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Abstract

This paper investigates the computational geometry relevant to calculations of the
Fréchet mean and variance for probability distributions on the phylogenetic tree space
of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of
nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics
with a specified fixed endpoint in tree space are determined by the location of the varying
endpoint in a certain polyhedral subdivision of tree space. The variance function associ-
ated to a finite subset of tree space has a fixed C∞ algebraic formula within each cell of
the corresponding subdivision, and is continuously differentiable in the interior of each
orthant of tree space. We use this subdivision to establish two iterative methods for pro-
ducing sequences that converge to the Fréchet mean: one based on Sturm’s Law of Large
Numbers, and another based on descent algorithms for finding optima of smooth func-
tions on convex polyhedra. We present properties and biological applications of Fréchet
means and extend our main results to more general globally nonpositively curved spaces
composed of Euclidean orthants.

Contents

Introduction 2

1 Tree space and the geodesic algorithm 4
1.1 Phylogenetic tree space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Geodesics in tree space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The mean and variance in tree space 10
2.1 The variance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Sturm’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The combinatorics of geodesics in tree space 13
3.1 Vistal facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Vistal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Signatures and vistal cells . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Incompatibility graphs and equality subsequences . . . . . . . . . . . . 17

1

http://arxiv.org/abs/1211.7046v2


3.2.3 Residual graphs and ratio subsequences . . . . . . . . . . . . . . . . . 18
3.2.4 Valid support sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Canonical description of vistal cells . . . . . . . . . . . . . . . . . . . . 23

3.3 Vistal subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Examples of vistal complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Multivistal complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Computing the mean in tree space 30
4.1 Optimality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 A descent method to compute the mean . . . . . . . . . . . . . . . . . . . . . 31

5 Properties and applications of the mean 32
5.1 Composition of the mean tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Other notions of consensus tree . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Stickiness of the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Application to biological data . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Globally nonpositively curved spaces 35
6.1 The geometry of nonpositively curved spaces . . . . . . . . . . . . . . . . . . 36
6.2 Means and variances in global NPC spaces . . . . . . . . . . . . . . . . . . . . 37
6.3 NPC orthant spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Introduction

The development of statistical methods for studying phylogenetic trees, and in particular
the search for meaningful notions of consensus tree for phylogenetic data, has been of con-
siderable importance in biology for four decades. Starting with the problem as posed by
Adams [1], a great deal of research has been done, and a myriad of definitions proposed,
relating to consensus trees in phylogenetics; see [13] for an excellent overview. The prob-
lem has been confounded by the combinatorial nature of the trees themselves. According to
Cranston and Rannala [18], “Phylogenetic inference has long been troubled by the difficulty
of performing statistical analysis on tree topologies. The topologies are discrete, categorical,
and non-nested hypotheses about the species relationships. They are not amenable to stan-
dard summary analyses such as the calculation of means and variances and cause difficulties
for many traditional forms of hypothesis testing.” Other papers share concerns about issues
such as these [9, 26].

The introduction by Billera, Holmes, and Vogtmann of phylogenetic tree space [12] opened
statistical analysis of tree-like data to a wide and computationally tractable variety of tech-
niques [27]. Tree space, with its geodesic distance, is a globally nonpositively curved (abbrevi-
ated to global NPC ) space, and as a result it has convexity properties that imply uniqueness
of means as well as other important statistical and geometric objects, while also giving a
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framework for effective computational methods to calculate these objects. One of the major
uses of the convexity properties was the discovery by Owen and Provan [41] of a fast algorithm
for computing geodesics in this space (see Section 1 for this algorithm as well as the back-
ground tree space geometry necessary to state it). Chakerian and Holmes [17] subsequently
showed that phylogenetic tree space provides an excellent platform for implementing several
distance-based statistical techniques, and Nye [37] has shown how this space can be used to
perform principal component analysis on tree data.

Perhaps the two most fundamental concepts of interest in statistical analysis of data are
that of sample mean (or average) and its associated variance. The basic goal of this paper
is to demonstrate the computational effectiveness of certain notions of statistical mean and
variance for probability distributions on tree space. The average that we use is the Fréchet
mean, or barycenter : the point in tree space that minimizes its sum of squared geodesic
distances to the sample points (Section 2). Our decision to use this definition is motivated
by work of Sturm [48], who identified the Fréchet mean as a theoretically rich statistical
object associated with sampling from a specified distribution on a global NPC space (see
Theorem 2.4). Fréchet means in tree space and the algorithm for computing them that arises
from Sturm’s work (Algorithm 2.5) have been independently developed by Bačák [8].

Our principal theoretical contribution lies in the discovery of polyhedral structure gov-
erning the variation of geodesics in tree space as one endpoint varies (Section 3). To be more
precise, if T is a fixed point in tree space, then in appropriate coordinates on tree space, the
set of points whose geodesics to T share the same combinatorics comprise a convex polyhedral
cone called a vistal cell (Theorem 3.25), and the vistal cells constitute a polyhedral subdivision
of tree space (Theorem 3.30). This metric combinatorics also arises in single source shortest
path queries (see [35] for a survey), and has direct roots in surprisingly similar statements
for boundaries of convex polyhedra [34], the parallel being unexpected because boundaries of
convex polyhedra are positively curved, in contrast to the negative curvature of tree space.
However, polyhedrality of the subdivision is generally not encountered outside of the planar
or positively curved cases, and thus is completely unexpected here; see Example 3.2 for a
hint of the complexity that can occur even for global NPC cubical complexes.

Metric combinatorics of tree space, particularly its polyhedral nature, combines with
generalities on nonlinear optimization in NPC spaces to give a second iterative method con-
verging to the mean (Algorithm 4.4) via descent procedures. The crucial observations are
that the variance function has a unique local minimum on tree space, is continuously differ-
entiable on each Euclidean orthant in tree space, and has a simple algebraic formula within
the interior of each vistal cell.

Means in tree space have subtle, sometimes peculiar properties that inform our particular
motivations (Section 5), which come primarily from biological and medical applications, al-
though we expect these observations to impact other fields where distributions of metric trees
naturally appear. Evolutionary biology, for instance, considers actual phylogenetic trees, each
representing a putative evolutionary history of a set species or genes (Example 5.5). In med-
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ical imaging, trees can represent blood vessels in human brain scans [47] or lung airway trees
[31], for example.

Some of the theory in Sections 1–4 extends to arbitrary global NPC spaces, and all
of it extends to global NPC orthant spaces (Section 6). For the first iterative procedure
(Algorithm 2.5) and the rest of Section 2, as well as for the shortest path combinatorics in
Section 1, this means working in arbitrary global NPC spaces (Sections 6.1–6.2). For the
second iterative procedure (Algorithm 4.4) and the rest of Section 4, as well as for the metric
combinatorics in Section 3, this means working in piecewise Euclidean global NPC spaces that
are formed by gluing orthants together by rules similar to — but substantially more general
than — those defining tree space (Section 6.3). The extensions suggest exciting new research
in applying both statistical methods and numerical nonlinear programming techniques to a
wide variety of problems. Important note: readers interested in the generality of abstract
orthant spaces or arbitrary NPC spaces are urged to begin with Section 6, which sets up the
notation and concepts in Sections 1–4 from that perspective. Hence such readers can avoid
checking the proofs in the earlier sections twice.

Acknowledgements Our thanks go to Michael Turelli and Elen Oneal for help with ref-
erences and discussions on biological applications, to Antonis Rokas for kindly providing the
yeast data set, and to Dennis Barden for comments on a draft of the paper. EM had sup-
port from NSF grants DMS-0449102 = DMS-1014112 and DMS-1001437. MO was partially
supported by a desJardins Postdoctoral Fellowship in Mathematical Biology at University of
California Berkeley and by the U.S. National Science Foundation under grant DMS-0635449
to the Statistical and Applied Mathematical Sciences Institute (SAMSI). Much of this re-
search was facilitated by and carried out at SAMSI as an outgrowth of the 2008–2009 program
on Algebraic Methods in Systems Biology and Statistics.

1 Tree space and the geodesic algorithm

In this section, we describe the space of phylogenetic trees introduced by Billera, Holmes,
and Vogtmann [12], as well as a distance and characterization of geodesics in this space.

1.1 Phylogenetic tree space

A phylogenetic n-tree T , or simply an n-tree, is an acyclic graph T with edge set E = ET
whose leaves (degree 1 nodes) are labeled with index set L = {0, 1, . . . , n}, and whose interior
vertices have degree at least 3. (The label 0 is often referred to as the root of T , although
that is not relevant in this paper.) The maximum number of edges in an n-tree is 2n − 1.
Each edge e of T is assigned a nonnegative length |e|T , or |e| in case the ambient tree is
clear. Removal of any edge e from T determines a unique partition of the leaves of T into two
subsets Xe and Xe; the pair Xe|Xe is called the split associated with e. A key property of
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splits in trees is that the splits Xe|Xe and Xf |Xf of any pair of edges e and f are compatible,
that is, one of the sets Xe ∩Xf , Xe ∩Xf , Xe ∩Xf , or Xe ∩Xf is empty. A set S of splits is
called compatible if every pair of splits in S is compatible. It turns out [46, Theorem 3.1.4]
that any compatible set of splits on L corresponds to a unique tree, and so from now on we
identify a tree T by simply giving the splits and edge lengths for each edge in T .

A tree T can have an edge e whose associated length |e|T is 0. This corresponds to the
edge e having been contracted in T . Denoting the set of edges of T with nonzero length
by E+

T allows the identification T ∼ T ′ between two trees T and T ′ whenever (i) E+
T = E+

T ′

and (ii) their nonzero edge lengths are equal.

Example 1.1. Two 5-trees are depicted in Figure 1. For simplicity, we only give the splits
and edge lengths for the three internal edges in each tree. The six internal edges are distinct
since they have different splits, and the splits within each tree are compatible. The only
compatible pairs between the two trees, however, are {e1, e6}, {e2, e5}, and {e3, e4}.

0

1

2

3

4

5

4

3

2

1

0

5
|e4| = 4

|e5| = 3

|e6| = 10

|e1| = 10

|e3| = 3

|e2| = 4

splits

e4 : {0, 1, 4, 5} |{2, 3}
e5 : {0, 1, 2, 3} |{4, 5}
e6 : {0, 1} |{2, 3, 4, 5}

splits

e1 : {0, 1, 2, 5} |{3, 4}
e2 : {0, 3, 4, 5} |{1, 2}
e3 : {0, 5} |{1, 2, 3, 4}

T ′T

Figure 1: An example of two 5-trees.

The tree space Tn introduced by Billera, Holmes, and Vogtmann [12] is the space of all
phylogenetic n-trees. It is obtained by representing each tree T ∈ Tn on edge set E by a
vector in the Euclidean orthant O(T ) = O(E) = R

E
+, whose coordinate values are equal to

the corresponding lengths of the edges of T . As above, trees T and T ′ are identified between
orthants whenever the associated trees satisfy T ∼ T ′. This makes Tn a union of (2n − 1)-
dimensional orthants —called maximal orthants —whose interiors are disjoint and which are
identified along their boundaries through the equivalence ∼ given above. A path in Tn is the
image of a continuous map γ : [0, 1] → Tn. The Euclidean length of a path in Tn is the sum
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of the Euclidean lengths of its restrictions to the maximal orthants. This length endows Tn
with the metric d in which d(T, T ′) is the infimum of the Euclidean lengths of the paths from
T to T ′. Note that d(T, T ′) < ∞, since the space Tn is path-connected: any two points can
be joined by straight line segments through the origin.

