4,873 research outputs found

    New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix

    Get PDF
    The purpose of this article is to improve existing lower bounds on the chromatic number chi. Let mu_1,...,mu_n be the eigenvalues of the adjacency matrix sorted in non-increasing order. First, we prove the lower bound chi >= 1 + max_m {sum_{i=1}^m mu_i / - sum_{i=1}^m mu_{n-i+1}} for m=1,...,n-1. This generalizes the Hoffman lower bound which only involves the maximum and minimum eigenvalues, i.e., the case m=1m=1. We provide several examples for which the new bound exceeds the {\sc Hoffman} lower bound. Second, we conjecture the lower bound chi >= 1 + S^+ / S^-, where S^+ and S^- are the sums of the squares of positive and negative eigenvalues, respectively. To corroborate this conjecture, we prove the weaker bound chi >= S^+/S^-. We show that the conjectured lower bound is tight for several families of graphs. We also performed various searches for a counter-example, but none was found. Our proofs rely on a new technique of converting the adjacency matrix into the zero matrix by conjugating with unitary matrices and use majorization of spectra of self-adjoint matrices. We also show that the above bounds are actually lower bounds on the normalized orthogonal rank of a graph, which is always less than or equal to the chromatic number. The normalized orthogonal rank is the minimum dimension making it possible to assign vectors with entries of modulus one to the vertices such that two such vectors are orthogonal if the corresponding vertices are connected. All these bounds are also valid when we replace the adjacency matrix A by W * A where W is an arbitrary self-adjoint matrix and * denotes the Schur product, that is, entrywise product of W and A

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P_G(q) for the generalized theta graphs \Theta^{(s,p)} are, taken together, dense in the whole complex plane with the possible exception of the disc |q-1| < 1. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z_G(q,v) outside the disc |q+v| < |v|. An immediate corollary is that the chromatic zeros of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.Comment: LaTeX2e, 53 pages. Version 2 includes a new Appendix B. Version 3 adds a new Theorem 1.4 and a new Section 5, and makes several small improvements. To appear in Combinatorics, Probability & Computin

    The t-improper chromatic number of random graphs

    Full text link
    We consider the tt-improper chromatic number of the Erd{\H o}s-R{\'e}nyi random graph G(n,p)G(n,p). The t-improper chromatic number χt(G)\chi^t(G) of GG is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most tt. If t=0t = 0, then this is the usual notion of proper colouring. When the edge probability pp is constant, we provide a detailed description of the asymptotic behaviour of χt(G(n,p))\chi^t(G(n,p)) over the range of choices for the growth of t=t(n)t = t(n).Comment: 12 page

    Spectral graph theory : from practice to theory

    Get PDF
    Graph theory is the area of mathematics that studies networks, or graphs. It arose from the need to analyse many diverse network-like structures like road networks, molecules, the Internet, social networks and electrical networks. In spectral graph theory, which is a branch of graph theory, matrices are constructed from such graphs and analysed from the point of view of their so-called eigenvalues and eigenvectors. The first practical need for studying graph eigenvalues was in quantum chemistry in the thirties, forties and fifties, specifically to describe the Hückel molecular orbital theory for unsaturated conjugated hydrocarbons. This study led to the field which nowadays is called chemical graph theory. A few years later, during the late fifties and sixties, graph eigenvalues also proved to be important in physics, particularly in the solution of the membrane vibration problem via the discrete approximation of the membrane as a graph. This paper delves into the journey of how the practical needs of quantum chemistry and vibrating membranes compelled the creation of the more abstract spectral graph theory. Important, yet basic, mathematical results stemming from spectral graph theory shall be mentioned in this paper. Later, areas of study that make full use of these mathematical results, thus benefitting greatly from spectral graph theory, shall be described. These fields of study include the P versus NP problem in the field of computational complexity, Internet search, network centrality measures and control theory.peer-reviewe

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    Approximate Graph Coloring by Semidefinite Programming

    Full text link
    We consider the problem of coloring k-colorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3-colorable graph on nn vertices with min O(Delta^{1/3} log^{1/2} Delta log n), O(n^{1/4} log^{1/2} n) colors where Delta is the maximum degree of any vertex. Besides giving the best known approximation ratio in terms of n, this marks the first non-trivial approximation result as a function of the maximum degree Delta. This result can be generalized to k-colorable graphs to obtain a coloring using min O(Delta^{1-2/k} log^{1/2} Delta log n), O(n^{1-3/(k+1)} log^{1/2} n) colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovasz theta-function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the theta-function

    Distinguishing homomorphisms of infinite graphs

    Get PDF
    We supply an upper bound on the distinguishing chromatic number of certain infinite graphs satisfying an adjacency property. Distinguishing proper nn-colourings are generalized to the new notion of distinguishing homomorphisms. We prove that if a graph GG satisfies the connected existentially closed property and admits a homomorphism to HH, then it admits continuum-many distinguishing homomorphisms from GG to HH join K2.K_2. Applications are given to a family universal HH-colourable graphs, for HH a finite core
    corecore