the difficulty of word problems in arithmetic (Cummins, Kintsch, Reusser, 

& Weimer, 1988; Kintsch & Greeno, 1985) and algebra (Nathan, Kintsch, & Young, 1992; Paige 

& Simon, 1966).  

Previous research has suggested that the difficulty of solving word problems stems from 

learners having to engage in two problem-solving phases: the comprehension phase, which 

requires linguistic processing knowledge to process the text of the problem; and the solution 

phase, which requires the use of strategies to arrive at a solution to the problem (Koedinger & 

Nathan, 2004). Analysis of algebra word-problem solutions revealed that most students use the 

unwind strategy, where learners work backwards from a given result value and use arithmetic 

tasks to produce a start value (Koedinger & MacLaren, 2002). As students primarily use implicit 

mathematical strategies to solve word problems, researchers have suggested that student 

mathematical development can be supported by helping students see the connection between the 

problem solution and the equation that represents the situation of the problem (i.e., the situation 

equation) (Nathan & Koedinger, 2000). This suggestion can be applied in ASSISTments by 

simultaneously presenting the problem solution and situation equation in the hints. Bridging 

implicit mathematical strategies into formal equations may potentially help students represent and 

solve challenging world problems in ASSISTments and other similar learning platforms.   

Persistence Within and Beyond Computed-based Learning Environments 

The findings of this dissertation also indicated that specific factors are likely to be 

generalizable across different learning contexts. In particular, the findings of this dissertation 
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related to spaced practice are related to past findings in both online learning and traditional 

classrooms. This dissertation also has implications related to the relationship between grit and 

online persistence. Both of these factors have the potential to yield insight into how students 

persist within and beyond computer-based environments.   

Spaced Practice  

Based on Study 1 findings, less variation in the number of days since the current  

problem set was last seen was associated with greater wheel-spinning. Taking a closer look at  

std-timeSinceSKill, it becomes apparent that a low value for this feature indicates consistently 

shorter periods between each problem attempt. For example, students who attempt a few 

problems each day for 4 consecutive days have relatively lower std-timeSinceSkill values and  

are more likely to wheel-spin than other students in the dataset. In contrast, wheel-spinning is  

less likely to occur when there are longer periods of time between problem solving of the same 

problem set. For instance, students who attempt several problems in a day, but only return  

after more than 1 month to reattempt more problems, are more likely to have higher values  

of std-timeSinceSkill and engage in less wheel-spinning. In general, these findings indicate that a 

greater degree of spaced practice (i.e., longer periods between problem solving) is associated with 

less wheel-spinning than a lower degree of spaced practice, with shorter periods between problem 

solving. Note that, in these examples, std-timeSinceSkill is likely contingent on teachers’ choices 

of when to assign specific math skills to students. Differences in allocating student study time 

may have implications for shorter delays between problem solving and whether the result is 

poorer student mastery and retention of skills.  

Prior research has shown the benefits of spacing on retention in math problem solving 

(Rohrer, Dedrick, & Burgess, 2014; Rohrer & Taylor, 2006). Other previous studies have 
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examined the effects of different spacing schedules on retrieval tasks. In a classic study by 

Landauer and Bjork (1978), they found that participants who encountered an expanded spacing 

schedule (i.e., increasing delays between rehearsals) had better retrieval performance compared 

to participants in a uniform spacing schedule (i.e., equal delays between rehearsals), suggesting 

evidence for a superior type of spaced practice. More recent work has investigated the effects of 

spaced practice in Duolingo, a free online language learning app. In particular, Settles and 

Meeder (2016) found that using a model of spaced practice led to improved recall for learners 

using the Duolingo platform. By comparing algorithms on spaced practice, Settles and Meeder 

were able to optimize each user’s practice schedule based on content that is likely to decay from 

memory. As such, one can expect that practicing in a more spaced-out fashion will likely increase 

the effectiveness of persistence in ASSISTments and more traditional learning environments, 

given the present findings and the extensive literature on the benefits of spaced practice on 

retention.  

