134 research outputs found

    Generalised median of a set of correspondences based on the hamming distance.

    Get PDF
    A correspondence is a set of mappings that establishes a relation between the elements of two data structures (i.e. sets of points, strings, trees or graphs). If we consider several correspondences between the same two structures, one option to define a representative of them is through the generalised median correspondence. In general, the computation of the generalised median is an NP-complete task. In this paper, we present two methods to calculate the generalised median correspondence of multiple correspondences. The first one obtains the optimal solution in cubic time, but it is restricted to the Hamming distance. The second one obtains a sub-optimal solution through an iterative approach, but does not have any restrictions with respect to the used distance. We compare both proposals in terms of the distance to the true generalised median and runtime

    Generalised median of graph correspondences.

    Get PDF
    A graph correspondence is defined as a function that maps the elements of two attributed graphs. Due to the increasing availability of methods to perform graph matching, numerous graph correspondences can be deducted for a pair of attributed graphs. To obtain a representative prototype for a set of data structures, the concept of the median has been largely employed, as it has proven to deliver a robust sample. Nonetheless, the calculation of the exact (or generalised) median is known to be an NP-complete problem for most domains. In this paper, we present a method based on an optimisation function to calculate the generalised median graph correspondence. This method makes use of the Correspondence Edit Distance, which is a metric that considers the attributes and the local structures of the graphs to obtain more interesting and meaningful results. Experimental validation shows that this approach is capable of obtaining the generalised median in a comparable runtime with respect to state-of-the-art methods on artificial data, while maintaining the success rate for a real-application case

    Learning the Consensus of Multiple Correspondences between Data Structures

    Get PDF
    En aquesta tesi presentem un marc de treball per aprendre el consens donades múltiples correspondències. S'assumeix que les diferents parts involucrades han generat aquestes correspondències per separat, i el nostre sistema actua com un mecanisme que calibra diferents característiques i considera diferents paràmetres per aprendre les millors assignacions i així, conformar una correspondència amb la major precisió possible a costa d'un cost computacional raonable. Aquest marc de treball de consens és presentat en una forma gradual, començant pels desenvolupaments més bàsics que utilitzaven exclusivament conceptes ben definits o únicament un parell de correspondències, fins al model final que és capaç de considerar múltiples correspondències, amb la capacitat d'aprendre automàticament alguns paràmetres de ponderació. Cada pas d'aquest marc de treball és avaluat fent servir bases de dades de naturalesa variada per demostrar efectivament que és possible tractar diferents escenaris de matching. Addicionalment, dos avanços suplementaris relacionats amb correspondències es presenten en aquest treball. En primer lloc, una nova mètrica de distància per correspondències s'ha desenvolupat, la qual va derivar en una nova estratègia per a la cerca de mitjanes ponderades. En segon lloc, un marc de treball específicament dissenyat per a generar correspondències al camp del registre d'imatges s'ha modelat, on es considera que una de les imatges és una imatge completa, i l'altra és una mostra petita d'aquesta. La conclusió presenta noves percepcions de com el nostre marc de treball de consens pot ser millorada, i com els dos desenvolupaments paral·lels poden convergir amb el marc de treball de consens.En esta tesis presentamos un marco de trabajo para aprender el consenso dadas múltiples correspondencias. Se asume que las distintas partes involucradas han generado dichas correspondencias por separado, y nuestro sistema actúa como un mecanismo que calibra distintas características y considera diferentes parámetros para aprender las mejores asignaciones y así, conformar una correspondencia con la mayor precisión posible a expensas de un costo computacional razonable. El marco de trabajo de consenso es presentado en una forma gradual, comenzando por los acercamientos más básicos que utilizaban exclusivamente conceptos bien definidos o únicamente un par de correspondencias, hasta el modelo final que es capaz de considerar múltiples correspondencias, con la capacidad de aprender automáticamente algunos parámetros de ponderación. Cada paso de este marco de trabajo es evaluado usando bases de datos de naturaleza variada para demostrar efectivamente que es posible tratar diferentes escenarios de matching. Adicionalmente, dos avances suplementarios relacionados con correspondencias son presentados en este trabajo. En primer lugar, una nueva métrica de distancia para correspondencias ha sido desarrollada, la cual derivó en una nueva estrategia para la búsqueda de medias ponderadas. En segundo lugar, un marco de trabajo específicamente diseñado para generar correspondencias en el campo del registro de imágenes ha sido establecida, donde se considera que una de las imágenes es una imagen completa, y la otra es una muestra pequeña de ésta. La conclusión presenta nuevas percepciones de cómo nuestro marco de trabajo de consenso puede ser mejorada, y cómo los dos desarrollos paralelos pueden converger con éste.In this work, we present a framework to learn the consensus given multiple correspondences. It is assumed that the several parties involved have generated separately these correspondences, and our system acts as a mechanism that gauges several characteristics and considers different parameters to learn the best mappings and thus, conform a correspondence with the highest possible accuracy at the expense of a reasonable computational cost. The consensus framework is presented in a gradual form, starting from the most basic approaches that used exclusively well-known concepts or only two correspondences, until the final model which is able to consider multiple correspondences, with the capability of automatically learning some weighting parameters. Each step of the framework is evaluated using databases of varied nature to effectively demonstrate that it is capable to address different matching scenarios. In addition, two supplementary advances related on correspondences are presented in this work. Firstly, a new distance metric for correspondences has been developed, which lead to a new strategy for the weighted mean correspondence search. Secondly, a framework specifically designed for correspondence generation in the image registration field has been established, where it is considered that one of the images is a full image, and the other one is a small sample of it. The conclusion presents insights of how our consensus framework can be enhanced, and how these two parallel developments can converge with it

