7 research outputs found

    Generalisation of structural knowledge in the hippocampal-entorhinal system

    Get PDF
    A central problem to understanding intelligence is the concept of generalisation. This allows previously learnt structure to be exploited to solve tasks in novel situations differing in their particularities. We take inspiration from neuroscience, specifically the hippocampal-entorhinal system known to be important for generalisation. We propose that to generalise structural knowledge, the representations of the structure of the world, i.e. how entities in the world relate to each other, need to be separated from representations of the entities themselves. We show, under these principles, artificial neural networks embedded with hierarchy and fast Hebbian memory, can learn the statistics of memories and generalise structural knowledge. Spatial neuronal representations mirroring those found in the brain emerge, suggesting spatial cognition is an instance of more general organising principles. We further unify many entorhinal cell types as basis functions for constructing transition graphs, and show these representations effectively utilise memories. We experimentally support model assumptions, showing a preserved relationship between entorhinal grid and hippocampal place cells across environments

    Predictive Coding Can Do Exact Backpropagation on Any Neural Network

    Full text link
    Intersecting neuroscience and deep learning has brought benefits and developments to both fields for several decades, which help to both understand how learning works in the brain, and to achieve the state-of-the-art performances in different AI benchmarks. Backpropagation (BP) is the most widely adopted method for the training of artificial neural networks, which, however, is often criticized for its biological implausibility (e.g., lack of local update rules for the parameters). Therefore, biologically plausible learning methods (e.g., inference learning (IL)) that rely on predictive coding (a framework for describing information processing in the brain) are increasingly studied. Recent works prove that IL can approximate BP up to a certain margin on multilayer perceptrons (MLPs), and asymptotically on any other complex model, and that zero-divergence inference learning (Z-IL), a variant of IL, is able to exactly implement BP on MLPs. However, the recent literature shows also that there is no biologically plausible method yet that can exactly replicate the weight update of BP on complex models. To fill this gap, in this paper, we generalize (IL and) Z-IL by directly defining them on computational graphs. To our knowledge, this is the first biologically plausible algorithm that is shown to be equivalent to BP in the way of updating parameters on any neural network, and it is thus a great breakthrough for the interdisciplinary research of neuroscience and deep learning.Comment: 15 pages, 9 figure