Relationship Between Grit and Online Persistent Behaviors  

As shown in Study 2, students’ levels of grit were not found to be associated with their 

online persistent behaviors (i.e., productive persistence and wheel-spinning) within 

ASSISTments. While a marginally significant correlation was found between mastery speed and 

grit, the small effect size of this relationship suggested that grit was not closely related to 

behaviors linked with mastery in an online learning platform. Overall, these findings suggested 

that personality questionnaires, predominantly studied in traditional classrooms, are not as 

predictive of student behaviors in blended learning systems. This pattern of findings may, in part, 

stem from the susceptibility of the self-report measures to reference bias, the tendency for 

different standards of reference points to influence survey responses (West et al., 2016). Contrary 
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to what was hypothesized, West and colleagues (2016) found that students in charter schools with 

higher standardized test scores surprisingly reported lower levels of grit than students in open-

enrollment district schools. Researchers have asserted that the context of the highly academic and 

disciplinary charter schools led students to rate themselves more critically, thereby explaining the 

higher performance but lower grit scores relative to counterparts in the less demanding district 

schools.  

Given this evidence on reference bias, the lack of a substantial relationship between grit 

and online persistent behaviors may likely be due to differing classroom practices between 

CBLEs and traditional learning environments. For the most part, traditional classrooms are 

characterized by teachers spending a significant amount of time lecturing to a large group of 

students. Often, in these traditional settings, the same material is used for instruction regardless of 

students’ varying abilities. With the use of tutoring systems, students are given the opportunity for 

more individualized learning, emphasizing autonomy and self-learning. For instance, students 

who use ASSISTments can request help at any point during problem solving and practice a very 

large number of problems to master a topic if needed—a stark contrast to traditional classrooms 

where the entire class works on the same number of problems. Whereas teachers in traditional 

classrooms typically only provide comments for a few students, each student using ASSISTments 

and other related platforms are immediately given feedback (e.g., whether a response was correct 

or incorrect) for each problem-solving step. The affordances of practice and feedback in blended 

learning systems are likely to shape differences in standards by which online versus traditional 

learners assess persistence. Along with the results of this dissertation, previous studies have 

shown that self-reports of persistence are not predictive of learning outcomes in educational 

games (Ventura & Shute, 2013) and Intelligent Tutoring Systems (McCarthy et al., 2018), 
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suggesting that stealth assessments of students’ persistent behaviors may be more useful than 

surveys in online environments. Thus, researchers and teachers should take caution in using self-

reported measures to derive conclusions about learners in CBLEs, without fully understanding 

their sensitivity to differences in classroom practices.  

Implications for Intervention 

 Overall, the findings of this dissertation provide implications for teacher professional 

development in real-world settings. Considering the growing interest to assess and develop grit 

in the classroom, overemphasizing grittiness may have detrimental effects on students’ 

psychological well-being. As previously discussed, teachers may attribute students’ poor 

academic performance to their lack of grit, placing blame on students rather than focusing on 

critical supports potentially lacking in the environment (Shechtman et al., 2013). Additionally, 

encouraging grit in overly demanding learning contexts may have negative impacts on student 

persistence towards long-term goals. Students may demonstrate “fake grit” by responding on 

the scale based on what is expected of them, or persist only for the sake of immediate reward or 

punishment. As such, teachers should be aware of the costs of grit being misapplied in the 

classroom, and focus on creating conditions conducive for positive student motivation.  

 In addition to discussing these risks, it is increasingly important for teacher educators to 

incorporate the concept of unproductive persistence in professional development programs. 

Providing vignettes of wheel-spinning students can encourage teachers to reflect on how 

unproductive persistence manifests in the classroom. Furthermore, incorporating role play 

activities, where teachers demonstrate strategies to scaffold wheel-spinning students, provides 

an opportunity for fellow teachers and teacher educators to provide feedback and fine-tune 

interventions between the two modes of persistence. These professional development activities 
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can potentially train teachers to correctly differentiate wheel-spinning from productive 

persistence, and to effectively intervene during critical moments of student struggle.  

 In relation to this, the present findings also have implications for developing dashboards 

that help support teachers’ needs, including the process of monitoring and decision-making in the 

classroom. Recent research has shown that teachers have intuitively thought about unproductive 

persistence in context of ITS in blended learning classrooms. When probing about teachers’ 

wants and perceived challenges, teachers requested knowing when students were stuck as a 

superpower to help them during class sessions (Holstein, McLaren, and Aleven, 2017). Teachers 

believed that most of the students who raised their hands rarely needed support, while those who 

were actually struggling never requested help (Holstein, McLaren, and Aleven, 2017). With these 

findings in mind, the development of a real-time dashboard that provides teachers with 

information about students’ wheel-spinning can help teachers prioritize scaffolding across 

students, by seeing which learner is in most of need of help at any given moment. Specifically, the 

dashboard can track and flag which students have reached the daily limit of 10 practice 

opportunities, so teachers can quickly interview them and understand why they are struggling. 

