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Abstract

A graph G is called a satgraph if there exists a partition A ∪ B = V (G) such that

• A induces a clique [possibly, A = ∅],
• B induces a matching [i.e., G(B) is a 1-regular subgraph, possibly, B = ∅], and
• there are no triangles (a, b, b′), where a ∈ A and b, b′ ∈ B.

We also introduce the hereditary closure of SAT, denoted by HSAT [hereditary satgraphs]. The class HSAT contains
split graphs. In turn, HSAT is contained in the class of all (1, 2)-split graphs [A. Gyárfás, Generalized split graphs and Ramsey
numbers, J. Combin. Theory Ser. A 81 (2) (1998) 255–261], the latter being still not characterized. We characterize satgraphs in
terms of forbidden induced subgraphs.

There exist close connections between satgraphs and the satisfiability problem [SAT]. In fact, SAT is linear-time equivalent to
finding the independent domination number in the corresponding satgraph. It follows that the independent domination problem is
NP-complete for the hereditary satgraphs. In particular, it is NP-complete for perfect graphs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We denote by G(X) the subgraph of a graph G induced by a set X ⊆ V (G). An induced matching in a graph is a
1-regular induced subgraph.

Definition 1. A graph G is called a satgraph if there exists a partition A ∪ B = V (G) such that

(A): A induces a complete subgraph [possibly, A = ∅], and
(B): G(B) is an induced matching [possibly, B = ∅], and
(AB): there are no triangles (a, b, b′), where a ∈ A and b, b′ ∈ B.
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We shall refer to the pair (A, B) as a satpartition of G.

The class of all satgraphs will be denoted by SAT . If a satgraph G is considered along with a satpartition A ∪ B =
V (G), then we shall use the notation (G, A, B). A similar convention will be adopted for all considered classes defined
in terms of vertex bipartitions.

We shall show that the well-known satisfiability problem can be considered as the independent domination problem
in satgraphs, and conversely. This “bridge” between a Boolean problem and a graph-theoretical problem has some
interesting consequences in view of computational complexity.

Clearly, SAT is not a hereditary class, i.e., it is not closed under taking induced subgraphs. We introduce its hereditary
closure, that is, a minimal hereditary class containing SAT . As usual, �(G) is the maximum vertex degree of G.

Definition 2. A graph G is called a hereditary satgraph if there exists a partition A ∪ B = V (G) such that (A), (AB),
and (B′) hold, where
(B′): �(G(B))�1 [possibly, B = ∅].
The pair (A, B) is called a hereditary satpartition of G.

The class of all satgraphs will be denoted by HSAT . Clearly, HSAT is a hereditary closure of SAT . We shall
characterize the class HSAT in terms of forbidden induced subgraphs. Some close connections between satgraphs and
some known classes of graphs [split graphs, generalized split graphs, Chvátal–Slater graphs, polar graphs, and perfect
graphs] will be shown.

Now we recall some known definitions that will be used. Let G be a graph. A set S ⊆ V (G) is called a stable set
(or an independent set) if no vertices in S are adjacent. A set D ⊆ V (G) is called a dominating set if each vertex
u ∈ V (G) \ D is adjacent to a vertex of D. A set I ⊆ V (G) is called an independent dominating set if I is both
independent and dominating. Equivalently, an independent dominating sets are exactly inclusion-wise maximal stable
sets.

The following three decision problems are known to be NP-complete problems.

Decision Problem 1 (stability).
Instance: A graph G and an integer k.
Question: Does G have a stable set S with |S|�k?

Decision Problem 2 (domination).
Instance: A graph G and an integer k.
Question: Does G have a dominating set D with |D|�k?

Decision Problem 3 (independentdomination).
Instance: A graph G and an integer k.
Question: Does G have an independent dominating set I with |I |�k?

As usual, terms minimal and maximal are related to inclusion-wise minimal/maximal sets, while minimum and
maximum refer to minimum/maximum cardinality.

2. Connection with the satisfiability problem

The following satisfiability problem (or SAT) is well-known [9], see also [13].