1.2 Geodesics in tree space

Billera, Holmes, and Vogtmann [12] show that tree space is globally non-positively curved (a
global NPC space), equivalently known in this context as CAT(0). Among other things, this
implies that shortest paths in tree space are unique, so they are unambiguously referred to
as geodesics. This section summarizes the key results of [39] and [41], which investigate the
structure of geodesics in tree space and provide an O(n4)-algorithm — the GTP algorithm
—to find shortest paths. For notation, if T is a tree with edge set E and A ⊆ E , then we
write

‖A‖T =

√∑

e∈A

|e|2T

and use ‖A‖ if the tree T is clear. This means that ‖A‖ = |e| whenever A = {e}.
We express a geodesic with endpoints X and T as a parameterized curve γ : [0, 1] → Tn

with γ(0) = X, γ(1) = T , and d(γ(t), γ(t′)) = |t− t′| · d(X,T ) for all t, t′ ∈ [0, 1]. If an edge e
lies in both X and T , then it lies in every tree on the path γ, with length uniformly changing
between the two terminal values [12, Section 4.2]. We therefore focus first on the case when
X and T have no internal edges in common, and ignore the lengths of the pendant edges
(those containing leaves) in the distance computation.

Each geodesic in tree space is a sequence of straight line segments, called legs, because tree
space is piecewise Euclidean. Each leg is contained within a single orthant O(Ei∪Fi), where
Ei ⊆ EX and Fi ⊆ ET . The precise properties of the sets Ei and Fi making up these legs were
determined in [39]. In particular, define the support (A,B) = ((A1, . . . , Ak), (B1, . . . , Bk)) of
a geodesic γ to consist of a pair consisting of a partition A1 ∪ · · · ∪Ak of EX and a partition
B1 ∪ · · · ∪Bk of ET such that the following property holds:

(P1) for each i > j, the union Ai ∪Bj is compatible.

The geodesic γ has legs in O(Ei ∪ Fi), where

Ei = Ai+1 ∪ · · · ∪Ak

and Fi = B1 ∪ · · · ∪Bi.

The individual pairs (Ai, Bi) are the support pairs for the geodesic.
Whether the shortest piecewise-linear path having these legs actually forms the geodesic

between X and T is determined by the following two properties for (A,B).

(P2)
‖A1‖
‖B1‖

≤ ‖A2‖
‖B2‖

≤ · · · ≤ ‖Ak‖
‖Bk‖

. This is called the ratio sequence for (A,B).
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(P3) For all (Ai, Bi) and partitions I1 ∪ I2 of Ai and J1 ∪ J2 of Bi such that I2 ∪ J1 is

compatible, the inequality ‖I1‖
‖J1‖

≥ ‖I2‖
‖J2‖

holds.

The properties (P1)–(P3) determine the geodesic between X and T , as well as the algebraic
description of this geodesic given in Theorem 2.4 in [41].

The case where X and T have a nonempty set C of common edges was addressed in [41,
Section 4]: remove the common edges between X and T from each tree, and then find the
paths between the remaining disjoint forests, matching trees by their leaf sets. The common
edges are then placed into the path with the length of each such edge being

(1− λ)|e|X + λ|e|T . (1)

This also allows pendant edges to be taken into account.
To be able to work more easily with trees having common edges, we extend Theorem 2.4

in [41] to the case where X and T have common edges, and in the process simplify the
description of the geodesic considerably. To do this, we use the following three important
conventions.

(a) An edge is never compatible with itself; thus the pairs of identical edges in X and T
must appear in the same support pair (Ai, Bi).

(b) ‖Ai‖ = −
√∑

e∈Ai
|e|2T for any set Ai of edges of X in common with T .

(c) We extend the notation for support pair by adding the additional sets

A0 = B0 = Ak+1 = Bk+1 = ∅

and define ‖A0‖
‖B0‖

= −∞ and
‖Ak+1‖
‖Bk+1‖

= ∞.

With these conventions we can restate the unified result.

Theorem 1.2. Let X and T be any two trees in Tn (not necessarily disjoint), and let (A,B) be
a support for X and T satisfying (P2) and (P3). The unique geodesic γ = {γ(λ) : 0 ≤ λ ≤ 1}
from X to T has legs

γi =

{
γ(λ) :

‖Ai‖
‖Bi‖

≤ λ

1− λ
<

‖Ai+1‖
‖Bi+1‖

}
for i = 0, . . . , k, (2)

The points on each leg γi are associated with the tree Ti having edge set

B1 ∪ · · · ∪Bi ∪Ai+1 ∪ · · · ∪Ak

and edge lengths

|e|Ti
=





(1− λ)‖Aj‖ − λ‖Bj‖
‖Aj‖ |e|X if e ∈ Aj

λ‖Bj‖ − (1− λ)‖Aj‖
‖Bj‖ |e|T if e ∈ Bj .

(3)
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The length of γ is

L(γ) =
www
(
‖A1‖+ ‖B1‖, . . . , ‖Ak‖+ ‖Bk‖

)www. (4)

Proof. The presentation in this theorem matches that of the original Theorem 2.4 in [41]
except for the treatment of the common edges of X and T . Consider any edge e common
to X and T . The definition of a support ensures that e lies in both Ai and Bi for some i.
Further, by convention the ratio ‖e‖X/‖e‖T is negative, so (P2) is never satisfied unless all
of the common edges are placed at the front of the ratio sequence. This also means that
for any λ > 0, each common edge is contained in some Bi for the computation of its edge
length at that point along the geodesic. Furthermore, since the common edges are mutually
compatible with each other, they are placed in different support pairs whenever the ratios
|e|X/|e|T differ. It follows that the common edges are always grouped in support pairs (Ai, Bi)
having ‖Ai‖/‖Bi‖ = −|e|X/|e|T for any e in that support pair.

Now consider the length of a common edge e in leg γi of the path. By (3),

|e|Ti
=

λ‖Bj‖ − (1− λ)‖Aj‖
‖Bj‖

|e|T =

(
λ− (1− λ)

‖Aj‖
‖Bj‖

)
|e|T

=

(
λ+ (1− λ)

|e|X
|e|T

)
|e|T = λ|e|T + (1− λ)|e|X ,

which matches (1).
Next look at the term in (4) corresponding to a support pair (Ai, Bi) of common edges:

(‖Aj‖+ ‖Bj‖)2 =
(‖Aj‖
‖Bj‖

+ 1

)2

‖Bj‖2 =
∑

e∈Bj

(
1− |e|X

|e|T

)2

|e|2T

=
∑

e∈Bj

(|e|T − |e|X)2 .

Summing this over all such pairs (Ai, Bi) yields
∑

e∈C

(|e|T − |e|X )2 ,

where C is the set of common edges. This matches the expression given in [41, Section 4].
Finally, take the case where an edge e lies in only one of the setsX and T , but is compatible

with all edges in the other set. Intuitively, we can think of adding e to the other set with
length 0, and treatin these as common edges. Formally, if e lies in X, then it appears in a
support pair (Ai,∅) with Ai a set of edges compatible with all of T ; and if e lies in T , then
it appears in a support pair (∅, Bi) with Bi a set of edges compatible with all of X. Since
the ratios of these pairs is either 0 or ∞, respectively (since ‖∅‖ = 0), these pairs appear
before and after any nontrivial pairs, respectively. Further, the edge component values and
path length are as indicated in (3) and (4), respectively. This completes the proof of the
theorem.
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Example 1.3. Figure 2 shows an example of the geodesic γ between the trees T and T ′ in
Figure 1 in Example 1.1. The associated support (A,B) for γ has A =

{
{e2, e3}, {e1}

}
and

B =
{
{e6}, {e4, e5}

}
, and the coordinates of seven equally spaced trees in γ are given in the

table. The length of this path, as given by (4), is

L(γ) =
www
(
||{e2, e3}||+ ||{e6}||, ||{e1}||+ ||{e4, e5}||

)www = 15
√
2.
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3

4

3

2

1

5

0

1

02

1

5

2

1

0

5

0

1
0

1

0

3

10

4

10

4

3

γ(i/6)
i |e1| |e2| |e3| |e4| |e5| |e6|
0 10 4 3 0 0 0
1 7.5 2 1.5 0 0 0
2 5 0 0 0 0 0
3 2.5 0 0 0 0 2.5
4 0 0 0 0 0 5
5 0 0 0 2 1.5 7.5
6 0 0 0 4 3 10

Figure 2: Seven trees in the geodesic γ between T and T ′, sampled at the points γ(i/6) for
i ∈ {0, 1, ..., 6}, The table gives the interior edge lengths for the trees, using the same edge
labels as Figure 1.

We end the section by giving a canonical representation for any geodesic.

Lemma 1.4. Any geodesic γ can be represented by unique support (A,B) satisfying

‖A1‖
‖B1‖

<
‖A2‖
‖B2‖

< · · · < ‖Ak‖
‖Bk‖

. (5)
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This support is called the minimal support.

Proof. This is the content of the remark in [41, Section 2.3]. The basic argument is as follows.
Any support (A′,B′) 6= (A,B) of form (5) results in a different geodesic, since by (2) they
have different legs. On the other hand, for any representation of γ having equalities in the
ratio sequence, combine the respective sets in every equality subsequence. The resulting
support continues to satisfy (P2), and hence there is a shortest piecewise linear path from
X to T through the prescribed orthants. Further, from (4) it follows that the length of this
path equals that of γ, and hence defines the unique geodesic γ.

Remark 1.5. Theorem 1.2 positions the support pairs corresponding to edges compatible
with both trees into (5) as follows.

(i) The set NX of edges of X that are not in T but are compatible with all edges of T is

the set A0, with B0 = ∅ and ratio ‖A0‖
‖B0‖

= ‖NX‖
‖∅‖ = −∞.

(ii) The set NT of edges of T that are not in X but are compatible with all edges of X is

the set Bk with Ak = ∅, and so its ratio is ‖Ak‖
‖Bk‖

= ‖∅‖
‖NT ‖ = 0.

(iii) Any edge e that lies in both X and T (and hence has positive length in both sets)

appears in both sets of some support pair (Ai, Bi), and so the ratio is −∞ < ‖Ai‖
‖Bi‖

< 0.

(iv) All other support pairs have ‖Ai‖
‖Bi‖

> 0, so both sets in the support pair are nonempty.

The ordering of the support pairs in (i)–(iii) has no effect on the structure of the geodesic
between X and T , so for the remainder of the paper we take the ratio sequence for a geodesic
to represent only the positive ratios in the sequence.

2 The mean and variance in tree space

Given a finite point set T = {T 1, . . . , T r} of trees in Tn, the mean of T , alternatively known
as the Fréchet mean or barycenter, is the tree T ∈ Tn that minimizes the sum S(X,T ) of
the squares of the distances from X to the points in T . The variance of T is S(X,T )/r.
Since r is constant throughout the following discussion, we abuse notation and henceforth
refer to the variance as simply S(X,T ). The motivation for considering these notions of
mean and variance as the appropriate statistical objects in tree space was given by Sturm
[48], who established the mathematical foundations for probability theory on global NPC
spaces. This section reviews the required basics of Sturm’s geometric methods in the context
of tree spaces. (Readers interested in Fréchet means of more general distributions, and those
in arbitrary global NPC spaces, should read Section 6 now to put the material below in these
more general settings.)
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2.1 The variance function

Let T ∈ Tn be a fixed tree, and consider the geodesics from T to a variable tree X ∈ Tn.
The tree X can be thought of as a vector in R

E
+, whose coordinates are expressed using the

corresponding lower-case letter x. If the geodesic from X to T has support pair (A,B) as in
Theorem 1.2, then the squared distance d(X,T )2 from X to T is expressed as the function

ST (x) =

k∑

i=1

(
‖xAi

‖+ ‖Bi‖
)2

(6)

in which xAi
is the vector whose coordinates are restricted to edges in Ai. It follows that for

a set T = {T 1, . . . , T r} ⊆ Tn of trees, the variance function S(X,T ) can be written

S(x) := S(X,T ) =

r∑

ℓ=1

ST ℓ(x). (7)

Thus the mean T can be thought of as the point x∗ that minimizes S(x) over x ∈ Tn.
To state the next result, a real-valued function f : T → R on a metric space T is strictly

convex if f ◦ γ is a strictly convex real-valued function on R for all geodesics γ; that is, if

f
(
γ(λ)

)
< (1− λ)f

(
γ(0)

)
+ λf

(
γ(1)

)
whenever 0 < λ < 1.