Drawing from Study 1 findings, the dashboard can also provide teachers with information about 

students’ hint use that is likely related to their wheel-spinning behavior. In this way, teachers are 

made aware of the different profiles associated with wheel-spinning, and may be encouraged to 

think about how to best support each type of wheel-spinning student. For example, when a teacher 

is alerted about a wheel-spinning student who abuses hints, the teacher may approach the student 

and ask him or her to carefully read the intermediate hints before proceeding to the bottom-out 

hints. With further work on developing real-time dashboards and collecting qualitative data on 

wheel-spinning, one can imagine these tools recommending questions and strategies for teachers 



 

69 

 

to use, based on what students have done in the past 10 problems. As such, this line of research 

provides a new direction for supporting teachers – providing them with actionable information 

about student wheel-spinning that can potentially improve teacher interventions in the classroom.  

Limitations and Future Work 

The dissertation is not without limitations. First, it is important to note that the 

aforementioned findings are correlational. Conducting small-scale randomized controlled trials 

(RCTs) in ASSISTments and other similar platforms will help establish which of these findings are 

causal, towards enhancing students’ productive struggle and learning. While this work provides 

insight on the relationship between the number of different types of hints and wheel-spinning, future 

work should examine hint effectiveness and its relation to success and persistence within online 

learning platforms. Heiner, Beck, and Mostow (2004) compared the efficacy of several hint types 

across K-4 grade levels using a reading tutor designed to support children’s oral reading. Similarly, 

researchers should also examine which types of hints lead to more productive persistence in 

ASSISTments, while controlling for varying skill levels of students. To improve hint design, it is 

also recommended that further research explore the effects of hint content (e.g., succinct versus 

verbose, or procedural versus conceptual) and the sequence of hints within the tutoring system. 

Specifically, the dashboard may eventually inform teachers when it is most helpful to present 

conceptual versus verbose hints during problem solving, in order to provide more differentiated 

support for different students at various types of problems.  

Second, despite including indicators of eventual success on the problem set and retention, 

the threshold for defining wheel-spinning remains somewhat arbitrary. Although the cut-off of 10 

problems maps to current practice within the ASSISTments system, other thresholds may better 

capture student persistence. As such, future work is needed to examine the threshold of wheel-
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spinning further by creating a range of possible cut-offs for persistence (e.g., eight through 14 

problems) and determining whether the predictors of wheel-spinning differ significantly across 

these thresholds. Given that the operationalization of persistence was largely based on the context 

of the ASSISTments platform, where the threshold of 10 problems is a meaningful transition 

point (since the system asks the learner to take a break if 10 problems are completed without 

mastery), studying other cut-offs for persistence may be particularly warranted when 

distinguishing wheel-spinning from productive persistence in other online platforms. 

Additionally, given that ASSISTments focuses on procedural math fluency, the bulk of the wheel-

spinning research is closely tied to procedural math learning. Future work should also explore the 

definitions of wheel-spinning in the context of online systems that support the development of 

conceptual math understanding.  

Furthermore, there may be other relevant indicators of student success, such as 

performance on standardized tests (cf. Pardos et al., 2014) or college readiness that can be 

incorporated into the wheel-spinning definition. Similar to the grit scale being a predictor of 

long-term outcomes, researchers should also look into developing long-term, stealth assessments 

of wheel-spinning that track unproductive persistence for years, rather than hours.  