Decision Problem 4 (SAT).
Instance: A collection C = {c1, c2, . . . , cm} of clauses over a set X = {x1, x2, . . . , xn} of 0–1 variables.
Question: Is there a truth assignment for X that satisfies all the clauses in C?

Recall that a clause over X is a conjunction of some literals, a literal being either a variable xi ∈ X or a negation of
a variable xj ∈ X, denoted by xj . A truth assignment x0 satisfies a clause ci if ci(x0) = 1. In other words, ci involves
at least one true literal l [l is a true literal if l = 1 according to the assignment x0].



I.E. Zverovich / Theoretical Computer Science 352 (2006) 47 –56 49

Fig. 1. An example of the Chvátal–Slater graph.

Definition 3. A Chvátal–Slater graph G associated to an instance (C, X) to SAT is defined as follows:

• The graph G has vertex-set L ∪ C, where L = {x1, x1, x2, x2, . . . , xn, xn} is the set of all literals over X.
• Edge-set of G is defined by the following rules:

◦ L induces a matching with edges xixi , i = 1, 2, . . . , n,
◦ C induces a complete subgraph, and
◦ a vertex l ∈ L is adjacent to a vertex c ∈ C if and only if the clause c involves the literal l.

Fig. 1 gives an illustration of the Chvátal–Slater graph. There c1 = x1 ∨ x2 ∨ x3. Clearly, G can be constructed in
linear time in m = |C| and n = |X|. Chvátal and Slater [8] used this construction to prove that the not-well covered
graph problem is NP-complete, see also Sankaranarayana and Stewart [25]. Recall that a graph is well covered if all its
maximal stable sets have the same cardinality.

The class CS of all Chvátal–Slater graphs includes satgraphs as a proper subclass [due to condition (AB)]. However,
condition (AB) is not restrictive, since we may assume without loss of generality that each instance (C, X) to SAT
satisfies the following assumption.

Assumption 1 (Assumption (CL)). No clause in C involves a variable xi ∈ X and its negation xi simultaneously.

Indeed, if the assumption does not hold for some clause ci ∈ C, then every truth assignment for X satisfies ci , and
therefore ci can be deleted from C. In terms of the Chvátal–Slater graph, Assumption (CL) corresponds to condition
(AB). Given an instance (C, X) to SAT, we shall assume that it satisfies (LC), and we refer to the Chvátal–Slater graph
of (C, X) as to the corresponding satgraph (G, A, B), where A = C and B = L.

Proposition 1. Let (C, X) be an instance to SAT satisfying Assumption (CL). Then the Chvátal–Slater graph (G, A, B)

corresponding to (C, X) is a satgraph.
Conversely, each satgraph (G, A, B) is a Chvátal–Slater graph corresponding to (C, X) satisfying Assumption (CL).

Now we establish connections between SAT and the independent domination problem within (hereditary)
satgraphs.

Theorem 1. (i) The satisfiability problem and the independent domination problem for satgraphs are linear-time
equivalent.

(ii) The satisfiability problem and the independent problem for hereditary satgraphs are linear-time equivalent.

Proof. It will be shown in Corollaries 4 and 5 below that given a (hereditary) satgraph, we can find a (hereditary)
satpartition in polynomial time. Therefore, we may assume that each (hereditary) satgraph is given along with a
(hereditary) satpartition.

(i) Let (C, X) be an instance of SAT. As it was noted, we may assume without loss of generality that (C, X)

satisfies Assumption (CL). The corresponding Chvátal–Slater graph G is a satgraph with a satpartition A ∪ B of G.
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Let |B| = 2n. Each minimal independent dominating set in G has cardinality either n or n+1. If there exists a satisfying
truth assignment for (C, X), then set of true literals gives an independent dominating set of cardinality n. Otherwise G
has no independent dominating sets of cardinality n. Indeed, if an independent dominating set I in G contains a vertex
c ∈ A, then I also contains n vertices from B as it follows from condition (AB).

Thus, there exists a satisfying truth assignment for (C, X) if and only if G has an independent dominating set of
cardinality n.

