32,315 research outputs found

    Spatial Tweedie exponential dispersion models

    Full text link
    This paper proposes a general modeling framework that allows for uncertainty quantification at the individual covariate level and spatial referencing, operating withing a double generalized linear model (DGLM). DGLMs provide a general modeling framework allowing dispersion to depend in a link-linear fashion on chosen covariates. We focus on working with Tweedie exponential dispersion models while considering DGLMs, the reason being their recent wide-spread use for modeling mixed response types. Adopting a regularization based approach, we suggest a class of flexible convex penalties derived from an un-directed graph that facilitates estimation of the unobserved spatial effect. Developments are concisely showcased by proposing a co-ordinate descent algorithm that jointly explains variation from covariates in mean and dispersion through estimation of respective model coefficients while estimating the unobserved spatial effect. Simulations performed show that proposed approach is superior to competitors like the ridge and un-penalized versions. Finally, a real data application is considered while modeling insurance losses arising from automobile collisions in the state of Connecticut, USA for the year 2008.Comment: 26 pages, 3 figures and 7 table

    MetaboLab - advanced NMR data processing and analysis for metabolomics

    Get PDF
    Background\ud Despite wide-spread use of Nuclear Magnetic Resonance (NMR) in metabolomics for the analysis of biological samples there is a lack of graphically driven, publicly available software to process large one and two-dimensional NMR data sets for statistical analysis.\ud \ud Results\ud Here we present MetaboLab, a MATLAB based software package that facilitates NMR data processing by providing automated algorithms for processing series of spectra in a reproducible fashion. A graphical user interface provides easy access to all steps of data processing via a script builder to generate MATLAB scripts, providing an option to alter code manually. The analysis of two-dimensional spectra (1H,13C-HSQC spectra) is facilitated by the use of a spectral library derived from publicly available databases which can be extended readily. The software allows to display specific metabolites in small regions of interest where signals can be picked. To facilitate the analysis of series of two-dimensional spectra, different spectra can be overlaid and assignments can be transferred between spectra. The software includes mechanisms to account for overlapping signals by highlighting neighboring and ambiguous assignments.\ud \ud Conclusions\ud The MetaboLab software is an integrated software package for NMR data processing and analysis, closely linked to the previously developed NMRLab software. It includes tools for batch processing and gives access to a wealth of algorithms available in the MATLAB framework. Algorithms within MetaboLab help to optimize the flow of metabolomics data preparation for statistical analysis. The combination of an intuitive graphical user interface along with advanced data processing algorithms facilitates the use of MetaboLab in a broader metabolomics context.\ud \u

    Remote sensing and geographically based information systems

    Get PDF
    The incorporation of remotely sensed digital data in a computer based information system is seen to be equivalent to the incorporation of any other spatially oriented layer of data. The growing interest in such systems indicates a need to develop a generalized geographically oriented data base management system that could be made commercially available for a wide range of applications. Some concepts that distinguish geographic information systems were reviewed, and a simple model which can serve as a conceptual framework for the design of a generalized geographic information system was examined

    Nonparametric Conditional Inference for Regression Coefficients with Application to Configural Polysampling

    Get PDF
    We consider inference procedures, conditional on an observed ancillary statistic, for regression coefficients under a linear regression setup where the unknown error distribution is specified nonparametrically. We establish conditional asymptotic normality of the regression coefficient estimators under regularity conditions, and formally justify the approach of plugging in kernel-type density estimators in conditional inference procedures. Simulation results show that the approach yields accurate conditional coverage probabilities when used for constructing confidence intervals. The plug-in approach can be applied in conjunction with configural polysampling to derive robust conditional estimators adaptive to a confrontation of contrasting scenarios. We demonstrate this by investigating the conditional mean squared error of location estimators under various confrontations in a simulation study, which successfully extends configural polysampling to a nonparametric context

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    GIS and Network Analysis

    Get PDF
    Both geographic information systems (GIS) and network analysis are burgeoning fields, characterised by rapid methodological and scientific advances in recent years. A geographic information system (GIS) is a digital computer application designed for the capture, storage, manipulation, analysis and display of geographic information. Geographic location is the element that distinguishes geographic information from all other types of information. Without location, data are termed to be non-spatial and would have little value within a GIS. Location is, thus, the basis for many benefits of GIS: the ability to map, the ability to measure distances and the ability to tie different kinds of information together because they refer to the same place (Longley et al., 2001). GIS-T, the application of geographic information science and systems to transportation problems, represents one of the most important application areas of GIS-technology today. While traditional GIS formulation's strengths are in mapping display and geodata processing, GIS-T requires new data structures to represent the complexities of transportation networks and to perform different network algorithms in order to fulfil its potential in the field of logistics and distribution logistics. This paper addresses these issues as follows. The section that follows discusses data models and design issues which are specifically oriented to GIS-T, and identifies several improvements of the traditional network data model that are needed to support advanced network analysis in a ground transportation context. These improvements include turn-tables, dynamic segmentation, linear referencing, traffic lines and non-planar networks. Most commercial GIS software vendors have extended their basic GIS data model during the past two decades to incorporate these innovations (Goodchild, 1998). The third section shifts attention to network routing problems that have become prominent in GIS-T: the travelling salesman problem, the vehicle routing problem and the shortest path problem with time windows, a problem that occurs as a subproblem in many time constrained routing and scheduling issues of practical importance. Such problems are conceptually simple, but mathematically complex and challenging. The focus is on theory and algorithms for solving these problems. The paper concludes with some final remarks.
    corecore