Lastly, the author asserts the need for future work to conduct a mixed-methods approach 

in assessing unproductive struggle. In addition to analyzing the log data within the tutoring 

system, it may be helpful for researchers to conduct moment-by-moment qualitative observations 

of when and how students wheel-spin to gain a better understanding of the deep motivations 

underlying unproductive persistence.   
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Conclusion 

This dissertation attempted to address two main research gaps in existing persistence 

literature. First, while most studies have investigated the benefits of grit, less work has examined 

how to identify and prevent unproductive persistence. Findings from Study 1 make a potentially 

important contribution in unbundling the concept of persistence, helping identify wheel-spinning 

and distinguishing this behavior from productive persistence that should be encouraged in online 

learning platforms. Second, no research has investigated the differences and similarities of these 

constructs with more global measures of persistence, such as grit. In attempting to obtain a 

broader understanding of related constructs of persistence, Study 2 results indicated a lack of 

significant relationship between grit scores and proportions of persistent behaviors in 

ASSISTments, which may be due to differing classroom practices between traditional classrooms 

and blended learning classrooms.  

These findings are particularly relevant in light of the recent character education 

movement. With the excitement to incorporate non-cognitive skills into the classroom, teachers 

and principals may make hasty decisions about how to apply this research, integrating character 

assessments into high-stakes accountability systems. In fact, several California districts have 

proposed to implement this idea—an initiative that has been criticized as counter to the purpose of 

existing non-cognitive measures developed for self-discovery and research (Duckworth, 2016). 

While there is great promise in using Grit-S to evaluate persistence and cultivate character 

development, this tool is only meaningful if properly understood and utilized. As such, there is a 

critical need for further research to examine the costs of being gritty and acknowledge the 

limitations of using popular self-reported measures, such as Grit-S, in different learning 

environments. This dissertation represents a first step in this direction. By exploring how 
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persistence functions within and beyond CBLEs, the present work urges researchers and teachers 

to engage in deeper conversations about persistence in online learning platforms and traditional 

contexts—ultimately, to prevent oversimplifying the concept of grit and better guide a variety of 

learners towards productive motivation and improved learning. 
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Appendix A: J48 Decision Tree of the 15-feature Model 

