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Abstract

Traditional Rasch estimation of the item and student parameters via marginal max-
imum likelihood, joint maximum likelihood or conditional maximum likelihood, assume
individuals in clustered settings are uncorrelated and items within a test that share a
grouping structure are also uncorrelated. These assumptions are often violated, particu-
larly in educational testing situations, in which students are grouped into classrooms and
many test items share a common grouping structure, such as a content strand or a read-
ing passage. Consequently, one possible approach is to explicitly recognize the clustered
nature of the data and directly incorporate random effects to account for the various de-
pendencies. This article demonstrates how the multilevel Rasch model can be estimated
using the functions in R for mixed-effects models with crossed or partially crossed random
effects. We demonstrate how to model the following hierarchical data structures: a) indi-
viduals clustered in similar settings (e.g., classrooms, schools), b) items nested within a
particular group (such as a content strand or a reading passage), and c) how to estimate
a teacher × content strand interaction.

Keywords: generalized linear mixed models, item response theory, sparse matrix techniques.

1. Introduction

The analysis of response data to test items or survey questions often requires psychometric
methods of analysis to investigate properties of the items or characteristics of individuals
taking those items. Item response theory (IRT) is the prominent application for behavioral
scientists involved in such analyses (Lord 1980). In most cases, specialized software programs
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are used to calibrate items such as WINSTEPS (Linacre 2006), BILOG-MG (Zimowski, Mu-
raki, Mislevy, and Bock 2005), PARSCALE (Muraki and Bock 2005), or ltm (Rizopoloulos
2006) in R (R Development Core Team 2007), with each program using a different estimating
algorithm such as joint maximum likelihood (JML) or marginal maximum likelihood (MML).

Using traditional likelihood estimation, such as JML or MML, a strong assumption is posited
referred to as local item independence. That is, items sharing a particular grouping structure
are independent from one another. When tenable, the joint density is the product of the
individual densities and maximum likelihood estimation proceeds in a straightforward man-
ner. However, this assumption is often violated, especially in educational settings where test
items share a common stem, such as a multiple items in a reading passage or multiple math
items based on the same table or graphic. A second form of dependence is also found when
individuals participating in the test share a common grouping structure, such as a classroom.

These important dependencies are commonly ignored, resulting in estimates that may be
inconsistent and standard errors that do not adequately characterize the true variance. One
option to consider in the presence of a non-zero design effect (Kish 1965) is to regard the
point estimates as retaining some utility, but construct robust standard errors in recognition
of the fact that correlated observations provide less information than an equivalent number
from a simple random sample (Binder 1983; Cohen, Jiang, and Seburn 2005).

A second option is to incorporate random effects in the structural model to aptly model the
various dependencies Johnson and Raudenbush (2006); Kamata (2001). In this paper we
describe how to use the lmer function in the lme4 package (Bates and Sarkar 2007) to fit
the Rasch model and to fit extensions to the Rasch model that take into account correlation
of the scores for groups of students or groups of items. We begin by explicitly linking the
Rasch measurement model with generalized linear models for the reader to better understand
why software for fitting generalized linear models can also serve as a tool for item response
applications.

1.1. The Rasch model

The analysis of item response data often begins from the classical linear measurement model
xis = θi + εis where xis is the observed score for individual i to item s, θi is the true score for
individual i, and εis is the error term.

Given a dichotomous response variable, it is only observed that:

yis =
{

1 if xis > bs,
0 otherwise

where bs is a threshold for item s. The probability that yis = 1 conditional on the student’s
true score and the item threshold can be expressed as:

Prob(yis = 1|θi, bs) = Prob(θi + εis > bs) (1)
= Prob(εis > bs − θi)

As noted by Greene (2000), if the distribution of the disturbance term is symmetric, such as
the standard logistic, then
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Prob(yis = 1|θi, bs) = Prob(εis < θi − bs) (2)
= F (θi − bs)

Under the assumption that the disturbances are logistic, we can form the following logit
model:

logit(Prob(yis = 1|θi, bs)) = log
(

Prob(yis = 1|θi, bs)
1− Prob(yis = 1|θi, bs)

)
(3)

which gives rise to the familiar Rasch model:

Prob(Yis = 1|θi, bs) = Pis =
1

1 + exp(bs − θi)
i = 1, . . . ,m; s = 1, . . . , n (4)

The parameters bs, s = 1, . . . ,m are called the item difficulties and the θi, i = 1, . . . , n are
the subject abilities.

