1,994 research outputs found

    Matrix Infinitely Divisible Series: Tail Inequalities and Applications in Optimization

    Full text link
    In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This allows us to further bound the expectation of the spectral norm of a matrix i.d. series. Moreover, by developing a new lower-bound function for Q(s)=(s+1)log(s+1)sQ(s)=(s+1)\log(s+1)-s that appears in the Bennett-type inequality, we derive a tighter tail inequality of the largest eigenvalue of the matrix i.d. series than the Bernstein-type inequality when the matrix dimension is high. The resulting lower-bound function is of independent interest and can improve any Bennett-type concentration inequality that involves the function Q(s)Q(s). The class of i.d. probability distributions is large and includes Gaussian and Poisson distributions, among many others. Therefore, our results encompass the existing work \cite{tropp2012user} on matrix Gaussian series as a special case. Lastly, we show that the tail inequalities of a matrix i.d. series have applications in several optimization problems including the chance constrained optimization problem and the quadratic optimization problem with orthogonality constraints.Comment: Comments Welcome

    Autoregressive Kernels For Time Series

    Full text link
    We propose in this work a new family of kernels for variable-length time series. Our work builds upon the vector autoregressive (VAR) model for multivariate stochastic processes: given a multivariate time series x, we consider the likelihood function p_{\theta}(x) of different parameters \theta in the VAR model as features to describe x. To compare two time series x and x', we form the product of their features p_{\theta}(x) p_{\theta}(x') which is integrated out w.r.t \theta using a matrix normal-inverse Wishart prior. Among other properties, this kernel can be easily computed when the dimension d of the time series is much larger than the lengths of the considered time series x and x'. It can also be generalized to time series taking values in arbitrary state spaces, as long as the state space itself is endowed with a kernel \kappa. In that case, the kernel between x and x' is a a function of the Gram matrices produced by \kappa on observations and subsequences of observations enumerated in x and x'. We describe a computationally efficient implementation of this generalization that uses low-rank matrix factorization techniques. These kernels are compared to other known kernels using a set of benchmark classification tasks carried out with support vector machines

    Convergence of the structure function of a Multifractal Random Walk in a mixed asymptotic setting

    Full text link
    Some asymptotic properties of a Brownian motion in multifractal time, also called multifractal random walk, are established. We show the almost sure and L1L^1 convergence of its structure function. This is an issue directly connected to the scale invariance and multifractal property of the sample paths. We place ourselves in a mixed asymptotic setting where both the observation length and the sampling frequency may go together to infinity at different rates. The results we obtain are similar to the ones that were given by Ossiander and Waymire and Bacry \emph{et al.} in the simpler framework of Mandelbrot cascades.Comment: 29 pages, 3 figure

    Parametric estimation of the driving L\'evy process of multivariate CARMA processes from discrete observations

    Full text link
    We consider the parametric estimation of the driving L\'evy process of a multivariate continuous-time autoregressive moving average (MCARMA) process, which is observed on the discrete time grid (0,h,2h,...)(0,h,2h,...). Beginning with a new state space representation, we develop a method to recover the driving L\'evy process exactly from a continuous record of the observed MCARMA process. We use tools from numerical analysis and the theory of infinitely divisible distributions to extend this result to allow for the approximate recovery of unit increments of the driving L\'evy process from discrete-time observations of the MCARMA process. We show that, if the sampling interval h=hNh=h_N is chosen dependent on NN, the length of the observation horizon, such that NhNN h_N converges to zero as NN tends to infinity, then any suitable generalized method of moments estimator based on this reconstructed sample of unit increments has the same asymptotic distribution as the one based on the true increments, and is, in particular, asymptotically normally distributed.Comment: 38 pages, four figures; to appear in Journal of Multivariate Analysi
    corecore