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Abstract 

Deciding how to act is complicated because people often hold simultaneous 

intentions to meet multiple goals. These many goals can be arranged in a hierarchy 

of goals and sub-goals, and a hierarchy of behaviours can be established to attain 

them. The hierarchical structure of human behaviour is well established, but the 

precise form of that hierarchical structure remains unclear. Further, we do not know 

whether and how this hierarchical organisation of action influences the cognitive 

processes of deciding between candidate actions. This thesis aims to address these 

two open questions. 

In Chapter 2, I tackle the first of these two questions. Using behavioural 

experiments in combination with hierarchical reinforcement learning models of 

behaviour, I demonstrate that people can learn entirely novel sequences of action 

without practice, and that this ability requires a hierarchical organisation of action 

built from two distinct operations. First, the brain must sequence low-level 

components into higher-level routines of action. Second, the brain must have a 

method of abstracting the relational structure of a sequence away from its content. In 

sum, this chapter provides evidence for a theoretical framework which can be used 

to understand hierarchically structured action more deeply. 

In Chapters 3 and 4, I tackle the second question: does hierarchical structure 

influence decision-making? I begin (in Chapter 3) by investigating how hierarchical 

structure and self-efficacy interact to influence choice between candidate actions. I 

find that higher level actions are associated with lesser self-efficacy and therefore a 

lesser willingness to commit to them. This effect arises not only because higher-level 

actions are more difficult to carry out due to their length, but also because the 

restrictions that they place on future choices represent a cost. I then (in Chapter 4) 

investigate whether there are any subjective biases in how outcomes at high or low 

hierarchical levels are evaluated. I find no overall subjective bias in the evaluation of 

such outcomes, but I find that social context can prompt strong biases to weight 

evaluation of outcomes according to their hierarchical level. In sum, I find that 

hierarchical structure can and does influence decision-making, and I provide 

evidence for two distinct processes that play a part in this. 

These findings establish both a novel theoretical framework for future 

investigations of hierarchically structured action, and a novel set of interactions 

between the structure of behaviour and how people make action decisions. 
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Impact Statement  

The way in which the human brain organises behaviour is fundamentally important 

for understanding how people decide how to behave. This understanding is 

important not only from a basic scientific point of view, but also for society more 

broadly. Many of the challenges we now face as a species are at heart a competition 

between the low-level and immediate outcomes we can enjoy now, and the high-

level and distant outcomes we must face later. The focus of this thesis on 

understanding the way people structure their behaviour to meet hierarchically 

arranged goals is therefore important for understanding how we can best meet the 

many challenges we face day-to-day. 

The first part of this thesis outlines and provides evidence for a novel 

theoretical framework for the study of hierarchically organised action in humans. My 

results bring together insights from distinct and separate fields of study to provide a 

more complete view on the way in which progressively higher-level representations 

of action are formed in the human brain, and I explore the benefits of the 

organisation used by the brain. The framework outlined in this section of the thesis is 

of potential use for further investigations of hierarchically organised action. 

The second and third experimental sections of this thesis outline several 

distinct ways in which the organisation of human action influences decision-making 

processes. These novel findings are relevant not only as the first sign that the 

structure of human action bears on choice, but also for the design of real-world 

interventions that aim to aid people in maintaining high-level policies of action. 

Diverse problems such as addiction, climate change, personal health and exercise 

might benefit from applying the findings presented here to make people aware of the 

ways in which their decisions are biased by the structure of their behaviours. 

Finally, the experimental paradigms used throughout this thesis provide novel 

methods of investigating hierarchically structured action. In Chapter 1 in particular, I 

provide purely behavioural evidence for latent high-level structures, and the 

approach taken here might prove useful in future investigations along similar lines. 

The experimental approach taken throughout may prove useful for many fields of 

psychology and neuroscience given that (as argued in the thesis) all human 

behaviour follows a hierarchical structure. 

In sum, the results and methods presented in this thesis contribute 

substantially to our understanding of how humans control their behaviour and 

provide valuable tools for real-world applications and future research.



 7 

 

 

 



 8 

Acknowledgements 

The work in this thesis could not have been completed without the support, help, and 

guidance of many people. First, I’d like to thank my primary supervisor, Patrick 

Haggard. Thank you, Patrick, for the many, many interesting discussions, for giving 

me space and freedom to explore my academic interests and ideas, for your 

unwavering support, and for your trust. Your mentorship these past few years has 

been a constant source of motivation. Thank you also to my secondary supervisors, 

Neil Burgess and Lucie Charles. Neil, thank you for helpful pointers and thought-

provoking discussions. And thank you Lucie for introducing me to academic research 

when I was but a naïve undergraduate. 