This development permits for us to view the Rasch model as connected to the classicial
measurement model given certain assumptions regarding the distribution of the error term.
Subsequently, traditional item response theory (IRT) further assumes that responses to test
items are conditionally independent, which gives rise to the following likelihood:

L =
∏

P yis
is (1− Pis)1−yis (5)

First order conditions necessary for maximization of Equation (5) are simple to derive thus
making traditional estimation methods, such as marginal maximum likelihood, joint maximum
likelihood, or conditional maximum likelihood, for the parameters in the Rasch model quite
simple to evaluate when every subject is scored on every item (i.e. the subject and item
factors are completely crossed) and we can assume that the scores for different subjects are
independent and, for a given subject, the scores on different items are independent.

1.2. Generalized linear models

As described in McCullagh and Nelder (1989), a generalized linear model is a statistical model
in which the linear predictor for the ith response, ηi = xiβ where xi is the ith row of the
n×p model matrix X derived from the form of the model and the values of any covariates, is
related to the expected value of the response, µi, through an invertible link function, g. That
is

xiβ = ηi = g(µi) i = 1, . . . , n (6)

and
µi = g−1(ηi) = g−1(xiβ) i = 1, . . . , n (7)

The natural link (McCullagh and Nelder 1989) for a binomial response is the logit link defined
as

ηi = g(µi) = log
(

µi

1− µi

)
i = 1, . . . , n (8)

with inverse link
µi = g−1(ηi) =

1
1 + exp(−ηi)

i = 1, . . . , n (9)
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from which we can see the relationship to the Rasch model as developed in (4). Because µi

is the probability of the ith observation being a “success”, ηi is the log of the odds ratio.

The parameters β in a generalized linear model are generally estimated by iteratively reweighted
least squares (IRLS). At each iteration in this algorithm the current parameter estimates are
replaced by the parameter estimates of a weighted least squares fit with model matrix X to an
adjusted dependent variable. The weights and the adjusted dependent variable are calculated
from the link function and the current parameter values.

1.3. Extension to clustered settings

The issue at hand, however, is that when individuals are grouped into similar settings (e.g.,
students in classrooms) the assumption of independence may no longer remain tenable. For
example, we would expect the scores of students in the same classroom to be correlated and
we would expect scores on items in a topic group to be correlated. As such, traditional meth-
ods for obtaining parameter estimates may return biased parameter estimates or incorrect
standard errors (Müller 2004; McCullagh and Nelder 1989). In other words, it is no longer
the case that cov(εj(i), εj(i′)) = 0 for all i 6= i′, where the notation j(i) denotes the nesting
of unit i in the group j. In fact, the clustering of units into similar groups typically results
in a clustering of the measurement error term, εj(i) = νj + εij , where νj ∼ N (0, σ2

ν) and
εij ∼ L(0, σ2

ε ) where L denotes that the disturbances follow a standard logistic distribution.

This covariance among units within a group motivates us to consider incorporating random
effects into the linear predictor in order to more aptly handle the dependencies among units
in similar groups. In other words, the error term can now be viewed as having multiple levels
of random variation, thereby making a multilevel statistical model an appropriate approach

1.4. Generalized linear mixed models

In a generalized linear mixed model (GLMM) the n-dimensional vector of linear predictors,
η, incorporates both fixed effects, β, and random effects, b, as

η = Xβ + Zb (10)

where X is an n× p model matrix and Z is an n× q model matrix.

Each component of the random effects vector b is associated with a level of a grouping factor
such as “student” or “class” or “item”. Because the number of levels of a factor such as
“student” can be very large, the dimension, q, of the random effects vector, b, can be very
large. In one of the examples in Section 3 q is over 8000.

We model the distribution of the random effects as a multivariate normal (Gaussian) distri-
bution with mean 0 and q × q variance-covariance matrix Σ. That is,

b ∼ N (0,Σ(θ)) . (11)

Although Σ is a very large matrix, it is determined by a parameter vector, θ, whose dimension
is typically very small. In the example from Section 3 where q is over 8000, the dimension of
θ is only 5.

The maximum likelihood estimates β̂ and θ̂ maximize the likelihood of the parameters, β
and θ, given the observed data, y. This likelihood is numerically equivalent to the marginal
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density of y given β and θ, which is

f(y|β,θ) =
∫

b
p(y|β, b)f(b|Σ(θ)) db (12)

where p(y|β, b) is the probability mass function of y, given β and b, and f(b|Σ) is the
(Gaussian) probability density at b.