amin-hintTotal <= 0 
|  amax-past8BottomOut <= 1 
|   |  std-timeSinceSkill <= 218115.7837 
|   |  |  sum-responseIsChosen <= 26 
|   |  |  |  amax-totalFrAttempted <= 18: 1 (898.0/172.0) 
|   |  |  |  amax-totalFrAttempted > 18 
|   |  |  |   |  amax-totalFrAttempted <= 491 
|   |  |  |   |  |  sum-frIsHelpRequestScaffolding <= 2 
|   |  |  |   |  |  |  amax-totalFrSkillOpportunities <= 6 
|   |  |  |   |  |  |  |  amax-totalFrSkillOpportunities <= 1 
|   |  |  |   |  |  |  |   |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  |  sum-totalFrAttempted <= 126: 0 (7.0/2.0) 
|   |  |  |   |  |  |  |   |  |  sum-totalFrAttempted > 126: 1 (5.0) 
|   |  |  |   |  |  |  |   |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  |  sum-responseIsChosen <= 4: 0 (20.0/6.0) 
|   |  |  |   |  |  |  |   |  |  sum-responseIsChosen > 4: 1 (2.0) 
|   |  |  |   |  |  |  |  amax-totalFrSkillOpportunities > 1 
|   |  |  |   |  |  |  |   |  sum-frPast8WrongCount <= 34 
|   |  |  |   |  |  |  |   |  |  std-timeSinceSkill <= 6.988398 
|   |  |  |   |  |  |  |   |  |  |  amax-totalFrPercentPastWrong <= 0.9 
|   |  |  |   |  |  |  |   |  |  |  |  sum-totalFrAttempted <= 422 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalFrAttempted <= 209: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalFrAttempted > 209: 0 (5.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-totalFrAttempted > 422: 1 (20.0) 
|   |  |  |   |  |  |  |   |  |   |  amax-totalFrPercentPastWrong > 0.9: 0 (4.0) 
|   |  |  |   |  |  |  |   |  |  std-timeSinceSkill > 6.988398: 1 (161.0/12.0) 
|   |  |  |   |  |  |  |   |  sum-frPast8WrongCount > 34 
|   |  |  |   |  |  |  |   |  |  std-totalFrSkillOpportunitiesByScaffolding <= 0 
|   |  |  |   |  |  |  |   |  |  |  amax-totalFrPercentPastWrong <= 0.363636: 1 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-totalFrPercentPastWrong > 0.363636 
|   |  |  |   |  |  |  |   |  |  |   |  std-frWorkingInSchool <= 0.278325: 1 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |  std-frWorkingInSchool > 0.278325: 0 (4.0) 
|   |  |  |   |  |  |  |   |  |  std-totalFrSkillOpportunitiesByScaffolding > 0: 0 (3.0) 
|   |  |  |   |   |  |  amax-totalFrSkillOpportunities > 6 
|   |  |  |   |  |  |  |  amax-past8BottomOut <= 0 
|   |  |  |   |  |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding <= 2.18526 
|   |  |  |   |  |  |  |   |  |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  |  |  std-totalFrSkillOpportunitiesByScaffolding <= 0.964126: 1 (992.0/344.0) 
|   |  |  |   |  |  |  |   |  |  |  std-totalFrSkillOpportunitiesByScaffolding > 0.964126 
|   |  |  |   |  |  |  |   |  |   |  |  std-timeSinceSkill <= 23.786277: 0 (86.0/31.0) 
|   |  |  |   |  |  |  |   |  |  |  |  std-timeSinceSkill > 23.786277 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-timeSinceSkill <= 13108.93518: 1 (15.0/1.0) 
|   |  |  |   |  |   |  |   |  |  |  |   |  std-timeSinceSkill > 13108.93518 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-frPast8WrongCount <= 30: 1 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-frPast8WrongCount > 30: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  |  |  amax-totalFrSkillOpportunities <= 9 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalFrPercentPastWrong <= 0.9: 1 (26.0/3.0) 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalFrPercentPastWrong > 0.9 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding <= 1.022268 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  mean-totalFrAttempted <= 105.538462 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   mean-totalFrAttempted <= 67.8: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   mean-totalFrAttempted > 67.8: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  mean-totalFrAttempted > 105.538462: 0 (5.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding > 1.022268 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-totalFrAttempted <= 756: 0 (4.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  sum-totalFrAttempted > 756: 1 (8.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-totalFrSkillOpportunities > 9: 1 (603.0/196.0) 
|   |  |  |   |  |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding > 2.18526 
|   |  |  |   |  |  |  |   |  |  amax-totalFrPercentPastWrong <= 0.363636 
|   |  |  |   |  |  |  |   |  |  |  sum-responseIsChosen <= 3: 1 (9.0/2.0) 
|   |  |  |   |  |  |  |   |  |  |  sum-responseIsChosen > 3: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalFrPercentPastWrong > 0.363636: 0 (22.0/1.0) 
|   |  |  |   |  |  |  |  amax-past8BottomOut > 0 
|   |  |  |   |  |  |  |   |  amax-totalFrAttempted <= 121: 1 (1060.0/281.0) 
|   |  |  |   |  |  |  |   |  amax-totalFrAttempted > 121 
|   |  |  |   |  |  |  |   |  |  amax-totalFrAttempted <= 302 
|   |  |  |   |  |  |  |   |  |  |  amax-responseIsChosen <= 0: 1 (207.0/86.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  |  |  |  sum-frPast8WrongCount <= 92 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-responseIsChosen <= 10 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  std-frWorkingInSchool <= 0.438019 
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|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-frIsHelpRequestScaffolding <= 1 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  std-timeSinceSkill <= 37505.97416 
|   |  |  |   |  |  |  |   |  |  |  |   |  |   |   |  |  sum-frPast8WrongCount <= 35 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-frPast8WrongCount <= 28 

