79 research outputs found

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    Source Unfoldings of Convex Polyhedra via Certain Closed Curves

    Get PDF
    Abstract. We extend the notion of a source unfolding of a convex polyhedron P to be based on a closed polygonal curve Q in a particular class rather than based on a point. The class requires that Q “lives on a cone” to both sides; it includes simple, closed quasigeodesics. Cutting a particular subset of the cut locus of Q (in P) leads to a non-overlapping unfolding of the polyhedron. This gives a new general method to unfold the surface of any convex polyhedron to a simple, planar polygo

    Source Unfoldings of Convex Polyhedra via Certain Closed Curves

    Get PDF
    Abstract. We extend the notion of a source unfolding of a convex polyhedron P to be based on a closed polygonal curve Q in a particular class rather than based on a point. The class requires that Q “lives on a cone” to both sides; it includes simple, closed quasigeodesics. Cutting a particular subset of the cut locus of Q (in P) leads to a non-overlapping unfolding of the polyhedron. This gives a new general method to unfold the surface of any convex polyhedron to a simple, planar polygo

    Polyhedral computational geometry for averaging metric phylogenetic trees

    Get PDF
    This paper investigates the computational geometry relevant to calculations of the Frechet mean and variance for probability distributions on the phylogenetic tree space of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics with a specified fixed endpoint in tree space are determined by the location of the varying endpoint in a certain polyhedral subdivision of tree space. The variance function associated to a finite subset of tree space has a fixed C∞C^\infty algebraic formula within each cell of the corresponding subdivision, and is continuously differentiable in the interior of each orthant of tree space. We use this subdivision to establish two iterative methods for producing sequences that converge to the Frechet mean: one based on Sturm's Law of Large Numbers, and another based on descent algorithms for finding optima of smooth functions on convex polyhedra. We present properties and biological applications of Frechet means and extend our main results to more general globally nonpositively curved spaces composed of Euclidean orthants.Comment: 43 pages, 6 figures; v2: fixed typos, shortened Sections 1 and 5, added counter example for polyhedrality of vistal subdivision in general CAT(0) cubical complexes; v1: 43 pages, 5 figure

    Reshaping Convex Polyhedra

    Full text link
    Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrov's Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.Comment: Research monograph. 234 pages, 105 figures, 55 references. arXiv admin note: text overlap with arXiv:2008.0175

    Lagrangian Relations and Linear Point Billiards

    Full text link
    Motivated by the high-energy limit of the NN-body problem we construct non-deterministic billiard process. The billiard table is the complement of a finite collection of linear subspaces within a Euclidean vector space. A trajectory is a constant speed polygonal curve with vertices on the subspaces and change of direction upon hitting a subspace governed by `conservation of momentum' (mirror reflection). The itinerary of a trajectory is the list of subspaces it hits, in order. Two basic questions are: (A) Are itineraries finite? (B) What is the structure of the space of all trajectories having a fixed itinerary? In a beautiful series of papers Burago-Ferleger-Kononenko [BFK] answered (A) affirmatively by using non-smooth metric geometry ideas and the notion of a Hadamard space. We answer (B) by proving that this space of trajectories is diffeomorphic to a Lagrangian relation on the space of lines in the Euclidean space. Our methods combine those of BFK with the notion of a generating family for a Lagrangian relation.Comment: 29 pages, 4 figure
    • 

    corecore