(ii) We show that the independent domination problem is polynomial-time equivalent for satgraphs and hereditary
satgraphs. Then we may use the result (i). Since SAT ⊆ HSAT , it is sufficient to construct a polynomial-time
reduction from the independent domination problem for hereditary satgraphs to the same problem for satgraphs.

Let G be a hereditary satgraph with a hereditary satpartition (A, B). We denote by n the number of components in
G(B). Condition (AB) implies that for each vertex a ∈ A all independent dominating sets that contains a have the same
cardinality, say �a . Clearly, �a can be easily calculated by a greedy algorithm. If min{�a : a ∈ A}�n, then we have
found a minimum independent dominating set. Indeed, each independent dominating set that is disjoint from A contains
exactly n vertices. If min{�a : a ∈ A}�n + 1, then we construct a satgraph G′ by deleting the set IB of all isolated
vertices in G(B) from G. It is easy to see that condition min{�a : a ∈ A}�n + 1 implies that IB is contained in all
independent dominating sets of G. Therefore a set I ′ is an independent dominating set in G′ if and only if I = I ′ ∪ IB

is an independent dominating set in G. �

Corollary 1. The independent domination problem is NP-complete for both SAT and HSAT .

3. Connections with other classes of graphs

The class CS of all Chvátal–Slater graphs is not hereditary. We consider its hereditary closure: the class of (1, 2)-polar
graphs introduced by Tyshkevich and Chernyak [26]. As usual, G denotes the complement of a graph G.

Definition 4 (Tyshkevich and Chernyak [26]). Let � and � be non-negative integers. A graph G is called an (�, �)-polar
graph if there exists a partition A ∪ B = V (G), called an (�, �)-partition, such that

• G(A) is a disjoint union of complete graphs, each having at most � vertices [possibly, A = ∅], and
• G(B) is a disjoint union of complete graphs, each having at most � vertices [possibly, B = ∅].

Note that Definition 4 was also introduced for the cases where � = ∞ and/or � = ∞. We denote by POL(�, �) the
class of all (�, �)-polar graphs.

Proposition 2. The hereditary closure of the class CS is the class POL(1, 2).

Proof. Straightforward. �

A general result of Zverovich and Zverovich [29] guarantees that all the classes POL(�, �) are polynomial-time
recognizable [for finite � and �]. Moreover, each of them has a finite forbidden induced subgraph characterization, see
Zverovich [27]. Such a characterization for the class POL(1, 2) was found by Gagarin and Metel’skiı̆ [12].

Let Z be a set of graphs. A graph G is called Z-free if no graph of Z is an induced subgraph of G.

Theorem 2 (Gagarin and Metel’skiı̆ [12]). The class of all (1, 2)-polar graphs coincides with the class of all Z1,2-free
graphs, where Z1,2 consists of the graphs G1, G2, . . . , G18 shown in Fig. 2.

Note that a graph G is a (1, 2)-polar graph if there exists a partition A ∪ B = V (G) such that A induces a complete
subgraph, and B induces a (P3, K3)-free graph, where P3 is the 3-path and K3 is the complete graph of order 3.

It is interesting to compare this class with the following. A graph G is almost bipartite if there exists a partition
A ∪ B = V (G) such that A is a stable set, and B induces a (P3, K3)-free graph. Recognizing almost bipartite graphs is
an NP-complete problem, see Chernyak and Chernyak [6]. In particular, this class cannot be characterized by a finite
number of forbidden induced subgraphs.
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Fig. 2. Minimal forbidden induced subgraphs for the class POL(1, 2).

The class HSAT of all hereditary satgraphs includes all split graphs that constitutes a subclass of perfect graphs,
see Ramírez Alfonsín and Reed [24].

Definition 5. A graph G is a split graph if there exists a partition A ∪ B = V (G) such that A induces a complete
subgraph, and B is a stable set [each of A, B may be empty].

Theorem 3 (Foldes and Hammer [11]). The class of all split graphs is characterized by the following three minimal
forbidden induced subgraph: 2K2 [the graph of order 4 with two disjoint edges], C4 [the 4-cycle] and C5 [the 5-cycle].