Proposition 2.1. The variance function S(x) is strictly convex as a function on Tn. Con-
sequently, the mean is the unique local minimum of S(x) in Tn.

Proof. [48, Proposition 1.7]. See also Example 6.3.

The differentiability of the variance function S is critical to the construction of gradient-
descent methods for minimizing S. This in turn depends on the differentiability of the
individual functions ST in (7). Identifying the geodesic from X to T by its support (A,B),
Eq. (6) yields the partial derivatives of ST with respect to each of the coordinates xe:

∂ST (X)

∂xe
= 2
(
‖xAi

‖+ ‖Bi‖
) xe
‖xAi

‖

= 2xe

(
1 +

‖Bi‖
‖xAi

‖
)
, (8)

where Ai is the set containing e. This is well-defined whenever x lies in the interior of its
maximal orthant, although the functional form of (8) depends upon the combinatorial type of
the geodesic, and in particular on (A,B). It turns out, however, that throughout the interior
of any maximal orthant the function S is continuously differentiable.

Theorem 2.2. The variance function S(x) is continuously differentiable on the interior of
every maximal orthant O.
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Proof. From (7) it suffices to show that the function (8) is continuously differentiable on the
interior of O. By Lemma 1.4 the geodesic between X and T can be represented uniquely
by support (A0,B0) satisfying (5). Any other support (A,B) for this geodesic consists of
a sequence of sets partitioning the A0

i and B0
i into equality subsequences, with the ratios

‖Aj‖/‖Bj‖ in the equality subsequence equal to the corresponding ratio ‖A0
i ‖/‖B0

i ‖ of the
sets from which they were partitioned. But this means that the ratio ‖Bi‖/‖xAi

‖, and hence
∂ST (X)/∂xe, is the same regardless of which representation we choose for the geodesic. It
follows that the partial derivatives are continuous everywhere in the interior of O.

2.2 Sturm’s algorithm

The orthant structure of tree space Tn prevents the averaging of finite point sets using the
standard Euclidean centroid. The following serves as an approximate replacement, intro-
duced by Sturm [48, Definition 4.6] in the context of probability theory on arbitrary globally
nonpositively curved spaces.

Definition 2.3. For a set X1,X2, . . . of points in Tn and an index k, the inductive mean
value of X1, . . . ,Xk is the point µk defined by setting µ1 = X1 and for ℓ = 2, . . . , k, letting
µℓ be the point γ1/ℓ = γ(1/ℓ) that is 1/ℓ along the geodesic γ from µℓ−1 to γ1 = Xℓ.

Note that if all of the Xℓ lie in the same orthant, then the inductive mean value of
X1, . . . ,Xk in fact equals the standard centroid of X1, . . . ,Xk. For general points in Tn,
though, the inductive mean may not be the Fréchet mean; it may in fact give different points
for different orderings of the points X1, . . . ,Xk (see Example 5.3). Sturm goes on to prove
[48, Theorem 4.7] the following strong law of large numbers for the Fréchet mean.

Theorem 2.4. Fix a set {T 1, . . . , T r} ⊆ Tn of trees. If X1,X2, . . . is a sequence of points
sampled uniformly and independently from {T 1, . . . , T r}, then with probability 1, the sequence
of inductive mean values µ1, µ2, . . . approaches the mean T of {T 1, . . . , T r}.

To be precise, Sturm shows that if we take the inductive mean µk as a random variable
dependent on the sampling of the points Xℓ, then the distance d(µk, T ) from µk to the true
mean T has expected value bounded above by S(T , T )/k. This gives us a way of estimating
the Fréchet mean T through a sequence of inductive means µ1, µ2, . . . obtained by randomly
sampling trees from the set {T 1, . . . , T r}.

12



Algorithm 2.5 (Sturm’s algorithm).

input a set {T 1, . . . , T r} of trees in Tn
positive integers K and N
positive real number ε

output µk = kth approximation of the mean tree

initialize choose a tree T ∈ {T 1, . . . , T r} uniformly at random
set µ1 := T
set k := 1

while k < K or pairwise distances d(µj , µℓ) for k −N < j, ℓ ≤ k are not all ≤ ε

do choose tree T ∈ {T 1, . . . , T r} uniformly at random
set γ := the geodesic from T to µk

set µk+1 := γ1/(k+1)

set k := k + 1

end while-do

return µk, the kth approximation of the mean tree

Remark 2.6. The choice of stopping criterion involves two parts.

(i) Running the algorithm a specified initial number K of iterations guarantees an upper
bound of r

K+1S(T ,T ) on the expected distance of the final tree µk to the mean T . This
is derived from the proof of Theorem 4.7 in [48].

(ii) Comparing the final N sample means serves as a proxy for testing that the sample
means act like a Cauchy sequence for N steps.

Thus in principle, proper settings for K, N , and ε could be used to set confidence intervals
on the distance d(µi, T ) by using Sturm’s result. This would involve a more sophisticated
statistical analysis, which we did not undertake in this paper. In practice, we chose K, N ,
and ε to balance run-time with the desired precision, working under the rough assumption
that if N is chosen large enough, then the approximate mean will be within ε of the mean
tree. For Example 5.5, we chose K = 1000 000, N = 10, and ε = 10−4.

Remark 2.7. We have made software implementing this algorithm freely available [40].

3 The combinatorics of geodesics in tree space

This section investigates the combinatorial structure of geodesics in Tn and their relationship
to the variance function. To be more precise, fix a source tree T ∈ Tn. The shortest path from
an arbitrary tree X ∈ Tn to T has a “combinatorial type”, determined through Theorem 1.2
by the sequence of orthants that it passes through, or more specifically the support pair
(A,B) associated with the geodesic. This combinatorial type can change, even when X has
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the same topology, depending on the precise values of the lengths of the edges in X. We are
interested in the partition of Tn — called1 the vistal subdivision of Tn—into regions for which
the geodesics to the fixed tree T have the same combinatorial type.

We begin by describing a simple change of coordinates, the squaring map, and character-
izing the faces of maximal dimension in the vistal subdivision (Section 3.1). In particular,
Propositions 3.5 and 3.6 establish that after applying the squaring map the vistal facets are
polyhedral regions that cover tree space but have disjoint interiors. Next we provide a simple
description of the faces of lower dimension in these polyhedra (Section 3.2). Finally, we prove
that the vistal facets constitute the maximal cells of a polyhedral subdivision of tree space,
called the vistal polyhedral subdivision (Section 3.3).

Remark 3.1. The idea of studying the paths taken by geodesics emanating from a source
point has been studied in computational geometry, in the areas of single source shortest path
queries [35] and polyhedral unfolding [34]. Recently Chepoi and Maftuleac studied the single
source shortest path problem for CAT(0) rectangular complexes, where each cell is a 2D
rectangle. When the underlying space is intrinsically 2D, these shortest path subdivisions
are often polyhedral. However, in general, we can not expect this in higher dimensions, and
indeed, without the squaring map, the vistal subdivisions are not polyhedral, as illustrated
in Example 3.32. The squaring map is only possible in Tn because all of the combinatorial
complexity of the space happens about the origin.

Example 3.2. Vistal subdivisions are in general far from polyhedral, even after changes of
coordinates such as squaring. A prerequisite for a squaring map to produce polyhedrality
would be that (every component of the) the bounding hypersurface has degree at most 2.
However, global NPC cubical complexes can have vistal cells bounded by hypersurfaces of
degree greater than 2. We conjecture that the bounding hypersurface can have components
of arbitrarily high degree.

For a specific example, consider first the arrangement

1Our use of the term “vistal subdivision” here differs from [34, Conjecture 9.6]: vistal facets in Definition 3.3
here are analogous to cut cells in [34, Definition 5.4]. In contrast, the equivalence relation in [34] declares two
points equivistal when their vistal subdivisions—in the sense of Theorem 3.30—are combinatorially the same.
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of three 3-dimensional cubes in which the bottom two cubes are joined along a common face,
the top cube meets one bottom cube along an edge, and all three cubes meet at a central
vertex. Consider the set V of points whose shortest path back to a fixed starting point (the
dot in the left bottom cube) passes through the interior of the edge joining the top cube to
the bottom cubes, as opposed to passing through the central vertex. The set V is obtained
by rotating the top shaded triangle about the shared cube edge. The boundary of V is a cone
and hence is described as the vanishing locus (in the top cube) of a polynomial of degree 2.

To get the desired example, glue a 4-cube to the right-hand 2-face of the top cube in the
figure. If it were merely a 3-cube glued on, then the cone V would simply continue to expand
into the added cube, creating a frustum in the added 3-cube. But once the new facet is a
4-cube, the frustum rotates freely around the shared 2-face. The boundary of such a rotated
frustum is the locus of zeros (in the 4-cube) of a polynomial, but any such polynomial f has
degree at least 4. Indeed, intersecting the hypersurface in question with a generic hyperplane
yields a union of two cones, each of which has degree 2. Therefore f restricts to a polynomial
of degree at least 4 on the hyperplane, whence the hypersurface itself has degree at least 4.

3.1 Vistal facets

Definition 3.3. Given a source tree T ∈ Tn, a maximal orthant O ⊆ Tn, and a support
(A,B), let V(T,O;A,B) be the closure of the set of trees X ∈ O for which the geodesic
joining X to T has support (A,B) satisfying (P2) and (P3) with strict inequalities. A
previstal facet is any nonempty set V(T,O;A,B) of this form.

The description of V(T,O;A,B) becomes linear after a simple change of variables.

Definition 3.4. The squaring map Tn → Tn acts on x ∈ Tn ⊆ R
E
+ by squaring coordinates:

(xe | e ∈ E) 7→ (ξe | e ∈ E), where ξe = x2e.

Denote by T 2
n the image of this map, and let ξe = x2e denote the coordinate indexed by

e ∈ E. The image of an orthant in Tn is then the equivalent orthant in T 2
n , and the image

of a previstal facet V(T,O;A,B) in T 2
n is a vistal facet denoted V2(T,O;A,B). With this

change of variables, ‖A‖ =
∑

e∈A ξe for any set of splits A.

The squaring map induces on the variance function S a corresponding pullback function

S2(ξ) = S(
√

ξ ), where (
√

ξ )e =
√

ξe . (9)

Since the variance function S(x) is continuous on Tn with a uniquely attained minimum by
Proposition 2.1, and continuously differentiable on the interior of each maximal orthant by
Theorem 2.2, the same properties hold for S2. Thus we can apply steepest descent methods
after squaring just as we would beforehand. This is further explored in Section 4.

Theorem 1.2 implies a nice description of the vistal facets of T 2
n .
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Proposition 3.5. The vistal facet V2(T,O;A,B) is a convex polyhedral cone in T 2
n defined

by the following inequalities on ξ ∈ R
E, where all norms ‖·‖ are to be interpreted as ‖·‖T .

(O) ξ ∈ O; that is, ξe ≥ 0 for all e ∈ E, and ξe = 0 for e /∈ E, where O = R
E
+.

(P2) ‖Bi+1‖2
∑

e∈Ai

ξe ≤ ‖Bi‖2
∑

e∈Ai+1

ξe for all i = 1, . . . , k − 1.

(P3) ‖Bi\J‖2
∑

e∈Ai\I

ξe ≥ ‖J‖2
∑

e∈I

ξe for all i = 1, . . . , k and subsets I ⊆ Ai, J ⊆ Bi such

that I ∪ J is compatible.

Proof. For a vector x = (xe | e ∈ E) ∈ O to lie in V(T,O;A,B), the tree X must be in
an orthant of Tn and satisfy properties (P2) and (P3). The orthant condition immediately
implies the nonnegativity conditions in (O). The inequalities corresponding to (P2) are

‖Ai‖
‖Bi‖

≤ ‖Ai+1‖
‖Bi+1‖

.