Unfortunately the integral in (12) does not have a closed-form solution when p(y|β, b) is
binomial. However, we can approximate this integral quite accurately using a Laplace ap-
proximation. For given values of β and θ we determine the conditional modes of the random
effects

b̃(β,θ) = arg max
b

p(y|β, b)f(b|Σ(θ)), (13)

which are the values of the random effects that maximize the conditional density of the random
effects given the data and the model parameters. The conditional modes can be determined
by a penalized iteratively reweighted least squares algorithm (PIRLS, see Section 2.1) where
the contribution of the fixed effects parameters, β, is incorporated as an offset, Xβ, and the
contribution of the variance components, θ, is incorporated as a penalty term in the weighted
least squares fit.

At the conditional modes, b̃, we evaluate the second order Taylor series approximation to the
log of the integrand (i.e. the log of the conditional density of b) and use its integral as an
approximation to the likelihood.

It is the Laplace approximation to the likelihood that is optimized to obtain approximate
values of the mle’s for the parameters and the corresponding conditional modes of the random
effects vector b.

1.5. Fixed-effects parameters versus random-effects parameters

In addition to having potentially a very large number of levels, a grouping factor for a random
effect typically has levels that are not repeatable in the sense that, if the experiment were to
be repeated it would be with different levels of this grouping factor. For example, if we were
to repeat a test for a given set of students we would generally use a different set of items.
Conversely if we were to administer the same test to a new group of students then the levels
of the student factor would be different.

Frequently the levels of such a factor represent a sample from a population. For example,
the items used on a particular test can be considered as a sample from the set of all possible
items on the subject matter. Even if we administer a test to every subject in a population
we can consider this to be an exhaustive sample from the population. Hence we model both
the subjects’ abilities and the item difficulties as random-effects terms.

Factors with repeatable levels, such as item types, can be modeled as fixed-effects terms.

An interaction between a factor that is modeled as a random effect and another factor that
is modeled as a fixed effect is modeled as a random effect.

1.6. Nested versus non-nested grouping factors

In addition to distinguishing between grouping factors that are modeled as fixed effects terms
and those that are modeled as random effects, it is helpful to distinguish between nested and
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non-nested structures for grouping factors. Grouping factor A is said to be nested within
grouping factor B, written A � B, if each level of A occurs in conjunction with one and only
one level of B. For example, if each student is observed in only one class then the student
grouping factor is nested within the class grouping factor.

Obviously, if A � B then the number of levels in A cannot be less than the number of levels
in B, with equality occuring only in the case that A and B are identical up to changes in the
names of the levels (in which case both A � B and B � A hold). A collection of grouping
factors is said to be strictly nested if, when ordered according to non-decreasing numbers
of levels, each factor is nested within its successor. Otherwise the collection is said to be
non-nested.

Grouping factors A and B are said to be completely crossed if every level of A occurs in
conjunction with every level of B. For example if each student takes the same test then the
student and item grouping factors are completely crossed. Completely crossed factors are an
example of non-nested factors. In fact, they are an extreme example of non-nested factors.

Many computational methods for mixed models with multiple grouping factors are designed
for hierarchical models (also called multilevel models) in which the grouping factors form a
strictly nested sequence. In such a case the model matrix Z for the random effects, defined
in Section 2.1 below, has a special structure that induces a simple, separable structure on
Z>Z and matrices derived from it, such as Z>W (r)Z +Σ−1 in Equation 18. Computational
methods that assume and exploit such a structure are quite effective for hierarchical models
but, although they can be “tricked” into fitting a model with crossed or partially crossed
grouping factors, they generally are slow and memory-inefficient on such models.

In contrast, the computational methods used in the lmer function from the lme4 package
(described in the next section) do not assume nested grouping factors. They are effective and
efficient for models with nested or with partially crossed or with completely crossed grouping
factors. Thus they allow for fitting IRT models and generalization of IRT models with random
effects for subject and for item.