    Correspondence edit distance to obtain a set of weighted means of graph correspondences.

    Get PDF
    Given a pair of data structures, such as strings, trees, graphs or sets of points, several correspondences (also referred in literature as labellings, matchings or assignments) can be defined between their local parts. The Hamming distance has been largely used to define the dissimilarity of a pair of correspondences between two data structures. Although it has the advantage of being simple in computation, it does not consider the data structures themselves, which the correspondences relate to. In this paper, we extend the definitions of a recently presented distance between correspondences based on the concept of the edit distance, which we called Correspondence edit distance. Moreover, we present an algorithm to compute the set of weighted means between a pair of graph correspondences. Both the Correspondence edit distance and the computation of the set of weighted means are necessary for the calculation of a more representative prototype between a set of correspondences. In the validation section, we show how the use of the Correspondence edit distance increases the quality of the set of weighted means compared to using the Hamming distance

    An edit distance between graph correspondences.

    Get PDF
    The Hamming Distance has been largely used to calculate the dissimilarity of a pair of correspondences (also known as labellings or matchings) between two structures (i.e. sets of points, strings or graphs). Although it has the advantage of being simple in computation, it does not consider the structures that the correspondences relate. In this paper, we propose a new distance between a pair of graph correspondences based on the concept of the edit distance, called Correspondence Edit Distance. This distance takes into consideration not only the mapped elements of the correspondences, but also the attributes on the nodes and edges of the graphs being mapped. In addition to its definition, we also present an efficient procedure for computing the correspondence edit distance in a special case. In the experimental validation, the results delivered using the Correspondence Edit Distance are contrasted against the ones of the Hamming Distance in a case of finding the weighted means between a pair of graph correspondences

    Modelling the generalised median correspondence through an edit distance.

    Get PDF
    On the one hand, classification applications modelled by structural pattern recognition, in which elements are represented as strings, trees or graphs, have been used for the last thirty years. In these models, structural distances are modelled as the correspondence (also called matching or labelling) between all the local elements (for instance nodes or edges) that generates the minimum sum of local distances. On the other hand, the generalised median is a well-known concept used to obtain a reliable prototype of data such as strings, graphs and data clusters. Recently, the structural distance and the generalised median has been put together to define a generalise median of matchings to solve some classification and learning applications. In this paper, we present an improvement in which the Correspondence edit distance is used instead of the classical Hamming distance. Experimental validation shows that the new approach obtains better results in reasonable runtime compared to other median calculation strategies

    Obtaining the consensus of multiple correspondences between graphs through online learning.