We show that all hereditary satgraphs are perfect. Recall that a graph G is called perfect if �(H) = �(H) for each
induced subgraph H of G, where �(H) is the clique number of H [the size of the largest complete subgraph in H], and
�(H) is the chromatic number of H [the minimum number of colors in proper vertex colorings of H].

The following result can be proved directly, but it immediately follows from the Perfect Graph Theorem of
Chudnovsky et al. [7] and Theorem 2.
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Proposition 3. All (1, 2)-polar graphs are perfect. In particular, all hereditary satgraphs are perfect graphs.

Let us compare complexity of some optimization on split graphs and on hereditary satgraphs. The domination
problem is NP-complete for the split graphs [2], and therefore it is hard for the hereditary satgraphs. The stability
problem [even its weighted version] can be solved in polynomial time for both split graphs and hereditary satgraphs,
since it holds for the whole class of perfect graphs, see [14]. It is easy to see that the independent domination problem
is polynomial-time solvable on split graphs. However, we shall show that it is NP-complete in the class HSAT .

A generalization of split graphs was given by Gyárfás [15]. We restrict ourselves with (1, 2)-split graphs only.

Definition 6. A graph G is called a (1, 2)-split graph if there exists a partition A ∪ B = V (G) such that

(A1): A induces a complete subgraph, and
(B1): B induces a triangle-free subgraph [i.e., a K3-free graph].

It follows from the definitions that POL(1, 2) is a subclass of the class SPLIT (1, 2) of all (1, 2)-split graphs.
A result of Gyárfás [15] and a more general result of Zverovich [27] imply that the class SPLIT (1, 2) has a finite
forbidden induced subgraph characterization. However, it is hard to find such a characterization. Currently we know 340
minimal forbidden induced subgraphs for SPLIT (1, 2); they were found using computer search by Vadim Zverovich
(Western England University, UK).

Gyárfás et al. [16] propose a common generalization of the mentioned Gyárfás’ result and an interesting theorem of
Kézdy et al. [18] on cocolorings of perfect graphs.

Open Problem 1. Find a finite forbidden induced subgraph characterization of the class SPLIT (1, 2).

There is another interesting connection between hereditary satgraphs and split graphs. A graph G is a locally split
graph if the neighborhood N(u) of each vertex u ∈ V (G) induces a split graph.

Proposition 4. All hereditary satgraphs are locally split graphs.

Proof. Straightforward. �

4. A characterization of hereditary satgraphs

The following theorem gives a forbidden induced subgraph characterization of the class HSAT of all hereditary
satgraphs.

Theorem 4. The class of all hereditary satgraphs coincides with the class of all ZSAT -free graphs, where the set ZSAT

consists of the graphs F1, F2, . . . , F21 shown in Fig. 3.

Proof. Necessity. It is easy to check that each of the graphs F1, F2, . . . , F21 in Fig. 3 is not a hereditary satgraph.
Therefore none of them can be an induced subgraph of a hereditary satgraph.

Sufficiency. Let G be a minimal forbidden induced subgraph for the class HSAT . Suppose that the statement does
not hold, i.e., G is not isomorphic to any of F1, F2, . . . , F21. By minimality of G, none of F1, F2, . . . , F21 is an induced
subgraph of G. �

Claim 1. G is a (1, 2)-polar graph.

Proof. By Theorem 2, it is enough to show that G is aZ1,2-free graph, whereZ1,2 consists of the graphsG1, G2, . . . , G18
shown in Fig. 2. The graphs G11, G13 and G15 contain an induced F3. The graph G17 contains an induced F4.
The other graphs in Z1,2 are contained in ZSAT , see Fig. 3. Therefore G is a Z1,2-free graph. �
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Fig. 3. Minimal forbidden induced subgraphs for the class HSAT .

Given a (1, 2)-polar partition A∪B, we define a forbidden triangle in A∪B as a set T = {a, b1, b2}, where the vertices
a ∈ A and b1, b2 ∈ B induce a triangle. The edge b1b2 is called the base of T. Clearly, a (1, 2)-polar partition without
forbidden triangles is a hereditary satpartition.