    Inference And Learning In Spiking Neural Networks For Neuromorphic Systems

    Get PDF
    Neuromorphic computing is a computing field that takes inspiration from the biological and physical characteristics of the neocortex system to motivate a new paradigm of highly parallel and distributed computing to take on the demands of the ever-increasing scale and computational complexity of machine intelligence esp. in energy-limited systems such as Edge devices, Internet-of-Things (IOT), and cyber physical systems (CPS). Spiking neural network (SNN) is often studied together with neuromorphic computing as the underlying computational model . Similar to the biological neural system, SNN is an inherently dynamic and stateful network. The state and output of SNN do not only dependent on the current input, but also dependent on the history information. Another distinct property of SNN is that the information is represented, transmitted, and processed as discrete spike events, also referred to as action potentials. All the processing happens in the neurons such that the computation itself is massively distributed and parallel. This enables low power information transmission and processing. However, it is inefficient to implement SNNs on traditional Von Neumann architecture due to the performance gap between memory and processor. This has led to the advent of energy-efficient large-scale neuromorphic hardware such as IBM\u27s TrueNorth and Intel\u27s Loihi that enables low power implementation of large-scale neural networks for real-time applications. And although spiking networks have theoretically been shown to have Turing-equivalent computing power, it remains a challenge to train deep SNNs; the threshold functions that generate spikes are discontinuous, so they do not have derivatives and cannot directly utilize gradient-based optimization algorithms for training. Biologically plausible learning mechanism spike-timing-dependent plasticity (STDP) and its variants are local in synapses and time but are unstable during training and difficult to train multi-layer SNNs. To better exploit the energy-saving features such as spike domain representation and stochastic computing provided by SNNs in neuromorphic hardware, and to address the hardware limitations such as limited data precision and neuron fan-in/fan-out constraints, it is necessary to re-design a neural network including its structure and computing. Our work focuses on low-level (activations, weights) and high-level (alternative learning algorithms) redesign techniques to enable inference and learning with SNNs in neuromorphic hardware. First, we focused on transforming a trained artificial neural network (ANN) to a form that is suitable for neuromorphic hardware implementation. Here, we tackle transforming Long Short-Term Memory (LSTM), a version of recurrent neural network (RNN) which includes recurrent connectivity to enable learning long temporal patterns. This is specifically a difficult challenge due to the inherent nature of RNNs and SNNs; the recurrent connectivity in RNNs induces temporal dynamics which require synchronicity, especially with the added complexity of LSTMs; and SNNs are asynchronous in nature. In addition, the constraints of the neuromorphic hardware provided a massive challenge for this realization. Thus, in this work, we invented a store-and-release circuit using integrate-and-fire neurons which allows the synchronization and then developed modules using that circuit to replicate various parts of the LSTM. These modules enabled implementation of LSTMs with spiking neurons on IBM’s TrueNorth Neurosynaptic processor. This is the first work to realize such LSTM networks utilizing spiking neurons and implement on a neuromorphic hardware. This opens avenues for the use of neuromorphic hardware in applications involving temporal patterns. Moving from mapping a pretrained ANN, we work on training networks on the neuromorphic hardware. Here, we first looked at the biologically plausible learning algorithm called STDP which is a Hebbian learning rule for learning without supervision. Simplified computational interpretations of STDP is either unstable and/or complex such that it is costly to implement on hardware. Thus, in this work, we proposed a stable version of STDP and applied intentional approximations for low-cost hardware implementation called Quantized 2-Power Shift (Q2PS) rule. With this version, we performed both unsupervised learning for feature extraction and supervised learning for classification in a multilayer SNN to achieve comparable to better accuracy on MNIST dataset compared to manually labelled two-layered networks. Next, we approached training multilayer SNNs on a neuromorphic hardware with backpropagation, a gradient-based optimization algorithm that forms the backbone of deep neural networks (DNN). Although STDP is biologically plausible, its not as robust for learning deep networks as backpropagation is for DNNs. However, backpropagation is not biologically plausible and not suitable to be directly applied to SNNs, neither can it be implemented on a neuromorphic hardware. Thus, in the first part of this work, we devise a set of approximations to transform backprogation to the spike domain such that it is suitable for SNNs. After the set of approximations, we adapted the connectivity and weight update rule in backpropagation to enable learning solely based on the locally available information such that it resembled a rate-based STDP algorithm. We called this Error-Modulated STDP (EMSTDP). In the next part of this work, we implemented EMSTDP on Intel\u27s Loihi neuromorphic chip to realize online in-hardware supervised learning of deep SNNs. This is the first realization of a fully spike-based approximation of backpropagation algorithm implemented on a neuromorphic processor. This is the first step towards building an autonomous machine that learns continuously from its environment and experiences