|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding <= 0.943037: 0 (3.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding > 0.943037: 1 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-frPast8WrongCount > 28: 1 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  sum-frPast8WrongCount > 35 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-frPast8WrongCount <= 56: 0 (9.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |  sum-frPast8WrongCount > 56 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  |  |   |  std-frWorkingInSchool <= 0.158114: 1 (4.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |   |  |   |  std-frWorkingInSchool > 0.158114: 0 (3.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  std-timeSinceSkill > 37505.97416: 1 (4.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-frIsHelpRequestScaffolding > 1 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  mean-totalFrAttempted <= 187.12766: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   |  mean-totalFrAttempted > 187.12766: 0 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |   |  |   |  |  std-frWorkingInSchool > 0.438019: 1 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-responseIsChosen > 10: 1 (20.0/2.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-frPast8WrongCount > 92 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-timeSinceSkill <= 28605.3143 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  amax-totalFrPercentPastWrong <= 0.96: 0 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  amax-totalFrPercentPastWrong > 0.96 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-responseIsChosen <= 13: 0 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   sum-responseIsChosen > 13: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  std-timeSinceSkill > 28605.3143: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalFrAttempted > 302 
|   |  |  |   |  |  |  |   |  |  |  std-frWorkingInSchool <= 0.390205: 1 (30.0/2.0) 
|   |  |  |   |  |  |  |   |  |  |  std-frWorkingInSchool > 0.390205 
|   |  |  |   |  |  |  |   |  |  |  |  sum-frPast8WrongCount <= 37: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-frPast8WrongCount > 37: 1 (3.0/1.0) 
|   |  |  |   |  |  sum-frIsHelpRequestScaffolding > 2 
|   |  |  |   |  |   |  amax-totalFrAttempted <= 307 
|   |  |  |   |  |  |  |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  std-frWorkingInSchool <= 0.162221: 1 (70.0/1.0) 
|   |  |  |   |  |  |  |   |  std-frWorkingInSchool > 0.162221 
|   |  |  |   |  |  |  |   |  |  sum-frIsHelpRequestScaffolding <= 7: 1 (15.0/1.0) 
|   |  |  |   |  |  |  |   |  |  sum-frIsHelpRequestScaffolding > 7 
|   |  |  |   |  |  |  |   |  |  |  std-timeSinceSkill <= 92.603468: 1 (4.0) 
|   |  |  |   |  |  |  |   |  |  |  std-timeSinceSkill > 92.603468 
|   |  |  |   |  |  |  |   |  |  |  |  sum-frIsHelpRequestScaffolding <= 21: 0 (6.0) 
|   |  |  |   |  |  |  |   |  |  |  |  sum-frIsHelpRequestScaffolding > 21: 1 (2.0) 
|   |  |  |   |  |  |  |  amax-responseIsChosen > 0: 1 (86.0/18.0) 
|   |  |  |   |  |  |  amax-totalFrAttempted > 307 
|   |  |  |   |  |  |  |  sum-frIsHelpRequestScaffolding <= 5: 1 (3.0) 
|   |  |  |   |  |  |  |  sum-frIsHelpRequestScaffolding > 5 
|   |  |  |   |  |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding <= 1.542118: 0 (10.0/1.0) 
|   |  |  |   |  |  |  |   |  std-totalFrSkillOpportunitiesByScaffolding > 1.542118: 1 (3.0/1.0) 
|   |  |  |   |  amax-totalFrAttempted > 491: 1 (32.0) 
|   |  |  sum-responseIsChosen > 26: 1 (675.0/90.0) 
|   |  std-timeSinceSkill > 218115.7837 
|   |  |  std-timeSinceSkill <= 12799929.2 
|   |  |  |  amax-totalFrSkillOpportunities <= 5 
|   |  |  |   |  std-timeSinceSkill <= 1820838.272 
|   |  |  |   |  |  std-totalFrSkillOpportunitiesByScaffolding <= 0 
|   |  |  |   |  |  |  sum-frPast8WrongCount <= 48: 1 (76.0/9.0) 
|   |  |  |   |  |  |  sum-frPast8WrongCount > 48: 0 (4.0/1.0) 
|   |  |  |   |  |  std-totalFrSkillOpportunitiesByScaffolding > 0 
|   |  |  |   |  |  |  std-timeSinceSkill <= 684764.2974: 0 (3.0) 
|   |  |  |   |  |  |  std-timeSinceSkill > 684764.2974: 1 (3.0) 
|   |  |  |   |  std-timeSinceSkill > 1820838.272 
|   |  |  |   |  |  sum-frPast8WrongCount <= 19 
|   |  |  |   |  |  |  std-frWorkingInSchool <= 0.357935 
|   |  |  |   |  |  |  |  std-timeSinceSkill <= 3294065.607: 0 (2.0) 
|   |  |  |   |  |  |  |  std-timeSinceSkill > 3294065.607: 1 (3.0) 
|   |  |  |   |  |   |  std-frWorkingInSchool > 0.357935: 0 (7.0) 
|   |  |  |   |  |  sum-frPast8WrongCount > 19: 1 (4.0) 
|   |  |  |  amax-totalFrSkillOpportunities > 5 
|   |  |  |   |  amax-past8BottomOut <= 0 
|   |  |  |   |  |  std-timeSinceSkill <= 2773779.763 
|   |  |  |   |  |  |  amax-responseIsChosen <= 0: 0 (228.0/107.0) 
|   |  |  |   |  |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |  amax-totalFrPercentPastWrong <= 0.363636 
|   |  |  |   |  |  |  |   |  sum-responseIsChosen <= 23 
|   |  |  |   |  |  |  |   |  |  std-frWorkingInSchool <= 0.347839 
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|   |  |  |   |  |  |  |   |  |  |  mean-totalFrAttempted <= 47.181818: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  mean-totalFrAttempted > 47.181818: 1 (5.0) 
|   |  |  |   |  |  |  |   |  |  std-frWorkingInSchool > 0.347839: 0 (2.0) 
|   |  |  |   |  |  |  |   |  sum-responseIsChosen > 23: 1 (10.0) 
|   |  |  |   |  |  |  |  amax-totalFrPercentPastWrong > 0.363636: 0 (85.0/41.0) 
|   |  |   |   |  |  std-timeSinceSkill > 2773779.763 
|   |  |  |   |  |  |  amax-totalFrAttempted <= 502 
|   |  |  |   |  |  |  |  std-timeSinceSkill <= 8717502.941: 0 (65.0/11.0) 
|   |  |  |   |  |  |  |  std-timeSinceSkill > 8717502.941: 1 (3.0) 

