4,119 research outputs found

    Satgraphs and independent domination. Part 1

    Get PDF
    AbstractA graph G is called a satgraph if there exists a partition A∪B=V(G) such that•A induces a clique [possibly, A=∅],•B induces a matching [i.e., G(B) is a 1-regular subgraph, possibly, B=∅], and•there are no triangles (a,b,b′), where a∈A and b,b′∈B.We also introduce the hereditary closure of SAT, denoted by HSAT [hereditary satgraphs]. The class HSAT contains split graphs. In turn, HSAT is contained in the class of all (1,2)-split graphs [A. Gyárfás, Generalized split graphs and Ramsey numbers, J. Combin. Theory Ser. A 81 (2) (1998) 255–261], the latter being still not characterized. We characterize satgraphs in terms of forbidden induced subgraphs.There exist close connections between satgraphs and the satisfiability problem [SAT]. In fact, SAT is linear-time equivalent to finding the independent domination number in the corresponding satgraph. It follows that the independent domination problem is NP-complete for the hereditary satgraphs. In particular, it is NP-complete for perfect graphs

    Local colourings and monochromatic partitions in complete bipartite graphs

    Full text link
    We show that for any 22-local colouring of the edges of the balanced complete bipartite graph Kn,nK_{n,n}, its vertices can be covered with at most~33 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite rr-locally coloured graph with O(r2)O(r^2) disjoint monochromatic cycles.\\ We also determine the 22-local bipartite Ramsey number of a path almost exactly: Every 22-local colouring of the edges of Kn,nK_{n,n} contains a monochromatic path on nn vertices.Comment: 18 page

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available

    On two problems in Ramsey-Tur\'an theory

    Full text link
    Alon, Balogh, Keevash and Sudakov proved that the (k1)(k-1)-partite Tur\'an graph maximizes the number of distinct rr-edge-colorings with no monochromatic KkK_k for all fixed kk and r=2,3r=2,3, among all nn-vertex graphs. In this paper, we determine this function asymptotically for r=2r=2 among nn-vertex graphs with sub-linear independence number. Somewhat surprisingly, unlike Alon-Balogh-Keevash-Sudakov's result, the extremal construction from Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of distinct edge-colorings with no monochromatic cliques among all graphs with sub-linear independence number, even in the 2-colored case. In the second problem, we determine the maximum number of triangles asymptotically in an nn-vertex KkK_k-free graph GG with α(G)=o(n)\alpha(G)=o(n). The extremal graphs have similar structure to the extremal graphs for the classical Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.Comment: 22 page

    Ramsey numbers R(K3,G) for graphs of order 10

    Get PDF
    In this article we give the generalized triangle Ramsey numbers R(K3,G) of 12 005 158 of the 12 005 168 graphs of order 10. There are 10 graphs remaining for which we could not determine the Ramsey number. Most likely these graphs need approaches focusing on each individual graph in order to determine their triangle Ramsey number. The results were obtained by combining new computational and theoretical results. We also describe an optimized algorithm for the generation of all maximal triangle-free graphs and triangle Ramsey graphs. All Ramsey numbers up to 30 were computed by our implementation of this algorithm. We also prove some theoretical results that are applied to determine several triangle Ramsey numbers larger than 30. As not only the number of graphs is increasing very fast, but also the difficulty to determine Ramsey numbers, we consider it very likely that the table of all triangle Ramsey numbers for graphs of order 10 is the last complete table that can possibly be determined for a very long time.Comment: 24 pages, submitted for publication; added some comment
    corecore