Squaring, cross-multiplying, and substituting ξe for x
2
e yields the corresponding linear inequal-

ity in V2(T,O;A,B) in T 2
n . The inequalities for (P3) are obtained in the same manner.

Proposition 3.6. The vistal facets are of dimension 2n−1, have pairwise disjoint interiors,
and cover T 2

n . A point ξ ∈ T 2
n lies interior to a vistal facet V2(T,O;A,B) if and only if the

inequalities in (O), (P2), and (P3) are strict.

Proof. The vistal facets cover T 2
n by definition: T ∈ V2(T,O;A,B) if the geodesic from

X ∈ O to T has support (A,B). The second statement follows by definition and by standard
properties of convex polyhedra presented as solutions to systems of linear inequalities.

3.2 Vistal cells

Henceforth in this section we focus our attention on the squared tree space T 2
n and its

expression as a union of polyhedral vistal facets as given by Proposition 3.5. This subsection
concerns faces of vistal facets, including compact characterizations thereof.

3.2.1 Signatures and vistal cells

Definition 3.7. Fix a source tree T ∈ Tn, a (not necessarily maximal) orthant O ⊆ Tn, and
a support (A,B). A signature associated with the support (A,B) is a length k − 1 sequence
S = (σ1, . . . , σk−1) of symbols σi ∈ {= , ≤}. The previstal cell defined by O, A, B, and S
is the set V(T,O;A,B;S) of points X in O for which the ratio sequence for (A,B) at the
point X has the following specific form:

‖A1‖
‖B1‖

σ1
‖A2‖
‖B2‖

σ2 · · · σk−2
‖Ak−1‖
‖Bk−1‖

σk−1
‖Ak‖
‖Bk‖

. (10)

The vistal cell V2(T,O;A,B;S) ⊆ T 2
n is the image of V(T,O;A,B;S) under squaring.
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Remark 3.8. Vistal cells are convex polyhedra that need not be bounded, and as such they
might not be topological cells. However, the interior of a convex polyhedron is a topological
cell, so every vistal cell is the closure of a topological cell.

Lemma 3.9. The dimension of the vistal cell V2(T,O;A,B;S) is at most dim(O) −m(S),
where m(S) is the number of “=” components in S. The vistal cell V2(T,O;A,B;S) is full-
dimensional if and only if there exists a point X ∈ V(T,O;A,B;S) satisfying the following
two properties.

(V1) For each i = 1, . . . , k − 1, ‖Ai‖
‖Bi‖

= ‖Ai+1‖
‖Bi+1‖

if σi is “=” and ‖Ai‖
‖Bi‖

< ‖Ai+1‖
‖Bi+1‖

if σi is “≤”.

(V2) The inequalities in (P3) are satisfied strictly.

Proof. This follows from standard polyhedral theory, as treated in [50], for instance.

Proposition 3.5 implies that (i) vistal cells are faces of vistal facets, and that (ii) vistal
facets are vistal cells for which O is maximal and the signature contains only “≤” symbols.
What we prove here is that all faces of vistal facets can be represented as vistal cells, and
that under some simple conditions on (A,B), Definition 3.7 provides a canonical description
of each vistal cell. We start by determining all supports and signatures associated with the
geodesic γ from T to a particular point X. By Lemma 1.4, the geodesic γ can be represented
by a unique minimal support (A,B) satisfying (5):

‖A1‖
‖B1‖

<
‖A2‖
‖B2‖

< · · · < ‖Ak‖
‖Bk‖

.

Any other support (A′,B′) of γ corresponds to a ratio sequence in which at least one ratio
‖Ai‖/‖Bi‖ is replaced by a ratio subsequence formed from a partition of Ai and Bi, with
equalities between all terms. Any ratio subsequence for which X continues to satisfy (P3)
together with equalities between terms of the ratio subsequences constitutes a valid support
for γ. We next give a specific method for determining all such support sequences.

3.2.2 Incompatibility graphs and equality subsequences

In [41] it was shown how condition (P3) for support pair (Ai, Bi) can be rephrased in terms
of conditions on a special node-weighted graph derived from the compatibility relations be-
tween X and T and their coordinate values. We summarize the technique here. Denote the
coordinates of X and T by X = (xe | e ∈ EX) and T = (te | e ∈ ET ), and let ξe = x2e and
τe = t2e be their squared coordinates.

Definition 3.10. The incompatibility graph G(Ai, Bi) between Ai and Bi is the weighted
bipartite graph with vertex set Ai ∪Bi and an edge from a ∈ Ai to b ∈ Bi whenever a and b
are incompatible. The weight of each vertex a ∈ X is ξ̃a = ξa/

∑
e∈Ai

ξe, and the weight of
each vertex b ∈ T is τ̃b = τb/

∑
e∈Bi

τe. A (vertex) cover for G(Ai, Bi) is a set C ⊂ Ai ∪ Bi
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having the property that every edge of G(Ai, Bi) has at least one endpoint in C. The weight
of C is the sum of the weights of its vertices.

Lemma 3.11 ([41, Section 3]). Property (P3) holds for support pair (Ai, Bi) if and only if
every cover of G(Ai, Bi) has weight ≥ 1.

By Lemma 3.11, testing a support pair (Ai, Bi) for property (P3) is equivalent to showing
that the min weight cover for G(Ai, Bi) has weight 1. The problem of finding the minimum
cover in G(Ai, Bi) in turn can be reduced to solving a max flow problem (see [2], Section 12.3)
on a specially defined flow network F (Ai, Bi). To construct F (Ai, Bi), start with G(Ai, Bi),
attach a source s̄ to the Ai-vertices of G(Ai, Bi) and a sink t̄ to the Bi-vertices of G(Ai, Bi),
and direct all edges from s̄ toward t̄. Set the capacity of each edge (s̄, a) to ξ̃a, set the capacity
of each edge (b, t̄) to τ̃b, and set the capacities of edges in G(Ai, Bi) to∞. The Max-Flow-Min-
Cut Theorem implies that the value of the maximum (s̄, t̄)-flow f for F (Ai, Bi) is equal to the
capacity of a minimum capacity of an (s̄, t̄)-cut K in F (Ai, Bi), which in turn corresponds to
a minimum weight cover C for G(Ai, Bi). Thus the condition in Lemma 3.11 for G(Ai, Bi)
is equivalent to the property that the max flow in F (Ai, Bi) is ≥ 1. The precise relationship
between max flows in F (Ai, Bi) and min covers in G(Ai, Bi) is crucial to determining the
possible ratio subsequences that can replace a term ‖Ai‖/‖Bi‖ in (5), and we clarify this
relationship below.

Example 3.12. Figure 3 demonstrates this for a hypothetical support pair (Ai, Bi) with Ai =
{x1, x2, x3, x4, x5, x6, x7, x8} and Bi = {t1, t2, t3, t4, t5, t6, t7}, compatibility graph G(Ai, Bi),
and values ξa, and τb as given in Figure 3(a). Figure 3(b) depicts the associated flow graph
F (Ai, Bi) and max flow. For simplicity, the weights are not normalized, so that all numbers
are scaled by 23, the sum of the weights. This flow has value 23, which means that the pair
(Ai, Bi) satisfies (P3).

3.2.3 Residual graphs and ratio subsequences

Now consider the problem of determining the possible ratio subsequences replacing a term
‖Ai‖/‖Bi‖ in the ratio sequence of a minimal support for X and T . We use the optimal flow
conditions on F (Ai, Bi) to do this. Recall that here (Ai, Bi) also satisfies (P3), so that the
max flow f on F (Ai, Bi) has value 1. The associated minimum weight cover for G(Ai, Bi)
can then be obtained from this flow. To do this, we define another auxiliary graph.

Definition 3.13. The residual graph Gr
i with respect to f has

(a) all edges of G(Ai, Bi), directed as in F (Ai, Bi), and

(b) all edges e of F (Ai, Bi) — but in the reverse direction — where fe > 0.

An (s̄, t̄)-cut in Gr
i is any partition (H,H) of the nodes of Gr

i having the property that no
edge of Gr

i goes from H to H .
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Figure 3: Characterizing ratio subsequences
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It is easy to see that by this definition, H contains s̄ and H contains t̄. The definition of
residual graph is based on the structure of F (Ai, Bi) and the fact that the flow f saturates (is
at capacity on) all edges adjacent to either s̄ or t̄. The Max-Flow-Min-Cut Theorem states
that every (s̄, t̄)-cut in Gr

i corresponds to a cut of capacity 1 in F (Ai, Bi), which in turn
corresponds to a cover of weight 1 in G(Ai, Bi). This leads to the following result.

Lemma 3.14. Let (H,H) be a (s̄, t̄)-cut in the residual graph Gr
i . Then the sets I1 = H∩Ai,

J1 = H ∩ Bi, I2 = H ∩Ai, and J2 = H ∩ Bi have the property that ‖I1‖
‖J1‖

= ‖I2‖
‖J2‖

can replace
‖Ai‖
‖Bi‖

in (5) and the resulting sequence still satisfies (P2) and (P3).

Proof. By Definition 3.13(a) all edges of G(Ai, Bi) are in Gr
i , so in particular there can be

no edge from any element in I2 to any element in J1. Thus I2 ∪ J1 is compatible. Further,
by Definition 3.13(b) there are no edges of Gr

i from H to H, so the flow is conserved in H,
and hence in H. This implies ‖I1‖ = ‖J1‖ and ‖I2‖ = ‖J2‖, and thus the ratios are equal.
Finally, since the flow f restricted to each of the subgraphs F (I1, J1) and F (I2, J2) continues
to saturate the edges adjacent to s̄ and t̄, property (P3) continues to be satisfied on the
replacement support pairs (I1, J1) and (I2, J2).

Example 3.15 (continuation of Example 3.12). One min cut with respect to the flow in
Figure 3(b) has H = {x1, x2, x3, t1, t̄} and H its complement; this corresponds to the pairs
I1 = {x1, x2, x3}, J1 = {t1}, I2 = {x4, x5, x6, x7, x8}, and J2 = {t2, t3, t4, t5, t6, t7}, with
squared ratios 9

9 = 14
14 .

Iteratively applying Lemma 3.14 to the resulting graphs G(I1, J1) and G(I2, J2) can pro-
duce various replacement subsequences for (Ai, Bi), depending upon the choice of min cuts
and the number of times the lemma is applied. Picard and Queyranne [42] give a method to
find all cuts for this flow problem, thereby allowing us to characterize all ratio subsequences
associated with (Ai, Bi).

Definition 3.16. Write G∗
i (X) for the result of modifying the residual graph Gr

i by con-
tracting all edges contained in directed cycles.

The directed graph G∗
i (X) is acyclic, is independent of the actual (max) flow f , and has

nodes corresponding to a partition of the nodes of Ai ∪ Bi ∪ {s̄, t̄}. Furthermore, the nodes
in any partition obtained by iteratively applying Lemma 3.14 must consist of unions of the
sets corresponding to the nodes of G∗

i .

Definition 3.17. An upper ideal for G∗
i (X) is any set I of nodes of G∗

i (X) such that v ∈ I
whenever u ∈ I and (u, v) is an edge of G∗

i (X).

A partition (H,H) is therefore a cut if and only if H is an upper ideal. Let Ii denote the
set of upper ideals of G∗

i (X), excluding the trivial ideal {s̄}. The next corollary follows from
this discussion.
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Corollary 3.18. The maximum size of any ratio subsequence that can replace (Ai, Bi) in (5)
is equal to the number of vertices in G∗

i (X) \ {s̄, t̄}. Moreover, the ratio subsequences

‖A′
i,1‖

‖B′
i,1‖

=
‖A′

i,2‖
‖B′

i,2‖
= · · · =

‖A′
i,ℓ‖

‖B′
i,ℓ‖

are in bijection with nested sequences of sets in Ii.