 Thanks to all past and present members of the Action and Body group at the 

ICN – I couldn’t have wished for a better lab to see out these past four years. Thank 

you in particular to Gaiqing Kong, for being the best of office mates. 

 A special thank you to the organisers and students of the computational 

sensorimotor neuroscience summer school, which I attended in August of 2018 

before starting on my PhD in the following September. Much of the work in this 

thesis was shaped and inspired by what I learned in those brief, intense weeks. 

Thank you, Gunnar Blohm, Paul Schrater, and Konrad Kording. 

 Thank you to my family: Mum, Dad, Marc a Bethan. Thank you, Mum, for 

encouraging me to always explore my interests and for your unending support in all 

things. A diolch i chdi, Dad, am gadarnhau bod gynai addysg da (wrth ddreifio fi dros 

Gogledd Cymru cyfan!) a pob cyfla posib. 

 Finally, and most importantly, thank you to my darling Stephi. We can both 

agree I wouldn’t have managed any of this without your love and support. There are 

too many things to thank you for here, but trust that I appreciate and am grateful for 

all that you are and all that you have done for me to make this thesis possible. 

 



 9 



 10 

Table of Contents 

ABSTRACT............................................................................................................................................. 4 

CHAPTER 1 .......................................................................................................................................... 14 

1.1 OVERVIEW ............................................................................................................................. 15 
1.2 SEQUENTIAL MOTOR CONTROL (SMC) ................................................................................... 16 
1.3 REINFORCEMENT LEARNING AND GOAL-DIRECTED BEHAVIOUR ................................................ 25 
1.4 INTEGRATION OF SEQUENTIAL MOTOR CONTROL & HRL .......................................................... 32 
1.5 HIERARCHICAL INFLUENCES ON CHOICE .................................................................................. 36 
1.6 OPERATIONALISING HIERARCHY .............................................................................................. 40 
1.7 THESIS AIMS .......................................................................................................................... 41 

CHAPTER 2 .......................................................................................................................................... 43 

2.1 INTRODUCTION ....................................................................................................................... 44 
2.2 METHOD ................................................................................................................................ 47 

2.2.1 Participants ...................................................................................................................... 47 
2.2.2 Design & Procedure ........................................................................................................ 47 
2.2.3 Model Simulations ........................................................................................................... 51 
2.2.4 Model Fitting Procedure .................................................................................................. 52 

2.3 RESULTS ............................................................................................................................... 52 
2.3.1 Immediate Acquisition of Novel Sequences .................................................................... 52 
2.3.2 Computational Models ..................................................................................................... 54 
2.3.3 The Necessary Components of Zero-Shot Learning....................................................... 56 
2.3.4 Model Fits to Complete Span of Behaviour ..................................................................... 58 

2.4 DISCUSSION .......................................................................................................................... 62 
2.4.1 Hierarchical Organisation, Relational Abstraction ........................................................... 62 
2.4.2 State Abstraction ............................................................................................................. 64 
2.4.3 Preference for High-Level Exploration ............................................................................ 65 
2.4.4 Limitations & Future Directions ....................................................................................... 66 
2.4.5 Conclusion ....................................................................................................................... 67 

2.5 SUPPLEMENTARY MATERIALS ................................................................................................. 68 
2.5.1 Detailed Procedure .......................................................................................................... 68 
2.5.2 Full Model Specifications ................................................................................................. 69 
2.5.3 Model Recovery............................................................................................................... 70 

CHAPTER 3 .......................................................................................................................................... 72 

3.1 INTRODUCTION ....................................................................................................................... 73 
3.2 EXPERIMENT 3-1 .................................................................................................................... 77 

3.2.1 Methods ........................................................................................................................... 77 
3.2.2 Results ............................................................................................................................. 82 
3.2.3 Discussion ....................................................................................................................... 85 

3.3 EXPERIMENT 3-2 .................................................................................................................... 87 
3.3.1 Methods ........................................................................................................................... 87 
3.3.2 Results ............................................................................................................................. 90 
3.3.3 Discussion ....................................................................................................................... 95 