2. Design of lmer

2.1. Details of the PIRLS algorithm

Recall from (13) that the conditional modes of the random effects b̃(β,θ,y) maximize the
conditional density of b given the data and values of the parameters β and θ. The penal-
ized iteratively reweighted least squares (PIRLS) algorithm for determining these conditional
modes combines characteristic of the iteratively reweighted least squares (IRLS) algorithm for
generalized linear models (McCullagh and Nelder 1989, Section 2.5) and the penalized least
squares representation of a linear mixed model (Bates and DebRoy 2004).

At the rth iteration of the IRLS algorithm the current value of the vector of random effects.
b(r) (we use parenthesized superscripts to denote the iteration) produces a linear predictor

η(r) = Xβ + Zb (14)

with corresponding mean vector µ(r) = g−1η(r). (The vector-valued link and inverse link
functions, g and g−1, apply the scalar link and inverse link, g and g−1, componentwise.)
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A vector of weights and a vector of derivatives of the form dη/dµ are also evaluated. For
convenience of notation we express these as diagonal matrices, W (r) and G(r), although
calculations involving these quantities are performed component-wise and not as matrices.
The adjusted dependent variate at iteration r is

z(r) = η(r) + G(r)
(
y − µ(r)

)
(15)

from which the updated parameter, b(r+1), is determined as the solution to

Z>W (r)Zb(r+1) = Z>z(r). (16)

McCullagh and Nelder (1989, Section 2.5) show that the IRLS algorithm is equivalent to the
Fisher scoring algorithm for any link function and also equivalent to the Newton-Raphson
algorithm when the link function is the natural link for a probability distribution in the
exponential family. That is, IRLS will minimize − log p(y|β, b) for fixed β. However, we wish
to determine

b̃(β,θ) = arg max
b

p(y|β, b)f(b|Σ(θ))

= arg min
b

[
− log p(y|β, b) +

b>Σ−1(θ)b
2

]
.

(17)

As shown in Bates and DebRoy (2004) we can incorporate the contribution of the Gaussian
distribution by adding q “pseudo-observations” with constant unit weights, observed values of
0 and predicted values of ∆(θ)b where ∆ is any q × q matrix such that ∆>∆ = Σ−1(θ).
Thus the update in the penalized iteratively reweighted least squares (PIRLS) algorithm for
determining the conditional modes, b̃(β,θ,y), expresses b(r+1) as the solution to the penalized
weighted least squares problem(

Z>W (r)Z + Σ−1
)

b(r+1) = Z>z(r). (18)

The sequence of iterates b(0), b(1), . . . is considered to have converged to the conditional modes
b̃(β,θ,y) when the relative change in the linear predictors ‖η(r+1) − η(r)‖/‖η(r)‖ falls below
a threshold. The variance-covariance matrix of b, conditional on β and θ, is approximated as

Var (b|β,θ,y) ≈ D ≡
(
Z>W (r)Z + Σ−1

)−1
. (19)

This approximation is analogous to using the inverse of Fisher’s information matrix as the
approximate variance-covariance matrix for maximum likelihood estimates.

2.2. Details of the Laplace approximation

The Laplace approximation to the likelihood L(β,θ|y) is obtained by replacing the logarithm
of the integrand in (12) by its second-order Taylor series at the conditional maximum, b̃(β,θ).
On the scale of the deviance (negative twice the log-likelihood) the approximation is

−2`(β,θ|y) = −2 log
{∫

b
p(y|β, b)f(b|Σ(θ)) db

}
≈ 2 log

{∫
b
exp

{
−1

2

[
d(β, b̃,y) + b̃>Σ−1b̃ + log |Σ|+ b>D−1b

]}
db

}
= d(β, b̃,y) + b̃>Σ−1b̃ + + log |Σ|+ log |D|

(20)
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where d(β, b,y) is the deviance function from the linear predictor only. That is, d(β, b,y) =
−2 log p(y|β, b). This quantity can be evalated as the sum of the deviance residuals (McCul-
lagh and Nelder 1989, Section 2.4.3).

2.3. Sparse matrix methods

The PIRLS algorithm for determining the conditional modes of the random effects and the use
of the Laplace approximation (20) to the deviance require the solution of the positive-definite
system of linear equations (18) and evaluation of log |D| = − log |Z>WZ + Σ−1|. One way
to accomplish both of these tasks is to obtain the Cholesky decomposition of Z>WZ +Σ−1.
One way of writing the Cholesky decomposition is as a lower triangular matrix L such that

LL> = Z>WZ + Σ−1 (21)

from which we obtain log |D| = − log |Z>WZ + Σ−1| = −2 log |L|. Because L is triangular
its determinant is easily evaluated as the product of its diagonal elements. The triangularity
of L also simplifies solution of a linear system like (18).