This simplifies further. A topological ordering of G∗
i (X) is any numbering of the vertices

so that for every edge (u, v) of G∗
i (X), vertex v is numbered lower than u. Every acyclic

graph has at least one topological ordering.

Corollary 3.19. The maximum-cardinality ratio subsequences of Corollary 3.18 are in bijec-
tion with the topological orderings of G∗

i (X). In fact, any ratio subsequence for a particular
pair (Ai, Bi) corresponds to a partition of the vertices of G∗

i (X) according to one of these
topological orderings.

Example 3.20 (continuation of Example 3.12). Applying Corollary 3.19 to the example in
Figure 3, the only two acyclic orderings of G∗ are (U, V,X,W ) and (U, V,W,X), which results
in the two maximal subsequences

(A,B) =
{(

{x1, x2, x3}, {t1}
)
,
(
{x4, x5, x6}, {t2, t3, t4, t5}

)
,
(
{x7}, {t6}

)
,
(
{x8}, {t7}

)
(
{x1, x2, x3}, {t1}

)
,
(
{x4, x5, x6}, {t2, t3, t4, t5}

)
,
(
{x8}, {t7}

)
,
(
{x7}, {t6}

)

respectively, both of which have squared ratios of 9
9 = 12

12 = 1
1 = 1

1 = 1. The set of possible
replacement subsequences for (A,B) corresponds to the twelve distinct contiguous partitions
that can be formed from one of the above two sequences.

3.2.4 Valid support sequences

We next set up the combinatorial structure to give a canonical description of the vistal cell
V2(T,O;A,B;S).

Definition 3.21. Let (Ai, Bi) be a support pair for the minimal support (A,B). A valid
support sequence for (Ai, Bi) is comprised of a set of pairs (A′

i,1, B
′
i,1), . . . , (A

′
i,ℓ, B

′
i,ℓ) with the

following properties.

(F1) The sets A′
i,j and B′

i,j are nonempty and partition Ai and Bi, respectively.

(F2) The incompatibility graph G(A′
i,j , B

′
i,j) is connected for each j = 1, . . . , ℓ.

(F3) Contracting the sets A′
i,j ∪B′

i,j in G(Ai, Bi) results in an acyclic graph.
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Example 3.22 (continuation of Examples 3.12 and 3.20). Any support derived from the
maximal supports in Example 3.20 is a valid support sequence, except for the two supports

(
{x1, x2, x3}, {t1}

)
,
(
{x4, x5, x6}, {t2, t3, t4, t5}

)
,
(
{x7, x8}, {t6, t7}

)

and
(
{x1, x2, x3, x4, x5, x6}, {t1, t2, t3, t4, t5}

)
,
(
{x7, x8}, {t6, t7}

)
,

whose final pairs do not correspond to connected subgraphs of the compatibility graph.

Lemma 3.23. Let X ∈ Tn have associated (X,T )-geodesic with minimal support (A,B)
satisfying (5), and for some index i let (A′

i,1, B
′
i,1), . . . , (A

′
i,ℓ, B

′
i,ℓ) be a valid support sequence

for (Ai, Bi). There is an element X ′ ∈ Tn in the same orthant as X for which the geodesic
between X ′ and T has support

A′ = A1, . . . , Ai−1, A
′
i,1, . . . , A

′
i,ℓ, Ai+1, . . . , Ak

B′ = B1, . . . , Bi−1, B
′
i,1, . . . , B

′
i,ℓ, Bi+1, . . . , Bk

with
‖A1‖
‖B1‖

< · · · < ‖Ai−1‖
‖Bi−1‖

<
‖A′

i,1‖
‖B′

i,1‖
= · · · =

‖A′
i,ℓ‖

‖B′
i,ℓ‖

<
‖Ai+1‖
‖Bi+1‖

< · · · < ‖Ak‖
‖Bk‖

.

Further, for any pair (A′
i,j , B

′
i,j) and any partition I1 ∪ I2 of A′

i,j and J1 ∪ J2 of B′
i,j in which

I2 ∪ J1 is compatible,
‖I1‖
‖J1‖

>
‖I2‖
‖J2‖

.

Proof. For support pair (Ai, Bi), let ξ̃ and τ̃ be the weights on the vertices of G(Ai, Bi).
Define X ′ by replacing the (squared) weights on X for each a ∈ A′

i,j by

ξ̃′a =
∑

b∈Ej(a)

τ̃b
degj(b)

,

where Ej(a) is the set of vertices b ∈ B′
i,j such that (a, b) is in the incompatibility graph, and

degj(b) is the number of edges of the incompatibility graph from A′
i,j to b. These values are

all well-defined and positive by (F1) and (F2). Place the following flow f on the associated
flow graph: for edge (a, b) where a ∈ A′

i,j and b ∈ B′
i,j for any 1 ≤ j ≤ l, let the flow on

that edge be τ̃b/degj(b); for all other edges, let the flow be 0. Then the flow into node b is

exactly τ̃b and the flow out of a is exactly ξ̃a. Corollary 3.18 and property (F3) ensure that f
is a max flow with respect to the flow graph, with flow value

∑
Bi

τ̃b =
∑

Ai
ξ̃a = 1, and since

flow is conserved between each A′
i,j and B′

i,j, the original (un-normalized) weights satisfy

‖A′
i,1‖

‖B′
i,1‖

= · · · =
‖A′

i,ℓ‖
‖B′

i,ℓ‖
=

‖Ai‖
‖Bi‖

.
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Finally, for a pair (A′
i,j , B

′
i,j), let I1∩I2 and J1∩J2 be partitions of A

′
i,j and B′

i,j respectively,
in which I2 ∪ J1 is compatible. This means that there are no edges of G(A′

i,j , B
′
i,j) from I2

to J1, and since G(A′
i,j , B

′
i,j) is connected there must be at least one edge going from I1 to J2.

Since flow is positive on all edges of G(A′
i,j , B

′
i,j), there is a net flow from I1 away from J1,

and from the definition of ξ′ it follows that ‖I1‖
‖J1‖

> ‖I2‖
‖J2‖

.

3.2.5 Canonical description of vistal cells

Finally, we extend Propositions 3.5 and 3.6 to describe all vistal cells associated with (X,T )-
geodesics from points X in an orthant O. Since a valid support sequence is determined by
the combinatorics of the splits and not by their edge lengths, we can define the following.

Definition 3.24. A valid support sequence for (O, T ) is a support (A,B) for which each
maximal equality subsequence

‖Ai‖
‖Bi‖

=
‖Ai+1‖
‖Bi+1‖

= · · · = ‖Aj‖
‖Bj‖

(11)

satisfies properties (F1)–(F3) with respect to the pair (
⋃j

ℓ=iAℓ,
⋃j

ℓ=iBℓ). Write G(O, T ) for
the corresponding incompatibility graph G(A,B).

Theorem 3.25. Fix a tree T ∈ Tn.
1. Vistal cells associated with geodesics to T are exactly those of the form V2(T,O;A,B;S),

where (A,B) is a valid support sequence for (O, T ) and S is a signature on (A,B).
2. The dimension of the vistal cell V2(T,O;A,B;S) is dim(O)−m(S), where m(S) is the

number of “=” components in S.
3. The representation by a valid support sequence and signature is unique up to reordering

the support sets within each equality subsequence of S.

Proof. Claim 1. Let V2(T,O;A,B;S) be a vistal cell containing an interior point ξ. The
definition of support and the fact that ξ is positive implies that (F1) and (F3) hold for
G(O, T ). Now suppose that (F2) fails to hold; that is, some G(Ai, Bi) has a partition into
two disjoint subgraphs on vertex sets I1 ∪ J1 and I2 ∪ J2, respectively. Let f be the max
flow in G(Ai, Bi). Since (P3) is satisfied, f saturates all arcs adjacent to the source and sink.
But since flow in each of the disjoint subgraphs G(I1, J1) and G(I2, J2) is self-contained,
‖I1‖
‖J1‖

= ‖I2‖
‖J2‖

= ‖Ai‖
‖Bi‖

. This means that the corresponding tree X satisfies one of its (P3)

inequalities at equality, so ξ cannot be in the interior of V2(T,O;A,B;S), a contradiction.
Thus (F2) is also satisfied, so (A,B) is a valid support sequence with respect to (O, T ).

Conversely, let (A,B) be a valid support sequence with respect to (O, T ). Consider a ratio
subsequence (11) with all terms equal. Since (A,B) is a valid support sequence, Lemma 3.23
constructs positive weights Xℓ on the edges indexed by Aℓ, for ℓ = i, . . . , j, so that (11) holds
and all (P3) inequalities are strict inside each support pair. Now for each maximal-length
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equal-ratio subsequence, scale the vectors of each term by the same positive multiplier λij

so that the sequence of multipliers λij is increasing with the indices. The scaled xℓ vectors
concatenate into a vector X in the interior of O having the correct signature indicated by S,
and for which the (P2) inequalities hold strictly between the equal-ratio subsequences. The
squared point ξ corresponding toX therefore lies interior to V2(T,O;A,B;S), and the desired
result follows.

Claim 2. The vector ξ constructed in the proof of Claim 1 is positive in O, satisfies all
(P3) inequalities strictly, and satisfies all (P2) inequalities strictly for which the corresponding
component of S is “≤”. Therefore the dimension of V2(T,O;A,B;S) is determined entirely
by the set of equalities defined by the component of S that are “=”. Since these are linearly
independent, the dimension is as stated.

Claim 3. Let F = V2(T,O;A,B;S) and F ′ = V2(T,O′;A′,B′S ′) be two representations
of vistal cells, defined by valid supports (A,B) and (A′,B′) respectively. Any permutation
of support pairs within an equality subsequence (11) results in the same set of equalities, so
if the representations differ only by such a permutation, then F = F ′. Conversely, suppose
F = F ′. Since all cell constraint inequalities other than those specified by S are satisfied
strictly, the set of equalities dictated by S define the affine hulls of F and F ′. This means
that the two associated equality systems are row-equivalent. Now suppose that the supports
(A,B) and (A′,B′) do not comprise the same sets; that is, by symmetry the two sets Ai

and Aj both have nonempty intersection with the same set A′
k. Since the variables of A′

k do
not appear in any other A′

ℓ for ℓ 6= k, no row transformation of the equality system for F ′

could possibly separate the variables in Ai∩A′
k from those in Aj ∩A′

k. Thus the two equality
systems are not the same, a contradiction.

Corollary 3.26. Distinct vistal cells have disjoint relative interiors.

Proof. Let ξ be an element in the relative interior of two faces in T 2
n , given by valid repre-

sentations. Then ξ satisfies (F2) and (F3) with respect to both faces, and by Theorem 3.25
the only way this could happen is if the faces coincide.

3.3 Vistal subdivisions

Theorem 3.25 allows us a purely combinatorial way of describing vistal cells. This gives us
the machinery to prove the principal result of the section, namely that the vistal cells are
the faces of a polyhedral subdivision of tree space under the squaring map. To make this
precise, we start with some definitions concerning polyhedra; see [50, Lecture 5] for further
background.

Definition 3.27. A polyhedral complex Σ is a finite collection of polyhedra such that

(C1) every polyhedral face of every polyhedron in Σ is a polyhedron in Σ;

(C2) the intersection of any pair of polyhedra in Σ is a face of each.
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The dimension of Σ is the largest dimension of a polyhedron in Σ. The facets of Σ are the
maximal cells. The underlying set of Σ is the union

⋃
V ∈Σ V of the polyhedra in Σ.

Example 3.28. Tree space Tn has a natural polyhedral structure as the underlying space of a
polyhedral complex whose polyhedra are its orthants. This polyhedral structure is unchanged
by the squaring map, and thus also found in T 2

n .

The relation between vistal cells and orthants is one of refinement, in the following sense.