By Claim 1, there exists a (1, 2)-polar partition of G. We choose a (1, 2)-polar partition A ∪ B = V (G) of G.

Claim 2. All forbidden triangles in A ∪ B have the same base.

Proof. Suppose that the statement does not hold, i.e., there are two forbidden triangles in A ∪ B, namely (a, b1, b2)

and (a′, b′
1, b

′
2) with different bases b1b2 and b′

1b
′
2.

Case 1: a = a′.

In this case the set {a, b1, b2, b
′
1, b

′
2} induces F3, a contradiction.

Case 2: a 	= a′.
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In this case the sets {b1, b2} and {b′
1, b

′
2} are disjoint. The vertex a is adjacent to at most one of b′

1, b
′
2 [otherwise we

have essentially Case 1]. Similarly, the vertex a′ is adjacent to at most one of b1, b2

• If a is non-adjacent to both b′
1 and b′

2, and a′ is non-adjacent to both b1 and b2, then the set {a, a′, b1, b2, b
′
1, b

′
2}

induces F12, a contradiction.
• If a is non-adjacent to both b′

1 and b′
2, and a′ is adjacent to exactly one of b1, b2 [we may assume that a′ is adjacent

to b1], then the set {a, a′, b1, b
′
1, b

′
2} induces F3, a contradiction.

• If a is adjacent to exactly one of b′
1, b

′
2, and a′ is adjacent to exactly one of b1, b2, then the set {a, a′, b1, b2, b

′
1, b

′
2}

induces F17, a contradiction.

Thus the both cases are impossible. �

Now we fix a forbidden triangle T = (a1, b1, b2) in A ∪ B.

Claim 3. There exist vertices a ∈ A and b ∈ {b1, b2} such that A′ ∪ B ′ is a (1, 2)-polar partition of G, where
A′ = (A \ {a}) ∪ {b} and B ′ = (B \ {b}) ∪ {a}.

Proof. Let Ni , i = 1, 2, denote the set of all vertices in A that are non-adjacent to the vertex bi . We show that
either N1 ⊆ N2 or N2 ⊆ N1. If it does not hold, there exist vertices a′

1 ∈ N1\N2 and a′
2 ∈ N2\N1. Then the set

{a1, a
′
1, a

′
2, b1, b2} induces F4, a contradiction. By symmetry, we may assume that N1 ⊆ N2. We put b = b1.

If a′
1 and a′

2 are two distinct vertices in N1, then the set {a1, a
′
1, a

′
2, b1, b2} induces F3, a contradiction. Therefore

|N1|�1.
If N1 = ∅, then we can construct a new (1, 2)-polar partition (A ∪ {b1}) ∪ (B\{b1}) of G. Claim 2 implies that it

is a hereditary satpartition of G, a contradiction. It follows that N1 = {a}, and the set A′ = (A\{a}) ∪ {b} induces a
complete subgraph.

It remains to show that B ′ induces a (P3, K3)-free graph. Suppose it does not hold. Clearly, each induced P3 or K3
in G(B ′) must involve the vertex a and two vertices of B \ {b}. Claim 2 implies that G(B ′) cannot contain K3. Indeed,
otherwise there is a forbidden triangle (a, b3, b4) in A ∪ B with base b3b4 	= b1b2.

Since N1 ⊆ N2 and a ∈ N1, we have a ∈ N2, i.e., a is non-adjacent to b2. Hence we have two possibilities for an
induced P3 in G(B ′):
(a) P3 = (a, b3, b4) [with edges ab3 and b3b4], or
(b) P3 = (b3, a, b4) [with edges b3a and ab4].

In both cases, {b3, b4} ⊆ B\{b1, b2}. By Claim 2, the vertex a1 can be adjacent at most one of b3, b4. It is easy to check
that G(a, a1, b1, b2, b3, b4) either is isomorphic to one of F9, F10, F13, or it contains an induced F3, a contradiction.

