64,580 research outputs found

    Measuring measuring: Toward a theory of proficiency with the Constructing Measures framework

    Get PDF
    This paper is relevant to measurement educators who are interested in the variability of understanding and use of the four building blocks in the Constructing Measures framework (Wilson, 2005). It proposes a uni-dimensional structure for understanding Wilson’s framework, and explores the evidence for and against this conceptualization. Constructed and fixed choice response items are utilized to collect responses from 72 participants who range in experience and expertise with constructing measures. The data was scored by two raters and was analyzed with the Rasch partial credit model using ConQuest (1998). Guided by the 1999 Testing Standards, analyses of validity and reliability evidence provide support for the construct theory and limited uses of the instrument pending item design modifications

    Use and Communication of Probabilistic Forecasts

    Full text link
    Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don't need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications

    Using graphical models and multi-attribute utility theory for probabilistic uncertainty handling in large systems, with application to nuclear emergency management

    Get PDF
    Although many decision-making problems involve uncertainty, uncertainty handling within large decision support systems (DSSs) is challenging. One domain where uncertainty handling is critical is emergency response management, in particular nuclear emergency response, where decision making takes place in an uncertain, dynamically changing environment. Assimilation and analysis of data can help to reduce these uncertainties, but it is critical to do this in an efficient and defensible way. After briefly introducing the structure of a typical DSS for nuclear emergencies, the paper sets up a theoretical structure that enables a formal Bayesian decision analysis to be performed for environments like this within a DSS architecture. In such probabilistic DSSs many input conditional probability distributions are provided by different sets of experts overseeing different aspects of the emergency. These probabilities are then used by the decision maker (DM) to find her optimal decision. We demonstrate in this paper that unless due care is taken in such a composite framework, coherence and rationality may be compromised in a sense made explicit below. The technology we describe here builds a framework around which Bayesian data updating can be performed in a modular way, ensuring both coherence and efficiency, and provides sufficient unambiguous information to enable the DM to discover her expected utility maximizing policy

    Bayesian decision support for complex systems with many distributed experts

    Get PDF
    Complex decision support systems often consist of component modules which, encoding the judgements of panels of domain experts, describe a particular sub-domain of the overall system. Ideally these modules need to be pasted together to provide a comprehensive picture of the whole process. The challenge of building such an integrated system is that, whilst the overall qualitative features are common knowledge to all, the explicit forecasts and their associated uncertainties are only expressed individually by each panel, resulting from its own analysis. The structure of the integrated system therefore needs to facilitate the coherent piecing together of these separate evaluations. If such a system is not available there is a serious danger that this might drive decision makers to incoherent and so indefensible policy choices. In this paper we develop a graphically based framework which embeds a set of conditions, consisting of the agreement usually made in practice of certain probability and utility models, that, if satisfied in a given context, are sufficient to ensure the composite system is truly coherent. Furthermore, we develop new message passing algorithms entailing the transmission of expected utility scores between the panels, that enable the uncertainties within each module to be fully accounted for in the evaluation of the available alternatives in these composite systems

    Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room

    Get PDF
    Background: Diagnostic errors occur frequently, especially in the emergency room. Estimates about the consequences of diagnostic error vary widely and little is known about the factors predicting error. Our objectives thus was to determine the rate of discrepancy between diagnoses at hospital admission and discharge in patients presenting through the emergency room, the discrepancies’ consequences, and factors predicting them. Methods: Prospective observational clinical study combined with a survey in a University-affiliated tertiary care hospital. Patients’ hospital discharge diagnosis was compared with the diagnosis at hospital admittance through the emergency room and classified as similar or discrepant according to a predefined scheme by two independent expert raters. Generalized linear mixed-effects models were used to estimate the effect of diagnostic discrepancy on mortality and length of hospital stay and to determine whether characteristics of patients, diagnosing physicians, and context predicted diagnostic discrepancy. Results: 755 consecutive patients (322 [42.7%] female; mean age 65.14 years) were included. The discharge diagnosis differed substantially from the admittance diagnosis in 12.3% of cases. Diagnostic discrepancy was associated with a longer hospital stay (mean 10.29 vs. 6.90 days; Cohen’s d 0.47; 95% confidence interval 0.26 to 0.70; P = 0.002) and increased patient mortality (8 (8.60%) vs. 25(3.78%); OR 2.40; 95% CI 1.05 to 5.5 P = 0.038). A factor available at admittance that predicted diagnostic discrepancy was the diagnosing physician’s assessment that the patient presented atypically for the diagnosis assigned (OR 3.04; 95% CI 1.33–6.96; P = 0.009). Conclusions: Diagnostic discrepancies are a relevant healthcare problem in patients admitted through the emergency room because they occur in every ninth patient and are associated with increased in-hospital mortality. Discrepancies are not readily predictable by fixed patient or physician characteristics; attention should focus on context
    • …
    corecore