    Inference and Learning in Spiking Neural Networks for Neuromorphic Systems

    Get PDF
    Neuromorphic computing is a computing field that takes inspiration from the biological and physical characteristics of the neocortex system to motivate a new paradigm of highly parallel and distributed computing to take on the demands of the ever-increasing scale and computational complexity of machine intelligence esp. in energy-limited systems such as Edge devices, Internet-of-Things (IOT), and cyber physical systems (CPS). Spiking neural network (SNN) is often studied together with neuromorphic computing as the underlying computational model . Similar to the biological neural system, SNN is an inherently dynamic and stateful network. The state and output of SNN do not only dependent on the current input, but also dependent on the history information. Another distinct property of SNN is that the information is represented, transmitted, and processed as discrete spike events, also referred to as action potentials. All the processing happens in the neurons such that the computation itself is massively distributed and parallel. This enables low power information transmission and processing. However, it is inefficient to implement SNNs on traditional Von Neumann architecture due to the performance gap between memory and processor. This has led to the advent of energy-efficient large-scale neuromorphic hardware such as IBM\u27s TrueNorth and Intel\u27s Loihi that enables low power implementation of large-scale neural networks for real-time applications. And although spiking networks have theoretically been shown to have Turing-equivalent computing power, it remains a challenge to train deep SNNs; the threshold functions that generate spikes are discontinuous, so they do not have derivatives and cannot directly utilize gradient-based optimization algorithms for training. Biologically plausible learning mechanism spike-timing-dependent plasticity (STDP) and its variants are local in synapses and time but are unstable during training and difficult to train multi-layer SNNs. To better exploit the energy-saving features such as spike domain representation and stochastic computing provided by SNNs in neuromorphic hardware, and to address the hardware limitations such as limited data precision and neuron fan-in/fan-out constraints, it is necessary to re-design a neural network including its structure and computing. Our work focuses on low-level (activations, weights) and high-level (alternative learning algorithms) redesign techniques to enable inference and learning with SNNs in neuromorphic hardware. First, we focused on transforming a trained artificial neural network (ANN) to a form that is suitable for neuromorphic hardware implementation. Here, we tackle transforming Long Short-Term Memory (LSTM), a version of recurrent neural network (RNN) which includes recurrent connectivity to enable learning long temporal patterns. This is specifically a difficult challenge due to the inherent nature of RNNs and SNNs; the recurrent connectivity in RNNs induces temporal dynamics which require synchronicity, especially with the added complexity of LSTMs; and SNNs are asynchronous in nature. In addition, the constraints of the neuromorphic hardware provided a massive challenge for this realization. Thus, in this work, we invented a store-and-release circuit using integrate-and-fire neurons which allows the synchronization and then developed modules using that circuit to replicate various parts of the LSTM. These modules enabled implementation of LSTMs with spiking neurons on IBM\u27s TrueNorth Neurosynaptic processor. This is the first work to realize such LSTM networks utilizing spiking neurons and implement on a neuromorphic hardware. This opens avenues for the use of neuromorphic hardware in applications involving temporal patterns. Moving from mapping a pretrained ANN, we work on training networks on the neuromorphic hardware. Here, we first looked at the biologically plausible learning algorithm called STDP which is a Hebbian learning rule for learning without supervision. Simplified computational interpretations of STDP is either unstable and/or complex such that it is costly to implement on hardware. Thus, in this work, we proposed a stable version of STDP and applied intentional approximations for low-cost hardware implementation called Quantized 2-Power Shift (Q2PS) rule. With this version, we performed both unsupervised learning for feature extraction and supervised learning for classification in a multilayer SNN to achieve comparable to better accuracy on MNIST dataset compared to manually labelled two-layered networks. Next, we approached training multilayer SNNs on a neuromorphic hardware with backpropagation, a gradient-based optimization algorithm that forms the backbone of deep neural networks (DNN). Although STDP is biologically plausible, its not as robust for learning deep networks as backpropagation is for DNNs. However, backpropagation is not biologically plausible and not suitable to be directly applied to SNNs, neither can it be implemented on a neuromorphic hardware. Thus, in the first part of this work, we devise a set of approximations to transform backprogation to the spike domain such that it is suitable for SNNs. After the set of approximations, we adapted the connectivity and weight update rule in backpropagation to enable learning solely based on the locally available information such that it resembled a rate-based STDP algorithm. We called this Error-Modulated STDP (EMSTDP). In the next part of this work, we implemented EMSTDP on Intel\u27s Loihi neuromorphic chip to realize online in-hardware supervised learning of deep SNNs. This is the first realization of a fully spike-based approximation of backpropagation algorithm implemented on a neuromorphic processor. This is the first step towards building an autonomous machine that learns continuously from its environment and experiences

    Hierarchical Influences on Human Decision-Making

    Get PDF
    Deciding how to act is complicated because people often hold simultaneous intentions to meet multiple goals. These many goals can be arranged in a hierarchy of goals and sub-goals, and a hierarchy of behaviours can be established to attain them. The hierarchical structure of human behaviour is well established, but the precise form of that hierarchical structure remains unclear. Further, we do not know whether and how this hierarchical organisation of action influences the cognitive processes of deciding between candidate actions. This thesis aims to address these two open questions. In Chapter 2, I tackle the first of these two questions. Using behavioural experiments in combination with hierarchical reinforcement learning models of behaviour, I demonstrate that people can learn entirely novel sequences of action without practice, and that this ability requires a hierarchical organisation of action built from two distinct operations. First, the brain must sequence low-level components into higher-level routines of action. Second, the brain must have a method of abstracting the relational structure of a sequence away from its content. In sum, this chapter provides evidence for a theoretical framework which can be used to understand hierarchically structured action more deeply. In Chapters 3 and 4, I tackle the second question: does hierarchical structure influence decision-making? I begin (in Chapter 3) by investigating how hierarchical structure and self-efficacy interact to influence choice between candidate actions. I find that higher level actions are associated with lesser self-efficacy and therefore a lesser willingness to commit to them. This effect arises not only because higher-level actions are more difficult to carry out due to their length, but also because the restrictions that they place on future choices represent a cost. I then (in Chapter 4) investigate whether there are any subjective biases in how outcomes at high or low hierarchical levels are evaluated. I find no overall subjective bias in the evaluation of such outcomes, but I find that social context can prompt strong biases to weight evaluation of outcomes according to their hierarchical level. In sum, I find that hierarchical structure can and does influence decision-making, and I provide evidence for two distinct processes that play a part in this. These findings establish both a novel theoretical framework for future investigations of hierarchically structured action, and a novel set of interactions between the structure of behaviour and how people make action decisions

    Hippocampal-entorhinal codes for space, time and cognition

    Get PDF
    Contains fulltext : 207524.pdf (publisher's version ) (Open Access)Radboud University, 9 oktober 2019Promotor : Doeller, C.F. Co-promotor : Deuker, Lorena225 p
    corecore