    Get PDF
    In structural pattern recognition, it is usual to compare a pair of objects through the generation of a correspondence between the elements of each of their local parts. To do so, one of the most natural ways to represent these objects is through attributed graphs. Several existing graph extraction methods could be implemented and thus, numerous graphs, which may not only differ in their nodes and edge structure but also in their attribute domains, could be created from the same object. Afterwards, a matching process is implemented to generate the correspondence between two attributed graphs, and depending on the selected graph matching method, a unique correspondence is generated from a given pair of attributed graphs. The combination of these factors leads to the possibility of a large quantity of correspondences between the two original objects. This paper presents a method that tackles this problem by considering multiple correspondences to conform a single one called a consensus correspondence, eliminating both the incongruences introduced by the graph extraction and the graph matching processes. Additionally, through the application of an online learning algorithm, it is possible to deduce some weights that influence on the generation of the consensus correspondence. This means that the algorithm automatically learns the quality of both the attribute domain and the correspondence for every initial correspondence proposal to be considered in the consensus, and defines a set of weights based on this quality. It is shown that the method automatically tends to assign larger values to high quality initial proposals, and therefore is capable to deduce better consensus correspondences

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method

    Vision-based retargeting for endoscopic navigation

    Get PDF
    Endoscopy is a standard procedure for visualising the human gastrointestinal tract. With the advances in biophotonics, imaging techniques such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography can be combined with normal endoscopy for assisting the early diagnosis of diseases, such as cancer. In the past decade, optical biopsy has emerged to be an effective tool for tissue analysis, allowing in vivo and in situ assessment of pathological sites with real-time feature-enhanced microscopic images. However, the non-invasive nature of optical biopsy leads to an intra-examination retargeting problem, which is associated with the difficulty of re-localising a biopsied site consistently throughout the whole examination. In addition to intra-examination retargeting, retargeting of a pathological site is even more challenging across examinations, due to tissue deformation and changing tissue morphologies and appearances. The purpose of this thesis is to address both the intra- and inter-examination retargeting problems associated with optical biopsy. We propose a novel vision-based framework for intra-examination retargeting. The proposed framework is based on combining visual tracking and detection with online learning of the appearance of the biopsied site. Furthermore, a novel cascaded detection approach based on random forests and structured support vector machines is developed to achieve efficient retargeting. To cater for reliable inter-examination retargeting, the solution provided in this thesis is achieved by solving an image retrieval problem, for which an online scene association approach is proposed to summarise an endoscopic video collected in the first examination into distinctive scenes. A hashing-based approach is then used to learn the intrinsic representations of these scenes, such that retargeting can be achieved in subsequent examinations by retrieving the relevant images using the learnt representations. For performance evaluation of the proposed frameworks, extensive phantom, ex vivo and in vivo experiments have been conducted, with results demonstrating the robustness and potential clinical values of the methods proposed.Open Acces

    Patch-based segmentation with spatial context for medical image analysis

    Get PDF
    Accurate segmentations in medical imaging form a crucial role in many applications from pa- tient diagnosis to population studies. As the amount of data generated from medical images increases, the ability to perform this task without human intervention becomes ever more de- sirable. One approach, known broadly as atlas-based segmentation, is to propagate labels from images which have already been manually labelled by clinical experts. Methods using this ap- proach have been shown to be e ective in many applications, demonstrating great potential for automatic labelling of large datasets. However, these methods usually require the use of image registration and are dependent on the outcome of the registration. Any registrations errors that occur are also propagated to the segmentation process and are likely to have an adverse e ect on segmentation accuracy. Recently, patch-based methods have been shown to allow a relaxation of the required image alignment, whilst achieving similar results. In general, these methods label each voxel of a target image by comparing the image patch centred on the voxel with neighbouring patches from an atlas library and assigning the most likely label according to the closest matches. The main contributions of this thesis focuses around this approach in providing accurate segmentation results whilst minimising the dependency on registration quality. In particular, this thesis proposes a novel kNN patch-based segmentation framework, which utilises both intensity and spatial information, and explore the use of spatial context in a diverse range of applications. The proposed methods extend the potential for patch-based segmentation to tolerate registration errors by rede ning the \locality" for patch selection and comparison, whilst also allowing similar looking patches from di erent anatomical structures to be di erentiated. The methods are evaluated on a wide variety of image datasets, ranging from the brain to the knees, demonstrating its potential with results which are competitive to state-of-the-art techniques.Open Acces
    corecore