|   |  |  |   |  |  |  amax-totalFrAttempted > 502: 1 (6.0/1.0) 
|   |  |  |   |  amax-past8BottomOut > 0 
|   |  |  |   |  |  amax-totalFrSkillOpportunities <= 8: 1 (20.0/4.0) 
|   |  |  |   |  |  amax-totalFrSkillOpportunities > 8 
|   |  |  |   |  |  |  sum-frIsHelpRequestScaffolding <= 0 
|   |  |  |   |  |  |  |  amax-responseIsChosen <= 0 
|   |  |  |   |  |  |  |   |  amax-totalFrSkillOpportunities <= 9 
|   |  |  |   |  |  |  |   |  |  std-frWorkingInSchool <= 0.142857: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  std-frWorkingInSchool > 0.142857: 1 (8.0/1.0) 
|   |  |  |   |  |  |  |   |  amax-totalFrSkillOpportunities > 9: 1 (191.0/85.0) 
|   |  |  |   |  |  |  |  amax-responseIsChosen > 0 
|   |  |  |   |  |  |  |   |  std-timeSinceSkill <= 1505822.527 
|   |  |  |   |  |  |  |   |  |  amax-totalFrPercentPastWrong <= 0.888889: 1 (8.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalFrPercentPastWrong > 0.888889 
|   |  |  |   |  |   |  |   |  |  |  amax-totalFrPercentPastWrong <= 0.96: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  amax-totalFrPercentPastWrong > 0.96 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalFrSkillOpportunities <= 9: 0 (3.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |  amax-totalFrSkillOpportunities > 9 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalFrAttempted <= 2845 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  std-totalFrSkillOpportunitiesByScaffolding <= 0.57735 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   std-frWorkingInSchool <= 0.156174: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  |  |   std-frWorkingInSchool > 0.156174: 1 (5.0) 
|   |  |  |   |  |  |  |   |  |   |  |   |  |  std-totalFrSkillOpportunitiesByScaffolding > 0.57735: 0 (2.0) 
|   |  |  |   |  |  |  |   |  |  |  |   |  sum-totalFrAttempted > 2845: 1 (10.0) 
|   |  |  |   |  |  |  |   |  std-timeSinceSkill > 1505822.527 
|   |  |  |   |   |  |  |   |  |  amax-totalFrAttempted <= 17: 1 (2.0) 
|   |  |  |   |  |  |  |   |  |  amax-totalFrAttempted > 17: 0 (25.0/4.0) 
|   |  |  |   |  |  |  sum-frIsHelpRequestScaffolding > 0 
|   |  |  |   |  |  |  |  sum-frPast8WrongCount <= 28: 0 (5.0/1.0) 
|   |  |  |   |  |  |  |  sum-frPast8WrongCount > 28: 1 (10.0) 
|   |  |  std-timeSinceSkill > 12799929.2: 1 (30.0/1.0) 
|  amax-past8BottomOut > 1: 1 (2544.0/312.0) 
amin-hintTotal > 0: 1 (355.0/12.0) 