Definition 3.29. Let Σ and Σ′ be polyhedral complexes. Then Σ′ is a subdivision of Σ (it is
also said that Σ′ refines Σ) if each polyhedron in Σ′ is contained in a single polyhedron in Σ.

Theorem 3.30. For tree space Tn and fixed source tree T , the vistal cells of T 2
n with respect

to T refine the natural polyhedral structure of T 2
n to form a vistal polyhedral subdivision

of T 2
n .

Proof. The vistal cells are polyhedra whose union is T 2
n by Propositions 3.5 and 3.6.

For (C1), we show that changing any of the inequalities defining a vistal cell to equality
results in a set that can be described as a vistal cell. Let V = V2(T,O;A,B;S) be a vistal
cell, so that by Lemma 3.23, (A,B) is a valid support sequence, and let F be a proper face
of V obtained by setting one of its boundary inequalities to equality. There are three types of
inequalities that define F : (P2) constraints, nonnegativity constraints, and (P3) constraints.

For the (P2) constraints, consider the inequality ‖Ai‖
‖Bi‖

< ‖Ai+1‖
‖Bi+1‖

, where the corresponding

component of the signature S is “≤”. Let S ′ be obtained from S by setting this inequality
to “=”. Since neither O nor (A,B) has changed, this constitutes a valid support sequence,
and F = V2(T,O;A,B;S ′).

For the nonnegativity constraints, consider the inequality xe > 0, where e is a split
indexing a coordinate of O. Let Ai be the set containing e. Now remove e from G(O, T ).
This splits G(Ai, Bi) into components corresponding to partitions (A′

1, B
′
1), . . . , (A

′
ℓ, B

′
ℓ) of

(Ai, Bi). Because these partitions correspond to separate components in G(Ai, Bi), they can
appear in any order in a valid support sequence for F . Thus every point in F must satisfy
every (P2) inequality between the pairs (A′

i, B
′
i) at equality, since otherwise the (A

′
j , B

′
j) sets

could be interchanged so that some (P3) condition is violated. First consider the case where
all of the A′

j are nonempty. Define the support (A′,B′) by inserting (A′
1, B

′
1), . . . , (A

′
ℓ, B

′
ℓ) in

place of (Ai, Bi) in (A,B):

(A′,B′) = (A1, B1), . . . , (Ai−1, Bi−1), (A
′
1, B

′
1), . . . , (A

′
ℓ, B

′
ℓ),

(Ai+1, Bi+1), . . . , (Ak, Bk)

and extend the signature S to S ′ by adding “=” signs between each of the sets in the primed
subsequence. Then (A′,B′) is valid, and F = V2(T,O \ {e};A′,B′;S ′).

Now suppose that one of the support pairs (A′
j , B

′
j) has A

′
j = ∅. The associated ratio must

be 0, which implies in turn that every ratio corresponding to the pairs (A′
1, B

′
1), . . . , (A

′
ℓ, B

′
ℓ)
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is 0. Furthermore, the ratios are also 0 for any earlier support pairs. So xf = 0 for every
f ∈ H i = A1 ∪ · · · ∪Ai. In this case set

O′ = O \H i

(A′,B′) = (Ai+1, Bi+1), . . . , (Ak, Bk)

S ′ = S restricted to the last k − i pairs of the sequence.

By Remark 1.5 we have been ignoring the non-positive ratios; however, they still exist if there
are common edges between X and T . In this case, the edges B1 ∪ · · · ∪Bi become common
edges, and are added to the 0-valued ratio if it already exists, or form it anew, if it does not.
Again (A′,B′) is valid, and F = V2(T,O′;A′,B′;S ′).

Next consider the (P3) constraints. For some support pair (Ai, Bi) let I1 ∪ I2 and J1 ∪ J2
be partitions of Ai and Bi with I2 ∪ J1 compatible, and consider the constraint

‖I1‖
‖J1‖

>
‖I2‖
‖J2‖

.

Let (A′
1, B

′
1), . . . , (A

′
k, B

′
k) and (A′

k+1, B
′
k+1), . . . , (A

′
ℓ, B

′
ℓ) be pairs corresponding to the com-

ponents of G(I1, J1) and G(I2, J2), respectively.
First consider the case where all of the A′

j and B′
j are nonempty. The same nonempty sets

argument as above applies, and we obtain the the face F = V2(T,O;A′,B′;S ′) with (A′,B′)
and S ′ defined as in the nonempty-set case above.

Next suppose that one of the sets (A′
j , B

′
j) has A

′
j = ∅. As in the empty-set case above,

this forces xf to be 0 for every f ∈ Si = A1∪· · ·∪Ai, and so F = V2(T,O′;A′,B′;S ′) with O′,
(A′,B′) and S ′ defined as in the empty-set case above.

Now suppose that one of the sets (A′
j , B

′
j) has B′

j = ∅. This forces the ratios for every

pair in (A′
1, B

′
1), . . . , (A

′
ℓ, B

′
ℓ) to be ∞, which in turn means that xf = 0 for every f ∈ S̃′

i =
Bi+1 ∪ · · · ∪Bk. Thus if we define

Õ′ = O \ S̃′
i

(Ã′, B̃′) = (A1, B1), . . . , (Ai−1, Bi−1)

S̃ ′ = S restricted to the first i− 1 pairs of the sequence,

then again (Ã′, B̃′) is a valid sequence, and so we obtain the face F = V2(T, Õ′; Ã′, B̃′;S ′). As
before, the edges Ai ∪ · · · ∪Ak become common edges, and hence be added to the ∞-valued
ratio if it exists and otherwise form that ratio.

Finally, suppose that there are pairs (A′
j′ , B

′
j′) and (A′′

j′′ , B
′′
j′′) with A′

j′ = B′′
j′′ = ∅.

This forces all of the xf where f is not a common edge to be 0, and we just get the face
corresponding to the common edges.

For (C2), suppose that V and V ′ are vistal cells, so that V ∩ V ′ is a convex polyhedron.
Let F ⊆ V and F ′ ⊆ V ′ be minimal faces of V and V ′, respectively, containing V ∩V ′. Then
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by (C1), F and F ′ are vistal cells, and since F and F ′ are minimal, then there must be a
p ∈ V ∩ V ′ in the relative interior of F and a p′ ∈ V ∩ V ′ in the relative interior of F ′. It
follows that the midpoint of the line segment joining p to p′ must lie in the relative interiors
of both F and F ′, and Corollary 3.26 then implies that F = F ′. Thus F = F ′ ⊆ V ∩ V ′,
whence V ∩ V ′ = F = F ′ and (C2) follows.

3.4 Examples of vistal complexes

Example 3.31. To demonstrate Theorem 3.30, consider the incompatibility graph from
Figure 3 and treat it as the incompatibility graph for two trees T and X. Take values on T
as given in the figure, and consider the vistal cell V = V2(T,O;A,B;S) defined by

O = {x1, x2, x3, x4, x5, x6, x7, x8}
(A,B) =

(
{x1, x2, x3}, {t1}

)
,
(
{x4, x5, x6, x7, x8}, {t2, t3, t4, t5, t6, t7}

)

S = (≤).

This is a valid sequence, and in particular, using Lemma 3.23 we can assign weights as follows.

x1 x2 x3 x4 x5 x6 x7 x8

2 2 2 31
3 41

3 51
2

1
3

1
2

(The first three weights have additionally been scaled so that (P2) is satisfied strictly.) Here
are examples of the three types of faces of V .

• Setting the single (P2) constraint to equality: this gives the face corresponding to the
numbers in Figure 3.

• Setting xj = 0: for j 6= 5, 6 the face has the same structure as the cell V , except that
xj is removed from the corresponding sets. For j = 5, 6, removal of xj disconnects
(A2, B2) by isolating t4 or {t3, t5}, respectively, and thus setting x5 or x6 to 0 collapses
the face to the single origin point.

• Setting the (P3) constraint with I1 = {x4, x5, x6}, J1 = {t2, t3, t4, t5}, I2 = {x7, x8},
and J2 = {t6, t7} to equality: here

‖I1‖2
‖J1‖2

=
79

66
>

5

12
=

‖I2‖2
‖J2‖2

.

Now G(I2, J2) is not connected, and has nontrivial components on vertex sets {x7, t6}
and {x8, t7}. Thus the face obtained by setting the above inequality to equality is
V2(T,O;A′,B′;S ′), where

(A′,B′) =
(
{x1, x2, x3}, {t1}

)
,
(
{x4, x5, x6}, {t2, t3, t4, t5}

)
,
(
{x7}, {t6}

)
,(

{x8}, {t7}
)

S ′ = (≤,=,=).
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Example 3.32. Figure 4 gives the restriction of a vistal polyhedral subdivision to a maxi-
mal orthant in T5. The trees are depicted in Figure 4(a), with t1 = t2 = t3 = 1. Figures 4(b)
and 4(c) depict the vistal cells in orthant O({x1, x2, x3}) before and under the squaring map,
respectively, as they intersect with the sets x1 + x2 + x3 = 1 and ξ1 + ξ2 + ξ3 = 1, respec-
tively. The vistal cells are labeled by the corresponding ratio sequences, using “=” or “<”
to indicate the behavior of points in the interior of the cell. We also label the six cells of
lower dimension that are the intersections of the vistal facets. Some of the vistal cells before
the squaring map are not polyhedral, because the boundary equations are those of circular
cones.

3.5 Multivistal complexes

It is a straightforward matter to extend vistal cells to the case where there is a collection
T = {T 1, . . . , T r} of source trees in Tn, and we are interested in the set of points X ∈ Tn for
which the geodesic to each tree in T has a specified combinatorial structure.

Definition 3.33. A premultivistal cell for a collection T of trees is a set of the form

V(T ;O;AT ,BT ) =
r⋂

ℓ=1

V(T ℓ,O;Aℓ,Bℓ),

where V(T ℓ,O;Aℓ,Bℓ) are previstal cells, O ⊆ Tn is an orthant, and

(AT ,BT ) =
{
(A1,B1) . . . , (Ar,Br)

}

is a collection of support pairs for (T i,X)-geodesics. A multivistal cell is the image in T 2
n of

a premultivistal cell.

Corollary 3.34. The multivistal cells of tree space Tn for any fixed set source trees refine
the natural polyhedral structure of Tn to form a multivistal polyhedral subdivision of Tn.

Proof. The common refinement of any finite collection of polyhedral subdivisions of a given
polyhedral complex is a polyhedral subdivision of the same polyhedral complex, and so the
result follows from Theorem 3.30.

Remark 3.35. The previstal cells for any fixed source tree form a subdivision of Tn, called
a premultivistal complex, that is the image of the corresponding multivistal polyhedral sub-
division of T 2

n under the inverse ξ →
√
ξ of the squaring map, which is a homeomorphism.

However, the cells in this subdivision are not polyhedral. One might hope that the premulti-
vistal complex is a CW complex, in the standard topological sense (see [36], for example), but
it is not, for the same reason that multivistal polyhedral subdivisions are not CW complexes:
the closed cells are not images of closed balls under continuous maps (a cone of positive
dimension fails to be compact). The situation can be remedied by considering the link Ln
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(a) Trees X and T .

(b) A cross-section of the orthant corresponding to tree topology X before the squar-
ing map.

(c) A cross-section of the orthant correspond-
ing to tree topology X under the squaring map.
Vistal cells are labelled as in Figure 4(b)

Figure 4: The vistal polyhedral subdivision between variable tree X and fixed tree T in T5.
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of the origin in T 2
n , namely the set of trees whose edge lengths sum to 1. Intersecting Ln

with any multivistal polyhedral subdivision yields a polyhedral CW complex whose preimage
under the squaring map is a (non-polyhedral) CW complex. Thus a premultivistal complex
is essentially a (noncompact, unbounded) cone over a CW complex.

Remark 3.36. In general, the number of vistal facets is exponential in n, even within a
single orthant [39]. Thus an efficient method to move through the vistal facets – or prune
the list of relevant ones – would likely improve calculation time of the mean.

