2,884 research outputs found

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Estimating the Multilevel Rasch Model: With the lme4 Package

    Get PDF
    Traditional Rasch estimation of the item and student parameters via marginal maximum likelihood, joint maximum likelihood or conditional maximum likelihood, assume individuals in clustered settings are uncorrelated and items within a test that share a grouping structure are also uncorrelated. These assumptions are often violated, particularly in educational testing situations, in which students are grouped into classrooms and many test items share a common grouping structure, such as a content strand or a reading passage. Consequently, one possible approach is to explicitly recognize the clustered nature of the data and directly incorporate random effects to account for the various dependencies. This article demonstrates how the multilevel Rasch model can be estimated using the functions in R for mixed-effects models with crossed or partially crossed random effects. We demonstrate how to model the following hierarchical data structures: a) individuals clustered in similar settings (e.g., classrooms, schools), b) items nested within a particular group (such as a content strand or a reading passage), and c) how to estimate a teacher x content strand interaction.

    Performance Improvements of Common Sparse Numerical Linear Algebra Computations

    Get PDF
    Manufacturers of computer hardware are able to continuously sustain an unprecedented pace of progress in computing speed of their products, partially due to increased clock rates but also because of ever more complicated chip designs. With new processor families appearing every few years, it is increasingly harder to achieve high performance rates in sparse matrix computations. This research proposes new methods for sparse matrix factorizations and applies in an iterative code generalizations of known concepts from related disciplines. The proposed solutions and extensions are implemented in ways that tend to deliver efficiency while retaining ease of use of existing solutions. The implementations are thoroughly timed and analyzed using a commonly accepted set of test matrices. The tests were conducted on modern processors that seem to have gained an appreciable level of popularity and are fairly representative for a wider range of processor types that are available on the market now or in the near future. The new factorization technique formally introduced in the early chapters is later on proven to be quite competitive with state of the art software currently available. Although not totally superior in all cases (as probably no single approach could possibly be), the new factorization algorithm exhibits a few promising features. In addition, an all-embracing optimization effort is applied to an iterative algorithm that stands out for its robustness. This also gives satisfactory results on the tested computing platforms in terms of performance improvement. The same set of test matrices is used to enable an easy comparison between both investigated techniques, even though they are customarily treated separately in the literature. Possible extensions of the presented work are discussed. They range from easily conceivable merging with existing solutions to rather more evolved schemes dependent on hard to predict progress in theoretical and algorithmic research

    Asimovian Adaptive Agents

    Full text link
    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: positive results that certain learning operators are a priori guaranteed to preserve useful classes of behavioral assurance constraints (which implies that no reverification is needed for these operators), and efficient incremental reverification algorithms for those learning operators that have negative a priori results
    corecore