58,136 research outputs found

    A generalized space-frequency index modulation scheme for downlink MIMO transmissions with improved diversity

    Get PDF
    Multidimensional Index Modulations (IM) are a novel alternative to conventional modulations which can bring considerable benefits for future wireless networks. Within this scope, in this paper we present a new scheme, named as Precoding-aided Transmitter side Generalized Space-Frequency Index Modulation (PT-GSFIM), where part of the information bits select the active antennas and subcarriers which then carry amplitude and phase modulated symbols. The proposed scheme is designed for multiuser multiple-input multiple-output (MU-MIMO) scenarios and incorporates a precoder which removes multiuser interference (MUI) at the receivers. Furthermore, the proposed PT-GSFIM also integrates signal space diversity (SSD) techniques for tackling the typical poor performance of uncoded orthogonal frequency division multiplexing (OFDM) based schemes. By combining complex rotation matrices (CRM) and subcarrier-level interleaving, PT-GSFIM can exploit the inherent diversity in frequency selective channels and improve the performance without additional power or bandwidth. To support reliable detection of the multidimensional PT-GSFIM we also propose three different detection algorithms which can provide different tradeoffs between performance and complexity. Simulation results shows that proposed PT-GSFIM scheme, can provide significant gains over conventional MU-MIMO and GSM schemes.info:eu-repo/semantics/publishedVersio

    System-level assessment of a C-RAN based on generalized space–frequency index modulation for 5G new radio and beyond

    Get PDF
    Index modulation (IM) has been attracting considerable research efforts in recent years as it is considered a promising technology that can enhance spectral and energy efficiency and help cope with the rising demand of mobile traffic in future wireless networks. In this paper, we propose a cloud radio access network (C-RAN) suitable for fifth-generation (5G) and beyond systems, where the base stations (BSs) and access points (APs) transmit multidimensional IM symbols, which we refer to as precoding-aided transmitter-side generalized space–frequency IM (PT-GSFIM). The adopted PT-GSFIM approach is an alternative multiuser multiple-input multiple-output (MU-MIMO) scheme that avoids multiuser interference (MUI) while exploiting the inherent diversity in frequency-selective channels. To validate the potential gains of the proposed PT-GSFIM-based C-RAN, a thorough system-level assessment is presented for three different three-dimensional scenarios taken from standardized 5G New Radio (5G NR), using two different numerologies and frequency ranges. Throughput performance results indicate that the 28 GHz band in spite of its higher bandwidth and higher achieved throughput presents lower spectral efficiency (SE). The 3.5 GHz band having lower bandwidth and lower achieved throughput attains higher SE. Overall, the results indicate that a C-RAN based on the proposed PT-GSFIM scheme clearly outperforms both generalized spatial modulation (GSM) and conventional MU-MIMO, exploiting its additional inherent frequency diversity.info:eu-repo/semantics/publishedVersio

    Multidimensional Generalized Quadrature Index Modulation for 5G Wireless Communications

    Get PDF
    Multidimensional generalized quadrature index modulation scheme is proposed in this paper for conveying extra digital information with the aid of the space, radio frequency (RF) mirrors, and time indices. Explicitly, this proposed scheme cleverly combines another proposed time-indexed generalized quadrature spatial modulation (TI-GQSM) system with media-based modulation (MBM) transmission principle using RF mirrors, and it is referred to as TI-GQSM-MBM scheme. This scheme is attractive because of both the high data rate and the significant performance improvements that can be achieved. The system performance of the proposed schemes in terms of the bit error rate (BER) is evaluated and compared to the performance of the conventional schemes. Simulation results showed that a significant improvement is achieved by the TI-GQSM-MBM scheme as compared to that of TI-GQSM, time-indexed media-based modulation (TI-MBM) and the conventional generalized quadrature spatial modulation (GQSM) schemes for the same rate. It is also demonstrated that the proposed schemes are robust to channel estimation errors (CEEs) as compared to multidimensional generalized spatial modulation (GSM) schemes. Therefore, the proposed schemes can be effectively used as an alternative solution for various 5G and beyond wireless networks

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Multidimensional Index Modulation in Wireless Communications

    Full text link
    In index modulation schemes, information bits are conveyed through indexing of transmission entities such as antennas, subcarriers, times slots, precoders, subarrays, and radio frequency (RF) mirrors. Index modulation schemes are attractive for their advantages such as good performance, high rates, and hardware simplicity. This paper focuses on index modulation schemes in which multiple transmission entities, namely, {\em antennas}, {\em time slots}, and {\em RF mirrors}, are indexed {\em simultaneously}. Recognizing that such multidimensional index modulation schemes encourage sparsity in their transmit signal vectors, we propose efficient signal detection schemes that use compressive sensing based reconstruction algorithms. Results show that, for a given rate, improved performance is achieved when the number of indexed transmission entities is increased. We also explore indexing opportunities in {\em load modulation}, which is a modulation scheme that offers power efficiency and reduced RF hardware complexity advantages in multiantenna systems. Results show that indexing space and time in load modulated multiantenna systems can achieve improved performance

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future
    • …
    corecore