Even when using the Cholesky decomposition we must be careful when working with q × q
matrices for large q, which can be the case for the models we are considering. Fortunately the
matrix Z>WZ + Σ−1 is sparse and the Cholesky decomposition of sparse, positive definite,
symmetric matrices has been studied extensively. Davis (2006) gives a general introduction
to sparse matrix methods and describes his Csparse library of C functions that implement
these methods. Another library of C functions called CHOLMOD, also written by Tim Davis,
implements more sophisticated algorithms for the sparse Cholesky decomposition, including
the supernodal Cholesky decomposition used in the lmer function.

The Csparse and CHOLMOD libraries of C functions for sparse matrices are incorporated in
the Matrix package for R.

Operations with sparse matrices are often performed in two stages: a symbolic stage in which
the number and positions of the non-zero elements in the result are determined and a numeric
stage in which the numerical values of these elements are calculated. For a Cholesky decom-
position the symbolic phase can be particularly important because the number of nonzeros in
L can be changed dramatically by permuting the rows and columns of the original positive
definite matrix. Determining a fill-reducing permutation can be time consuming but doing so
can save considerable time and storage in the subsequent numerical phase.

Although the numeric values of the nonzeros in Z>WZ + Σ−1 change with each iteration
of the PIRLS algorithm and with every change in θ during the optimization of the Laplace
approximation, the number and positions of these nonzeros are constant. Thus we only need
to perform the symbolic computation once. The numeric computation is performed many
times. Both the Csparse and the CHOLMOD libraries allow the symbolic computation to be
performed separately from the numeric computation.

3. Code and examples

In this section we show how lmer can be used to fit multilevel Rasch models and generaliza-
tions of these models to a dichotomized version of the responses in the lq2002 data in the
multilevel package.
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3.1. Preliminary data manipulation

The lq2002 data contain the responses of 2042 soldiers to a total of 19 items, 11 of which
are related to leadership, 3 of which are related to task significance and 5 of which measure
the hostility felt by the soldier. The soldiers are grouped into 49 companies. Thus both the
subjects and the items are grouped.

The responses to the leadership and task significance questions are on a 1 to 5 scale where
5 indicates strong positive feelings. The responses to the hostility questions are on a 0 to 4
scale where 0 indicates no hostility and 4 indicates strong feelings of hostility. We therefore
dichotomized the responses so that a positive response (1) was a 4 or a 5 on the leadership
and task significance questions and a 0 or a 1 on the hostility questions.

The lmer function requires the data to be in the “long” or “subject-item” form where each row
corresponds contains the response of one subject to one item. The reshape function can be
used to convert a data set in the “wide” format to the “long” format and to add appropriate
indicators of the item and subject. The indicator of item type must be added separately.

R> data("lq2002", package = "multilevel")

R> wrk <- lq2002

R> for (i in 3:16) wrk[[i]] <- ordered(wrk[[i]])

R> for (i in 17:21) wrk[[i]] <- ordered(5 - wrk[[i]])

R> lql <- reshape(wrk, varying = list(names(lq2002)[3:21]),

+ v.names = "fivelev", idvar = "subj", timevar = "item",

+ drop = names(lq2002)[c(2, 22:27)], direction = "long")

R> lql$itype <- with(lql, factor(ifelse(item < 12, "Leadership",

+ ifelse(item < 15, "Task Sig.", "Hostility"))))

R> for (i in c(1, 2, 4, 5)) lql[[i]] <- factor(lql[[i]])

R> lql$dichot <- factor(ifelse(lql$fivelev < 4, 0, 1))

R> str(lql)

’data.frame’: 38798 obs. of 6 variables:
$ COMPID : Factor w/ 49 levels "2","3","4","5",..: 1 1 1 1 1 1 1 1 1 1 ...
$ item : Factor w/ 19 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ fivelev: Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 2 4 4 1 1 2 3 3 3 4 ...
$ subj : Factor w/ 2042 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ itype : Factor w/ 3 levels "Hostility","Leadership",..: 2 2 2 2 2 2 2 2 2 2 ...
$ dichot : Factor w/ 2 levels "0","1": 1 2 2 1 1 1 1 1 1 2 ...