To obtain a final contradiction, we show that the pair (A′, B ′) of Claim 3 is a hereditary satpartition of G. To see
that, suppose that condition (AB) fails for some vertices a2 ∈ A′ and b3, b4 ∈ B ′. In other words, the set {a2, b3, b4}
induces a triangle T. Clearly, a2 	= b1. Claim 2 implies that a ∈ T . Therefore T = {a2, a, b3}, where b3 ∈ B \ {b1, b2}
[since a is not adjacent to b2]. Recall that b1 is adjacent to a.

Here are all possible variants:

• If a2 = a1, the set {a, a1, b1, b2, b3} induces F3, a contradiction. Therefore we may assume that a1 is non-adjacent
to b3, since a2 is adjacent to a.

• If a2 	= a1 and a2 is non-adjacent to b2, the set {a, a1, a2b1, b2, b3} induces F12.
• If a2 	= a1 and a2 is adjacent to b2, the set {a, a2, b1, b2, b3} induces F3.

Thus, each of the variants produces a contradiction. �

Corollary 2. The independent domination problem is NP-complete within the class of all (F1, F2, . . . , F21)-free
graphs.

A linear graph is an induced subgraph of a path. Complexity of the stability problem and the independent domination
problem is unknown for H-free graphs, where H is a linear graph with at least five non-isolated vertices. A linear graph
consisting of two disjoint components P3 is denoted by 2P3, see F5 in Fig. 3.
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Corollary 3. The independent domination problem is NP-complete within 2P3-free graphs.

In this connection, we can mention an interesting result of Korobitsyn [19]: if a linear graph H is not obtained from
an induced subgraph of P4 by adding isolated vertices [possibly, none], then the domination problem for H-free graphs
is NP-complete. In particular, this problem is NP-complete for 2P3-free graphs.

Open Problem 2. What is complexity of the stability problem for 2P3-free graphs?

Corollary 4. The class HSAT is polynomial-time recognizable. Moreover, it is possible to construct a hereditary
satpartition for any hereditary satgraph in polynomial time.

Proof. The result of Zverovich and Zverovich [29] mentioned above implies that it is possible to recognize (1, 2)-polar
graphs in polynomial time. Moreover, a (1, 2)-polar partition of a (1, 2)-polar graph can be constructed in polynomial
time.

Let G be a graph tested on membership in HSAT . Since HSAT ⊆ POL(1, 2), we either

• reject G as being not a hereditary satgraph in case of G 	∈ POL(1, 2), or
• construct a (1, 2)-polar partition (A, B) of G in polynomial time.

Then we apply the Proof of Theorem 4 to (A, B). As a result, we either construct a hereditary satpartition of G, or we
find a forbidden induced subgraph Fi in G in polynomial time. �

Corollary 5. The class SAT is polynomial-time recognizable. Moreover, it is possible to construct a satpartition for
any satgraph in polynomial time.

Proof. Let G be a graph tested on membership in SAT . We apply Corollary 4 to G. If G 	∈ HSAT , then G 	∈ SAT ,
since SAT ⊆ HSAT . Otherwise we can construct a hereditary satpartition (A, B) of G in polynomial time.

Suppose that there exists a satpartition (A′, B ′) of G. Each of the sets A ∩ B ′ and A′ ∩ B induces a complete graph,
since they are subsets of A and A′, respectively. Conditions �(G(B))�1 and �(G(B ′))�1 imply that |A∩B ′|�2 and
|A′ ∩ B|�2.

Thus, to construct (A′, B ′) or to find out that G has no satpartitions, it is sufficient to consider all variants ((A\X) ∪
Y, (B\Y ) ∪ X), where X ⊆ A, |X|�2, Y ⊆ B, and |Y |�2. Clearly, there exist polynomially many such variants. For
each of them we can check whether it is a satpartition in polynomial time. �

Corollary 6. Given a (hereditary) satgraph, it is possible to construct all its (hereditary) satpartitions in polynomial
time.

Proof. By Corollaries 4 and 5, we can construct one (hereditary) satpartition in polynomial time. Then we proceed as
in the Proof of Corollary 5. �

In the accompanying paper we propose some classes, where SAT and/or the independent domination problem can
be solved in polynomial time.

5. Uncited reference

[28].
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