4 Computing the mean in tree space

Although the algorithm to calculate the mean in Section 2.2 is simple and seems to perform
well for small data sets, Remark 2.6 indicates that its convergence rate is sublinear, so
in theory it is a poor iterative method. This section outlines a general framework for a
descent method to find the mean of a set T 1, . . . , T r of n-trees. It promises to accelerate
the convergence considerably by generalizing powerful nonlinear programming techniques to
apply to optimization in tree space.

4.1 Optimality criteria

We start by analyzing the variance function S(x) of a variable point X ∈ Tn whose com-
ponents are represented by the variable vector x. For ℓ = 1, . . . , r, let γℓ be the geodesic
from X to Tℓ, with associated support pair (Aℓ,Bℓ). By summing the lengths L(γℓ) of these
geodesics as given by Eq. (4), write the variance in Tn as

S(x) =
r∑

ℓ=1

(L(γℓ))
2 =

r∑

ℓ=1

[
kℓ∑

i=1

(
‖Aℓ

i‖+ ‖Bℓ
i ‖
)2
]

with its derivative given by Eq. (8). Consider this function in its T 2
n -version S2(ξ) as given

in Definition 3.4. Using the notation

ξ̄ℓi =
∑

e∈Aℓ
i

ξe

and

δℓi =

{
+1 if Al

i and Bl
i are disjoint

−1 if Al
i = Bl

i are made up of common edges,

then the corresponding pullback function for ξ ∈ T 2
n can be derived from Eqs. (6) and (7):

S2(ξ) =

r∑

ℓ=1

kℓ∑

i=1

(
δℓi

√
ξ̄ℓi + ‖Bℓ

i ‖
)2

. (12)
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If i(e, ℓ) denotes the index of the set Aℓ
i containing e, then the gradient of S2 can be obtained

from Eq. (12):

∂S2(ξ)

∂ξe
=

r∑

ℓ=1

(
1 + δℓi(e,ℓ)

||Bℓ
i(e,ℓ)||√
ξ̄li(e,ℓ)

)
.

The differentiability of S transfers to S2, as well.

Corollary 4.1. The function S2(ξ) is continuously differentiable on the interior of every
maximal orthant O.

Proof. The inverse of the squaring map is continuously differentiable on the interior of O.
Now apply Theorem 2.2.

The function S2(ξ) is not necessarily convex on T 2
n . By Proposition 2.1, however, it

does have a unique local minimum, which is therefore the mean. Consequently, optimality
conditions for the function S2(ξ) on T 2

n can be based on its behavior in any one of the
multivistal facets in which ξ lies. In particular, we have the following important result.

Corollary 4.2. The squared image X of the Fréchet mean X must satisfy ∇S2(X ) = 0 on
its orthant O(X ). If X lies interior to a maximal orthant O, then X is the squared image
of the mean if and only if the gradient satisfies ∇S2(X ) = 0. These statements are true
regardless on which multivistal facet of O the variance function is derived.

Proof. Since by Corollary 4.1 the gradient is independent of which vistal facet it is calculated
from, the gradient ∇S2(X ) must be zero on any of them in order X to be optimal. Conversely,
since S2 attains a unique minimum on T 2

n , it follows that X must be the mean whenever
∇S2(X ) = 0 on an entire maximal orthant.

Remark 4.3. When a point X lies on the boundary of a maximal orthant, the gradient
∇S2(X ) may be zero on O(X ) even if X is not the squared mean, since there may be
a maximal orthant O ⊃ O(X ) having a point with smaller variance than X . Finding O
from X can be quite difficult, since of ∂S2(X )/ξe may be undefined or infinite for e /∈ O(X ).
Furthermore, directional derivatives may fail to be continuous along orthant boundaries. This
issue presents serious optimization difficulties in locating sample means, since there is ample
evidence that reasonably evenly distributed data in tree space yield means that are likely
to occur on orthant boundaries, or indeed, even to lie at the origin; see Section 5.3. Thus
optimality conditions for the mean when it occurs on orthant boundaries is an important
topic of further research.

4.2 A descent method to compute the mean

In spite of Remark 4.3, we can suggest a basic method for finding the mean in tree space.
The general idea is to start with some feasible tree, and construct a sequence of trees whose
variance function is decreasing, until arriving at the mean tree.
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Algorithm 4.4 (Descent method for computing the mean).

input Trees T 1, . . . , T r in Tn
output The mean tree for T 1, . . . , T r

initialize Choose some good starting point ξ0 ∈ T 2
n , for example, by running Sturm’s

algorithm for a predetermined number of iterations.

while the mean has not been found:

do 1. Find the set M of all maximal orthants containing ξt.
2. For each V ∈ M, choose a point u0V in the interior of V.
3. Use a nonlinear interior point/penalty function method to find a local min-

imum u∗V of S2 in V.
4. If u∗V 6= ξt for any V ∈ M, then choose the u∗V with minimum S2(u∗V), and

set ξt+1 = u∗V .

end while-do

return ξt

The local minimum search in Step 3 should be both straightforward and reasonably fast,
and the accuracy of the points ξk as representing the true local minimum of course depends
upon the method used to find it. Since the function S2 is continuously differentiable on all
V ∈ M, the search in fact finds a local minimum on the orthant V. Since all neighboring
orthants are searched from ξt, it follows that whenever all of these local searches converge
back to ξt then ξt must necessarily be the mean. Finally, the algorithm terminates after a
finite number of iterations, since no two ξt in the sequence can lie in the same orthant. The
number of iterations depends both on the number of iterations t and also the size of M, each
of which may be exponentially large. Thus it is important for the implementation that a good
starting point ξ0 be found, and that a good method be used to determine descent directions in
the set of maximal orthants adjacent to the point ξt. In general, better local search techniques
and starting solutions, perhaps through a hybrid of Sturm’s Algorithm and descent methods,
could improve the accuracy and reliability of procedures to calculate the mean.

5 Properties and applications of the mean

This section contains a series of remarks, results, and computational studies related to the
Fréchet mean in tree space.

All synthetic examples in this section will be given using the trees in Figure 5. This figure
depicts three adjacent orthants in T4, ”flattened out” into the plane, to make the visualization
easier. The edges e′1 and e2 are not compatible, so the (e′1, e2)-orthant (shaded in Figure 5) is
not part of T4. For tree T 1 (respectively, trees T 2 and T 3), we specify its interior edge lengths
by a pair of coordinates (e1, e2) (respectively, (e1, e

′
2) and (e′1, e

′
2)). The geodesic between any

pair of these trees is a straight line, unless it would cross the shaded region, in which case
the geodesic is the cone path, consisting of the two legs joining the given points to the origin.
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Likewise, T is the Euclidean barycenter unless it lies in the shaded region, in which case T
is the point on the boundary of the shaded region that minimizes the sum of the squared
geodesic distances to the three trees.

Figure 5: Example for the remarks.

5.1 Composition of the mean tree

The topology of the mean tree depends on both the topologies and the edge lengths of the
sample trees. Consider, for example, trees T 1 = (3, 1) and T 3 = (1, 3). The mean between

these two trees is the midpoint T
2
= (1, 1) of the segment joining them. Changing both edge

lengths of T 1 to 5, however, yields a midpoint T
1
= (1, 2); similarly, by symmetry, changing

both edge lengths of T 3 to 5 yield the midpoint T
3
= (1, 2). That said, in general we can

give some indication of what edges lie in the mean tree.

Lemma 5.1. Every edge of the mean tree is an edge of some sample tree. Furthermore, if
an edge appears in all sample trees, then it must also appear in the mean tree.

Proof. If a tree contains an edge not in any sample tree, then contracting this edge gives
a tree with a smaller variance function. Now suppose that the edge e is contained in all
sample trees, and thus is compatible with all other edges in the sample trees. Since the mean
contains only edges from the sample trees, edge e is also compatible with all edges in the
mean tree. Thus if the mean tree does not contain e, we can add in e with length equal to
the minimum of its lengths in the sample trees, yielding a tree that is closer to all the sample
trees, which is a contradiction.
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5.2 Other notions of consensus tree

Several authors have proposed notions of “center” for a set T = {T 1, . . . , T r} of points in Tn.
The Euclidean or combinatorial properties of these centers make them useful for representing
consensus trees. Here we compare three such centers with the Fréchet mean T of T . All of
these centers agree when T lies entirely in a single orthant of Tn, but fail to agree for more
globally distributed samples from tree space.

Example 5.2 (The majority-rule consensus (MRC) tree). First introduced by Mar-
gush and McMorris [33], this is the tree whose edge set is comprised of those edges that
appear in at least half of the trees in T . It, or an variation, is widely used in the phylo-
genetics literature. The topology of T is not a refinement of the MRC tree, unlike many
other consensus methods [13]. For example, consider the trees in Figure 5 with coordinates
T 1 = (1, 1), T 2 = (1, 1), and T 3 = (5, 6). The mean of these trees is the Euclidean barycenter

T
3
= (1, 2), while the MRC tree has the topology of tree T 2, so neither tree is a refinement

of the other.

Example 5.3 (Sturm’s inductive mean). The inductive mean (Definition 2.3) of the
set T , for some ordering of T , does not coincide with T , and it can differ depending upon
the ordering. Consider the trees in Figure 5 with coordinates T 1 = (3, 10), T 2 = (3, 3), and
T 3 = (10, 3). Either order having T 1 and T 3 first yields the inductive mean T̃ 2 = (1, 1).
Either order having T 1 and T 2 first yields the inductive mean T̃ 3 = (0.390, 0.117), and either
order having T 2 and T 3 first yields the inductive mean T̃ 1 = (0.117, 0.390). These have
different topologies, and none of them equals T , which has all edges 0.

Example 5.4 (The BHV centroid). Billera, Holmes, and Vogtmann [12] define the cen-
troid of T = {T 1, . . . , T r} inductively on r. For r = 2, the centroid is the midpoint of the
two trees. For r > 2, the centroid is obtained as follows: set T 1 = T and inductively find the
centroid of each subset of r − 1 trees in T

1 to obtain a new set T
2 of r trees. Repeat this

process on the new set, creating a sequence T
1,T 2, . . . of r-sets of trees. The BHV centroid

of T is the limit T̂ of any sequence of points chosen from each of the sets T
i. This process

converges in a general global NPC space [12, Theorem 4.1].
Billera, Holmes, and Vogtmann note that in Euclidean space, the centroid and Fréchet

mean coincide. This is not generally the case in tree space. Consider, for example, the trees
in Figure 5 with coordinates T 1 = (2, 4), T 2 = (2, 2), and T 3 = (4, 2). Then T is again the
origin, while it is easy to see that the BHV centroid lies off the origin.

5.3 Stickiness of the mean

Sullivant [49] noticed the tendency of the Fréchet mean to be sticky, which in this context
means that perturbing one or more of the trees in the set T does not necessarily change
any of the coordinates of T . Take, for example, the points T 1 = (3, 10), T 2 = (3, 3), and
T 3 = (10, 3). The mean T lies at the origin, and remains there even if the coordinates of any
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of the three trees T i are perturbed even up to a full unit. Sticky means occur exclusively on
orthants of lower dimension, underscoring the importance of closely investigating properties
of mean trees that lie on orthant boundaries.

The notion of stickiness has been quantified via a Central Limit Theorem for means of
probability distributions on certain NPC spaces [10, 28].

5.4 Application to biological data

Statistical applications of this research are important in several areas of mathematics, biology,
and medicine. Here, we consider a well-studied data set in phylogenetics with respect to the
Fréchet mean. For applications of the Fréchet mean to medical imaging, see [47] and [31].