R> summary(lql)

COMPID item fivelev subj
13 : 1881 1 : 2042 1: 5208 1 : 19
18 : 1786 2 : 2042 2: 5357 2 : 19
46 : 1710 3 : 2042 3: 8879 3 : 19
15 : 1691 4 : 2042 4:11353 4 : 19
29 : 1615 5 : 2042 5: 8001 5 : 19
34 : 1482 6 : 2042 6 : 19
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(Other):28633 (Other):26546 (Other):38684
itype dichot

Hostility :10210 0:19444
Leadership:22462 1:19354
Task Sig. : 6126

3.2. Fitting an initial multilevel Rasch model

Because the item type (itype) is a repeatable factor and of interest itself, we model it as
a fixed-effects term. The subject (subj), company (COMPID) and item (item) factors are
modeled as random effects. An initial model fit with fixed effects for itype and random
effects for subj, COMPID and item is

R> (fm1 <- lmer(dichot ~ 0 + itype + (1 | subj) + (1 | COMPID) +

+ (1 | item), lql, binomial))

Generalized linear mixed model fit using Laplace
Formula: dichot ~ 0 + itype + (1 | subj) + (1 | COMPID) + (1 | item)

Data: lql
Family: binomial(logit link)
AIC BIC logLik deviance

40722 40773 -20355 40710
Random effects:
Groups Name Variance Std.Dev.
subj (Intercept) 2.30528 1.51831
COMPID (Intercept) 0.25449 0.50447
item (Intercept) 0.37700 0.61400
number of obs: 38798, groups: subj, 2042; COMPID, 49; item, 19

Estimated scale (compare to 1 ) 0.9386558

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

itypeHostility 1.6721 0.2883 5.801 6.6e-09
itypeLeadership -0.4921 0.2036 -2.417 0.0157
itypeTask Sig. -0.1308 0.3654 -0.358 0.7203

Correlation of Fixed Effects:
itypHs itypLd

itypeLdrshp 0.117
itypeTskSg. 0.066 0.093

The coefficients in a generalized linear model for a binomial response with the logit link
generate the log-odds for a positive response. For this model we are considering three different
types of items and, rather than using a coding in which one of the item types is taken as the
reference value, we suppress the intercept in the model and estimate a marginal log-odds for
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each item type. Thus the log-odds of a positive response on a hostility question (recall that
the coding of the response is such that a positive value indicates a relative lack of hostility)
is 1.672, corresponding to a probability of 84.19%. Similarly, the marginal log-odds for a
leadership question eliciting a positive response is -0.4921 corresponding to a probability of
37.94%.

We extract and save the random effects for this model including the “posterior variances” (or
conditional variances given the data) of these random effects.

R> rr <- ranef(fm1, postVar = TRUE)

R> str(rr$COMPID)

’data.frame’: 49 obs. of 1 variable:
$ (Intercept): num 0.0510 -0.0221 -0.1845 0.0502 0.0978 ...
- attr(*, "postVar")= num [1, 1, 1:49] 0.0812 0.0596 0.0523 0.0437 0.1193 ...

R> head(rr$COMPID)

(Intercept)
2 0.05095204
3 -0.02208041
4 -0.18445551
5 0.05016374
6 0.09781214
7 0.34845152

The value of ranef() applied to this model is a list with three components named subj,
COMPID and item. Each of these components is a data frame with, in this case, a single
column and one row for each level of the grouping factor. The contents are the conditional
modes of the random effects evaluated at the parameter estimates.

In Figure 1 we present normal probability plots of the conditional modes of the random effects
for the each of the three grouping factors.

R> qq <- qqmath(rr)

R> print(qq$subj)

To provide a measure of the precision of the conditional distribution of these random effects we
add lines extending ±1.96 conditional standard deviations in each direction from the plotted
point. We can see that many of the intervals created in this way overlap with the zero line
but for all three of the grouping factors there are several levels that are clearly greater than
zero or clearly less than zero.

As indicated by the estimates of the variances of the random effects, the subject factor ac-
counts for the greatest level of variability.

Plots like those in Figure 1 with vertical lines to indicate the precision of the conditional
distribution of the random effects are sometimes called “caterpillar plots” because of their
appearance.
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Figure 1: Normal probability plots of the conditional modes of the random effects from model
fm1 for the subject (left panel), company (middle panel) and item (right panel) grouping
factors. The precision of the conditional distribution of the random effects is indicated by a
line that extends ±1.96 conditional standard deviations in each direction

We could analyze these results in greater detail but first we should check on the possible
presence of interactions.