Number of Leaves:  95 

Size of the tree: 189 
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Appendix B: Features Selected With J48 Decision Tree Algorithm 
 

Features Description 

amin-hintTotal 
(Minimum) Number of hints requested in any problem 

in the problem set amax-past8BottomOut 
(Maximum) Number of bottom-out hints requested 

within the last 8 problems in a given problem set 

amax-responseIsChosen 

(Maximum) Whether or not a problem requires the 

correct answer to be chosen from a list of answers 

(e.g., multiple choice) 

amax-totalFrAttempted 
(Maximum) The total number of problems attempted 

in the tutor so far 

amax-totalFrPercentPastWrong 
(Maximum) The percentage of all past problems that 

were incorrect on a given problem set 

amax-totalFrSkillOpportunities 

(Maximum) The total number of unique problems the 

user has encountered relevant to the current problem 

set 

mean-totalFrAttempted 
(Mean) The total number of problems attempted in the 

tutor so far 

std- frIsHelpRequestScaffolding 
(Standard deviation) Whether or not the first response 

to a scaffolding problem is a help request 

 

std-frWorkingInSchool 

(Standard deviation) Whether or not the first response 

was made during or after school hours (between 7:00 

a.m. and 3:00 p.m.) 

std-timeSinceSkill 
(Standard Deviation) Length of time since a problem 

involving this skill type was last seen 

std- totalFrSkillOpportunitiesBySc 

affolding 

(Standard Deviation) The total number of scaffolding 

problems divided by the unique problems the user has 

encountered relevant to the current problem set 

sum- frIsHelpRequestScaffolding 
(Sum) Whether or not the first response to a 

scaffolding problem is a help request 

 

sum-frPast8WrongCount 

(Sum) Cumulative count of the number of first 

responses to a problem that were wrong answers in the 

past 8 problems 

 

sum-responseIsChosen 

(Sum) Whether or not a problem requires the correct 

answer to be chosen from a list of answers (e.g., 

multiple choice) 

sum-totalFrAttempted 
(Standard Deviation) The total number of problems 

attempted in the tutor so far 
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Appendix C: Short Grit Scale (Grit-S)  

 

Directions for taking the Grit Scale: Please respond to the following 8 items. Be honest – there 

are no right or wrong answers!  

 

1. New ideas and projects sometimes distract me from previous ones. 

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 

 

2. Setbacks don’t discourage me.  

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 

 

3. I have been obsessed with a certain idea or project for a short time but later lost interest. 

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 

 

4. I am a hard worker.  

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 

 

5. I often set a goal but later choose to pursue a different one. 

 Very much like me 

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 
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6. I have difficulty maintaining my focus on projects that take more than a few months to 

complete. 

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 

 

7. I finish whatever I begin.  

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 

 

8. I am diligent.  

 Very much like me  

 Mostly like me  

  Somewhat like me  

 Not much like me  

 Not like me at all 
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Appendix D: Skill Builders with Hard Difficulty Levels  

 

1. Area and perimeter 4.MD.A.3 

2. Combining Like Terms 8.EE.C.7b EX 

3. Converting a Fraction to a Percent 6.RP.A.3c EX 

4. Distributive Property 7.EE.A.1  EX 

5. Finding Scale Factor 7.G.A.1 

6. Finding Slope from Ordered Pairs 8.F.B.4 Ex 

7. Finding the Percent from the Part and Whole 6.RP.A.3c 

8. Finding the Ratio 6.RP.A.1 EX 

9. Finding the Whole from the Percent and Part in a Word Problem 6.RP.A.3c 

10. Prime Factorization 6.NS.B.4 EX 

11. Pythagorean Theorem - Finding Leg or Hypotenuse 8.G.B.7 EX 

12. Recognizing Statistical Questions 6.SP.A.1 

13. Surface Area Rectangular Prism 7.G.B.6 EX 

14. Writing an Equation from a Real-World Problem 6.EE.C.9 EX 

15. Writing Inequalities from Situations 6.EE.B8 EX 
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