Example 5.5 (Gene trees vs. species trees). A gene tree is a phylogenetic tree repre-
senting the evolutionary history of a particular gene found in some set of species. In contrast,
a species tree is a phylogenetic tree representing the evolutionary history of the species them-
selves: the history of population bifurcations leading to divergence. Due to natural processes
such as incomplete lineage sorting, gene trees for different genes can have different topologies,
even when sampled from the same set of individuals—let alone the same set of species—and
hence a gene tree need not share its topology with the species tree (see [32], for example).
Furthermore, the most likely gene tree topology need not agree with the species tree topol-
ogy [20]. However, species trees are usually reconstructed from gene trees, and a major open
question is how best to accomplish this.

We examined the yeast data set of Rokas et al. [45]. For eight species of yeast, they
identified 106 genes and reconstructed the corresponding gene tree with edge lengths for
each using a maximum likelihood approach. In these 106 gene trees, there were 21 different
topologies. We used Sturm’s algorithm to compute the Fréchet mean of these gene trees.
This mean tree had the same topology as the agreed-upon species tree [22]. In general, the
mean gene tree does not necessarily identify the species tree, as a consequence of stickiness,
when branch lengths are taken into account [49]; that is, two finite samples of gene trees
can yield the same mean tree but have different species trees. However, we conjecture that
the topology of the species tree is a refinement of the topology of the Fréchet mean of the
gene trees. That is, stickiness of the Fréchet mean forces some edges to have zero length but
should not add any extraneous edges to this mean.

6 Globally nonpositively curved spaces

Virtually all of our treatment of tree spaces extends to more general global NPC spaces. This
section reframes the concepts and notation of the paper in the context of global NPC spaces,
particularly orthant spaces, and shows how the results of the paper generalize to these spaces.
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6.1 The geometry of nonpositively curved spaces

Fix a metric space T = (T , d). A path in T is the image of a continuous map γ : [0, 1] → T .
Write γλ = γ(λ) for 0 ≤ λ ≤ 1. The length of γ is the supremum of all sums

d(γx0
, γx1

) + d(γx1
, γx2

) + · · · + d(γxk−1
, γxk

)

such that 0 ≤ x0 ≤ · · · ≤ xk ≤ 1. A path is a (global) geodesic if the distance d(γx, γy) between
any pair of points on γ equals the length of that portion of γ between them. A geodesic space
is a complete metric space such that every pair {x, y} of points is joined by a path γ whose
length is the distance d(x, y) between x and y.

Definition 6.1. A metric space (T , d) is globally nonpositively curved, also known as global
NPC or CAT(0), if for every triple of points a, b, c ∈ T , any point x on a geodesic joining
a to b, and any reference triangle a′b′c′ in Euclidean space with edge lengths d(a, b), d(b, c),
and d(a, c), the unique point x′ on a′b′ at distance d(a, x) from a′ satisfies d(x, c) ≤ ||x′− c′||.

The definition essentially says that triangles created by joining points by geodesics in a
global NPC space are “skinnier” than their counterparts in Euclidean space.

Lemma 6.2 ([48, Proposition 2.3]). In a global NPC space every pair of points is joined by
a unique geodesic.

A real-valued function f : T → R is convex if f ◦γ is convex for all geodesics γ; that is, if

f(γλ) ≤ (1− λ)f(γ0) + λf(γ1) (13)

for all geodesics γ : [0, 1] → T .

Example 6.3. For any point t ∈ T , the distance dt(x) = d(x, t) from a point x ∈ T to t is
a convex function of x [48, Corollary 2.5 and subsequent Remark (i)].

A real-valued function f : T → R is strictly convex if Eq. (13) holds strictly for 0 < λ < 1.

Lemma 6.4 ([48, Proposition 1.7 and Remark 1.8]). Any strictly convex continuous function
on a global NPC space attains a unique minimum.

Corollary 6.5. If T = {t1, . . . , tr} is a set of points in T , and f : Rr
+ 7→ R is any (strictly)

convex function, then the function F : T 7→ R defined by

F (x) = f(dt1(x), . . . , dtr (x))

is a (strictly) convex function.

In particular, the variance function for a set T of points is a convex function and hence
attains a unique minimum at the Fréchet mean.

36



6.2 Means and variances in global NPC spaces

This subsection generalizes the notion of mean and variance to general probability measures
in global NPC spaces. The results follow from those of Sturm [48] in this area. Let P(T ) be
the set of probability measures on a global NPC space T . If ρ ∈ P(T ) is such a measure,
then its variance is

var(ρ) = inf
x∈T

∫

T
d2(x, y)ρ(dy).

The variance can be infinite in general, but not in the case of most interest to us, when ρ
has finite support, meaning that there is a set T = {t1, . . . , tr} of points in T , along with
nonnegative weights ω1, . . . , ωr satisfying ω1 + · · · + ωr = 1, such that the point ti has mass
ρ(ti) = wi for i = 1, . . . , r. Let P2(T ) be the set of measures in P(T ) having finite variance.

Proposition 6.6 ([48, Proposition 4.3]). For a global NPC space T and probability measure
ρ ∈ P2(T ), there is a unique point ρ ∈ T such that var(ρ) =

∫
T d2(ρ, y)p(dy).

The point ρ is referred to as the Fréchet mean or barycenter in this context as well, and
when ρ has finite support with ωi =

1
r for all r, it is a direct generalization of the definition

of mean given in Section 2. The notion of inductive mean given by Definition 2.3 extends
easily to an arbitrary global NPC space T , and the following result generalizes Theorem 2.4.

Theorem 6.7 ([48, Theorem 4.7]). For a global NPC space T and probability measure
ρ ∈ P2(T ), let X1,X2, . . . be a sequence of independent and identically distributed ran-
dom variables drawn from ρ. Then with probability 1, the sequence of inductive mean values
µ1, µ2, . . . approaches the mean ρ of ρ.

Corollary 6.8. The convergence properties of the sequence of inductive means given by
Algorithm 2.5 continue to hold on any probability distribution ρ ∈ P2(T ), by sampling the
points of T according to the specified distribution.

Note that Corollary 6.8 was independently observed by Bačák [8].

Remark 6.9. As an application of Corollary 6.8, Markov chain Monte Carlo (MCMC)
simulations produce phylogenetic trees sampled independently from a fixed finite-variance
distribution on the entire space Tn. Calculating inductive mean values of repeated samples
from this distribution results in a method to approximate the mean of the distribution.

6.3 NPC orthant spaces

Definition 6.10. The orthant space O(E ,Ω) consists of a set E of axes together with a
simplicial complex Ω ⊆ 2E , called the scaffold complex. Two elements of E are compatible if
they appear in some face of Ω. Each face F ∈ Ω is associated with a copy OF of RF

+, the
orthant associated with F . The orthant space O(E ,Ω) is the union of the orthants OF for
F ∈ Ω, with points identified whenever their nonzero coordinates agree on all elements of E .
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An orthant space can be thought of as constructed by gluing together orthants according
to instructions laid out by the scaffold complex, and in fact the scaffold complex is (homeo-
morphic to) the link of the origin in the orthant space O(E ,Ω).

Example 6.11. Tree space Tn is an orthant space: E corresponds to the set of splits on
{0, . . . , , n}, and Ω corresponds to the collection of sets of splits that are compatible in the
sense of Section 1.1.

A path in an orthant space O(E ,Ω) is defined as in Section 6.1. A locally length-
minimizing path is a geodesics, which always consists of a finite number of linear legs through
intermediate orthants of T , as in the case of tree space (Section 1.2). As with tree space,
O(E ,Ω) is always path-connected.

Although any orthant space is geodesic, it may not be global NPC.

Example 6.12. The space T = O(E ,Ω), where E is indexed by {1, 2, 3} and the scaf-
fold complex Ω has facets {1, 2}, {1, 3}, and {2, 3} is not global NPC. Indeed, the two
points x = (1, 0, 0) and y = (0, 1, 1) in T have a pair of geodesics between them, namely
[(1, 0, 0), (0, 1/2, 0)] ∪ [(0, 1/2, 0), (0, 1, 1)] and [(1, 0, 0), (0, 0, 1/2)] ∪ [(0, 0, 1/2), (0, 1, 1)]. By
Lemma 6.2, T cannot be global NPC.

M.Gromov [24] determined conditions on Ω that characterize when O(E ,Ω) has non-
postive curvature (in fact, Gromov worked with arbitrary cubical complexes), based on the
following standard notion from geometric combinatorics.

Definition 6.13. The simplicial complex Ω is flag if F ∈ Ω whenever all pairs of elements
in F are compatible.

Proposition 6.14 ([24]). An orthant space O(E ,Ω) is global NPC if and only if Ω is flag.

In particular, tree space Tn is global NPC, since its scaffold complex is defined precisely
by the pairwise compatibility between its splits (this is the proof given in [12]). Generally,
any global NPC orthant space can be defined entirely by its set of compatible elements.

Definition 6.15. The scaffold graph G(E ,Ω) of an orthant space O(E ,Ω) is the graph with
vertex set E whose edges are the pairs of compatible elements of E .

Lemma 6.16. The orthants of a global NPC orthant space O(E ,Ω) are precisely the clique
sets (sets of mutually compatible edges) of the scaffold graph G(E ,Ω).

Thus there is a one-to-one correspondence between orthant spaces and graphs. A general
global NPC orthant space O(E ,Ω) need not have all of its maximal orthants the same dimen-
sion, since maximal orthants correspond to the maximal cliques in G(E ,Ω). The dimension of
the maximal orthants, however, is not relevant to any of the results in the previous sections,
except when the dimension is given explicitly.
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Example 6.17. The space of trees in which each split is associated with an m-dimensional
vector instead of a single length is an NPC orthant space. In this case, the scaffold graph is
the scaffold graph of tree space Tn, with each vertex replaced by Km, the complete graph on
m vertices. Our software implementation also computes geodesics and means in this space.

Example 6.18. The generality of scaffold graphs to define any global NPC orthant space
provides an opportunity to extend the statistical structures of this paper to a wider range
of applications. As one example, consider a computer network specified by its computa-
tional devices and the graph G denoting those pairs of computers that are compatible with
each other. A local area network (LAN) for this system is a set C of mutually compatible
computers—that is, a clique of G. A local network configuration (LNC) is a LAN C together
with a measure we of participation of each computer e ∈ C in the LAN C. Some important
areas of analysis of the network G might be the relationship between the LNCs associated
with G, in terms of the number and participation weight of common computers and the rela-
tive compatibility of the noncommon computers (although it does not model chaining-related
measures such as the number of nodes in a communications path). The global NPC orthant
space generated by G would be a good framework for answering questions like this associated
with the LANs of the network.

The combinatorics of geodesics in Section 1 generalizes immediately to global NPC orthant
spaces, using the generalized notation in this section. None of the proofs in Sections 1–4 rely
on particulars of tree space except the flag property. Thus we have the following.

Corollary 6.19. The results in Sections 1–4 (except for statements specifying dimension)
extend to arbitrary global NPC orthant spaces, using the definitions in this section. In par-
ticular, the GTP algorithm [41] for finding geodesics in tree space, Sturm’s Algorithm (Al-
gorithm 2.5), and the Descent Method (Algorithm 4.4) apply in the more general setting of
global NPC orthant spaces.

Remark 6.20. The results here extend even further. For example, Ardila, Owen, and
Sullivant [4] extend the global NPC theory, and in particular the GTP algorithm, to the case
of cubical complexes, where orthants are replaced by Euclidean cubes. Sturm’s algorithm
extends to these global NPC cubical complexes, and there is every reason to believe that
the idea of vistal cells and the Descent Method can be extended as well, although without
the polyhedrality. Furthermore, the results extend to negative edge lengths, as described in
Remark 6.21.

Remark 6.21. Negative values can also be allowed for the coordinates in a global NPC
orthant space. In this case, it remains a global NPC space, and the results listed in Corol-
lary 6.19 for NPC orthant spaces also hold here, with the following modification. If a negative
value appears in a common ’split’, then that negative value is used in the geodesic calcula-
tions. However, if it appears in a split that is not in common, then its absolute value is used
in the geodesic calculations.
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