3.3. Allowing for interactions of company and item type

It is of interest to determine if there are significant differences between companies in the
probabilities for the different item types. One way to allow for this is to include a random
effect for the COMPID:itype interaction.

This can be modeled in two different ways: as a random effect for the COMPID:itype inter-
action or by extending the random effect for COMPID to be three dimensional with a general
variance-covariance matrix. Let us fit the more general model first, using the indicators coding
for the random effects for COMPID.

R> fm2 <- lmer(dichot ~ 0 + itype + (1 | subj) + (0 + itype |

+ COMPID) + (1 | item), lql, binomial)

The summary output for this model includes

AIC BIC logLik deviance
40334 40428 -20156 40312
Random effects:
Groups Name Variance Std.Dev. Corr
subj (Intercept) 2.38522 1.54442
COMPID itypeHostility 0.39297 0.62687

itypeLeadership 0.36761 0.60631 0.651
itypeTask Sig. 0.45356 0.67347 0.612 0.168

item (Intercept) 0.39092 0.62523

from which we can see that the variances of the random effects at the company level for the
different item types are similar.
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There is some correlation within company between the random effects for the different item
types but it could still be of interest to check if a model with independent random effects for
the itype:COMPID interaction provides an adequate fit.

R> fm3 <- lmer(dichot ~ 0 + itype + (1 | subj) + (1 | COMPID:itype) +

+ (1 | item), lql, binomial)

R> fm3a <- lmer(dichot ~ 0 + itype + (1 | subj) + (1 | COMPID:itype) +

+ (1 | COMPID) + (1 | item), lql, binomial)

Model fm3 allows for a random effect for each combination of item type (itype) and company
(COMPID) (in addition to the random effects for subject and item). Model fm3a extends model
fm3 by allowing for an overall effect for each company in addition to the effects for the
combinations of item type and company.

It is interesting to compare these model fits according to various criteria.

R> anova(fm3, fm3a, fm2)

Data: lql
Models:
fm3: dichot ~ 0 + itype + (1 | subj) + (1 | COMPID:itype) + (1 | item)
fm3a: dichot ~ 0 + itype + (1 | subj) + (1 | COMPID:itype) + (1 | COMPID) +
fm2: (1 | item)
fm3: dichot ~ 0 + itype + (1 | subj) + (0 + itype | COMPID) + (1 |
fm3a: item)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm3 6 40352 40403 -20170
fm3a 7 40340 40400 -20163 14.239 1 0.0001610
fm2 11 40334 40428 -20156 14.204 4 0.0066714

According to the likelihood ratio tests model fm3a, with one more parameter than model fm3,
is clearly superior to fm3 and model fm2, with four more parameters than model fm3a, is
clearly superior to fm3a. The values of Akaike’s Information Criterion (AIC) also favor model
fm2 (AIC and BIC are both on the scale where “smaller is better”). However, Schwartz’s
Bayesian criterion (BIC) prefers model fm3a with model fm3 close behind. Both these models
are clearly superior to model fm2 according to BIC.

Thus we have a “split decision” in model comparisons according to the information criteria
and the hypothesis tests, a not uncommon situation.

Even with this ambiguity it appears that model fm2 is worthy of further investigation. A
scatterplot matrix (Figure 2) of the conditional modes of the trivariate random effects for
the COMPID factor provides visual verification of the correlation pattern. The company-level
random effects for the Task Significance and Leadership questions are essentially uncorrelated
but both are positively correlated with the random effect for the Hostility questions. (Recall
that the dichotomization of the answers to the Hostility questions was performed in such a way
that positive responses indicate a lack of hostility. Thus a more positive attitude regarding
leadership and task significance at the company level is associated with lower incidence of
hostility.)
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Figure 2: Scatterplot matrix of the conditional modes of the trivariate random effects for
COMPID in model fm2.

The caterpillar plots of the components of the random effects for the COMPID factor are shown
in Figure 3.

3.4. Extracting item parameters and subject ability estimates

Once a suitable model has been fit, the psychometrician is typically interested in the item
parameters. Assuming items were modeled as random effects, the estimated“easiness”param-
eters (i.e. the negative of the item difficulties bs, s = 1, . . . , n) are obtained from the estimates
of the fixed effects and the conditional modes of the random effects.
For most lmer models we could obtain these with the coef extractor. In this case we need
to do a bit more work because the items are nested in the item types. Because the first item
is a leadership question we add the conditional mode for the first level of the item factor to
the estimate of the leadership fixed effect.
One way of getting the required mapping is to check for the unique combinations of item and
itype and use the resulting table for indexing.

