2,050 research outputs found

    Radar networks: A review of features and challenges

    Full text link
    Networks of multiple radars are typically used for improving the coverage and tracking accuracy. Recently, such networks have facilitated deployment of commercial radars for civilian applications such as healthcare, gesture recognition, home security, and autonomous automobiles. They exploit advanced signal processing techniques together with efficient data fusion methods in order to yield high performance of event detection and tracking. This paper reviews outstanding features of radar networks, their challenges, and their state-of-the-art solutions from the perspective of signal processing. Each discussed subject can be evolved as a hot research topic.Comment: To appear soon in Information Fusio

    Collaborative Solutions to Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) merge computer vision, image processing and wireless sensor network disciplines to solve problems in multi-camera applications in large surveillance areas. Although potentially powerful, VSNs also present unique challenges that could hinder their practical deployment because of the unique camera features including the extremely higher data rate, the directional sensing characteristics, and the existence of visual occlusions. In this dissertation, we first present a collaborative approach for target localization in VSNs. Traditionally; the problem is solved by localizing targets at the intersections of the back-projected 2D cones of each target. However, the existence of visual occlusions among targets would generate many false alarms. Instead of resolving the uncertainty about target existence at the intersections, we identify and study the non-occupied areas in 2D cones and generate the so-called certainty map of targets non-existence. We also propose distributed integration of local certainty maps by following a dynamic itinerary where the entire map is progressively clarified. The accuracy of target localization is affected by the existence of faulty nodes in VSNs. Therefore, we present the design of a fault-tolerant localization algorithm that would not only accurately localize targets but also detect the faults in camera orientations, tolerate these errors and further correct them before they cascade. Based on the locations of detected targets in the fault-tolerated final certainty map, we construct a generative image model that estimates the camera orientations, detect inaccuracies and correct them. In order to ensure the required visual coverage to accurately localize targets or tolerate the faulty nodes, we need to calculate the coverage before deploying sensors. Therefore, we derive the closed-form solution for the coverage estimation based on the certainty-based detection model that takes directional sensing of cameras and existence of visual occlusions into account. The effectiveness of the proposed collaborative and fault-tolerant target localization algorithms in localization accuracy as well as fault detection and correction performance has been validated through the results obtained from both simulation and real experiments. In addition, conducted simulation shows extreme consistency with results from theoretical closed-form solution for visual coverage estimation, especially when considering the boundary effect

    Survey of location-centric target tracking with mobile elements in wireless sensor networks

    Get PDF
    介绍目标跟踪的过程以及移动跟踪的特点;通过区分目标定位为主的方法和目标探测为主的方法,介绍定位为主的移动式目标跟踪方法(称为目标的移动式定位跟踪; )的研究现状;分析和比较不同方法的特点和应用领域,发现现有方法虽然可以提高跟踪质量、降低网络整体能耗,但是还存在一些问题。基于此,总结目标的移动; 式定位跟踪方法在方法类型、网络结构和节点模型等方面可能存在的研究热点,指出其研究和发展趋势。The basic process of target tracking and the properties of tracking; solutions with mobile elements were introduced. By distinguishing; location-centric methods and detection-centric methods, the current; research status of the location-centric target tracking methods were; reviewed. The properties and application fields of different solutions; were analyzed and compared. Although the existing solutions can; significantly improve tracking quality and reduce energy consumption of; the whole network, there are also some problems. Based on these; discoveries, some possible research hotspots of mobile solutions were; summarized in many aspects, such as method types, network architecture,; node model, and so on, indicating the future direction of research and; development.国家自然科学基金资助项目; 国家科技支撑计划项

    WiFi Sensing at the Edge Towards Scalable On-Device Wireless Sensing Systems

    Get PDF
    WiFi sensing offers a powerful method for tracking physical activities using the radio-frequency signals already found throughout our homes and offices. This novel sensing modality offers continuous and non-intrusive activity tracking since sensing can be performed (i) without requiring wearable sensors, (ii) outside the line-of-sight, and even (iii) through the wall. Furthermore, WiFi has become a ubiquitous technology in our computers, our smartphones, and even in low-cost Internet of Things devices. In this work, we consider how the ubiquity of these low-cost WiFi devices offer an unparalleled opportunity for improving the scalability of wireless sensing systems. Thus far, WiFi sensing research assumes costly offline computing resources and hardware for training machine learning models and for performing model inference. To improve the scalability of WiFi sensing systems, this dissertation introduces techniques for improving machine learning at the edge by thoroughly surveying and evaluating signal preprocessing and edge machine learning techniques. Additionally, we introduce the use of federated learning for collaboratively training machine learning models with WiFi data only available on edge devices. We then consider privacy and security concerns of WiFi sensing by demonstrating possible adversarial surveillance attacks. To combat these attacks, we propose a method for leveraging spatially distributed antennas to prevent eavesdroppers from performing adversarial surveillance while still enabling and even improving the sensing capabilities of allowed WiFi sensing devices within our environments. The overall goal throughout this work is to demonstrate that WiFi sensing can become a ubiquitous and secure sensing option through the use of on-device computation on low-cost edge devices

    Node Cardinality Estimation in the Internet of Things Using Privileged Feature Distillation

    Full text link
    The Internet of Things (IoT) is emerging as a critical technology to connect resource-constrained devices such as sensors and actuators as well as appliances to the Internet. In this paper, we propose a novel methodology for node cardinality estimation in wireless networks such as the IoT and Radio-Frequency IDentification (RFID) systems, which uses the privileged feature distillation (PFD) technique and works using a neural network with a teacher-student model. The teacher is trained using both privileged and regular features, and the student is trained with predictions from the teacher and regular features. We propose node cardinality estimation algorithms based on the PFD technique for homogeneous as well as heterogeneous wireless networks. We show via extensive simulations that the proposed PFD based algorithms for homogeneous as well as heterogeneous networks achieve much lower mean squared errors in the computed node cardinality estimates than state-of-the-art protocols proposed in prior work, while taking the same number of time slots for executing the node cardinality estimation process as the latter protocols.Comment: 15 pages, 17 figures, journal pape
    corecore