R> str(imap <- unique(lql[, c("itype", "item")]))

’data.frame’: 19 obs. of 2 variables:
$ itype: Factor w/ 3 levels "Hostility","Leadership",..: 2 2 2 2 2 2 2 2 2 2 ...
$ item : Factor w/ 19 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
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Figure 3: Conditional modes of the random effects for the COMPID grouping factor in model
fm2

R> (easiness <- ranef(fm2)$item[[1]] + fixef(fm2)[imap$itype])

itypeLeadership itypeLeadership itypeLeadership itypeLeadership
-0.39323469 0.35185609 -1.37283998 -0.66116204

itypeLeadership itypeLeadership itypeLeadership itypeLeadership
-1.05402762 0.19748985 -0.81672112 0.35185609

itypeLeadership itypeLeadership itypeLeadership itypeTask Sig.
-1.17151585 -0.01963886 -0.72340696 -0.70154810

itypeTask Sig. itypeTask Sig. itypeHostility itypeHostility
0.11001996 0.17329887 0.57992270 2.35226128

itypeHostility itypeHostility itypeHostility
1.34383628 1.64932424 2.37481906

We obtain estimates of the log-odds for a positive response for each company on each item
type as

R> compPar <- t(fixef(fm2) + t(ranef(fm2)$COMPID))

R> head(compPar)

itypeHostility itypeLeadership itypeTask Sig.
2 1.494369 -0.71301488 0.59026774
3 2.112532 -0.74182615 0.15087181
4 1.510899 -1.02848250 0.53257639
5 2.039211 -0.97002974 1.11183371
6 1.935374 0.05723364 -0.97401360
7 2.247076 -0.05507709 -0.07656463

or, on the probability scale,

R> head(binomial()$linkinv(compPar))
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itypeHostility itypeLeadership itypeTask Sig.
2 0.8167331 0.3289330 0.6434266
3 0.8921152 0.3226049 0.5376466
4 0.8191944 0.2633784 0.6300838
5 0.8848530 0.2748746 0.7524708
6 0.8738431 0.5143045 0.2740812
7 0.9043980 0.4862342 0.4808682

These represent typical probabilities for the company/item-type combinations. To obtain a
probability for a specific item in a particular company we would need to create the log-odds
by adding the random effect for the item to the appropriate company/item-type log-odds then
convert the result to the probability scale.

The random effects for the subj factor measure the change in the log-odds for a given sol-
dier providing a positive response after accomodating for item and the company/item-type
combination.

4. Conclusion

In this paper, we demonstrate how the lmer function in R can be a useful tool for psychometric
applications. Even though this function is commonly viewed as a tool for generalized and
linear mixed models, we demonstrate how the general statistical problem is equivalent with
item response theory applications, hence making it tranparent as to why lmer can be used as
a psychometric tool.

However, lmer is significantly more flexible than conventional IRT packages. In particular,
the methods demonstrated in this paper do not rely on the untenable assumption that either
items or students are independent. Consequently, we are able to freely estimate and account
for the covariance structure among items and students that is most commonly ignored. In
addition, the multilevel functions sit within a powerful programming environment, making
subsequent analyses of the data very convenient.

This provides multiple benefits to the behavorial scientist. For instance, the standard errors
associated with the the item and student parameters are more realistic, and more than likely
larger than those obtained from conventional methods. One immediate practical benefit is
with respect to studies of differential item functioning (DIF). In some cases, DIF is detected
when an item behaves significantly different between a focal and reference group. However,
with estimation techniques that ignore dependencies in the data, the item standard errors
would be too small and one may make claims of DIF when it does not exist.

A second practical benefit is that the sparse matrix methods used by lmer are extremely fast,
thus making estimation feasible for partially or fully crossed data sets with a large number
of items and students. To our knowledge, lmer is the only software that can proceed with
estimation for large data problems with crossed random effects without reverting to simulation
methods such as markov chain monte carlo (MCMC).

While lmer is useful for the Rasch model, other IRT models, such as the two- and three-
parameter logistic models are currently not available.
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