3.4 GENERAL DISCUSSION ........................................................................................................... 96 

CHAPTER 4 ........................................................................................................................................ 101 

4.1 INTRODUCTION ..................................................................................................................... 102 
4.2 EXPERIMENT 4-1 .................................................................................................................. 104 

4.2.1 Methods ......................................................................................................................... 104 
4.2.2 Results ........................................................................................................................... 109 
4.2.3 Discussion ..................................................................................................................... 110 

4.3 EXPERIMENTS 4-2 & 4-3 ...................................................................................................... 112 
4.3.1 Methods ......................................................................................................................... 112 
4.3.2 Results ........................................................................................................................... 114 
4.3.3 Discussion ..................................................................................................................... 116 

4.4 GENERAL DISCUSSION ......................................................................................................... 118 



 11 

CHAPTER 5 ........................................................................................................................................ 123 

5.1 SUMMARY ............................................................................................................................ 124 
5.2 THEORETICAL IMPLICATIONS ................................................................................................. 127 

5.2.1 Implications for SMC ..................................................................................................... 127 
5.2.2 Implications for Reinforcement Learning ....................................................................... 128 
5.2.3 Implications for the Study of Decision Making .............................................................. 131 

5.3 PRACTICAL IMPLICATIONS ..................................................................................................... 135 
5.3.1 Experimental Implications ............................................................................................. 135 
5.3.2 Real-World Applications ................................................................................................ 135 

5.4 LIMITATIONS & FUTURE DIRECTIONS ..................................................................................... 136 
5.4.1 Methodological Considerations ..................................................................................... 136 
5.4.2 Conceptual Considerations ........................................................................................... 138 

REFERENCES .................................................................................................................................... 140 

 



 12 

Table of Figures 

Figure 1-1 – Schematic to outline competitive queuing architecture  ....................... 20 

Figure 1-2 – Hierarchy of actions required to make coffee  ...................................... 22 

Figure 2-1 – Hierarchy of actions required to make coffee  ...................................... 45 

Figure 2-2 – Experiment state space & target high-level behaviours  ...................... 48 

Figure 2-3 – Surface level appearance for spatial and procedural tasks  ................. 49 

Figure 2-4 – Schematic of the full target hierarchy of behaviours  ........................... 50 

Figure 2-5 – Experiment procedure & observed behaviour  ..................................... 53 

Figure 2-6 – Incidence of zero-shot learning for all models  ..................................... 57 

Figure 2-7 – Fits of flat and hybrid models to behaviour  .......................................... 59 

Figure 2-8 – Simulated behaviour for each model with best fitting parameters  ....... 60 

Figure 2-9 – Model recovery  ................................................................................... 71 

Figure 3-1 – Experimental procedure  ...................................................................... 78 

Figure 3-2 – Prop. of high-level commitments by trial difficulty & block length  ........ 83 

Figure 3-3 – Response times by trial type, trial difficulty, & choice level  ................. 84 

Figure 3-4 – Prop. of high-level commitments & accuracy (experiment 3-2)  ........... 91 

Figure 3-5 – Expected value for each policy given block length & accuracy level  ... 92 

Figure 3-6 – Correlation between expected value and high-level commitment  ....... 93 

Figure 4-1 – Possible implementations of a level-dependent subjective bias  ........ 103 

Figure 4-2 – Illustration of procedure followed by experiments 1, 2, and 3. ........... 107 

Figure 4-3 – Proportions of block completed under the high-level policy  .............. 109 

Figure 4-4 – Blocks completed under the high-level policy for all experiments  ..... 114 

Figure 4-5 – Fits of bias and no-bias models to behaviour  .................................... 115 

 

 

file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897458
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897459
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897460
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897461
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897462
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897463
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897464
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897465
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897466
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897467
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897468
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897469
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897470
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897471
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897472
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897473
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897474
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897475
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897476
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897477
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897478
file:///C:/Users/gwydi/Dropbox/_PhD/Thesis/GW_Thesis_FIN_PC.docx%23_Toc90897479


 13 



 14 

 

Chapter 1  
Introduction
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1.1 Overview 

Deciding how to act is difficult because we often hold simultaneous intentions to 

meet multiple goals yet at any given point in time, we can perform only a single 

action. For example, consider how we decide what to order from a menu in a 

restaurant. We are unlikely to order more than one dish and deciding what that one 

dish will be becomes complicated if we consider the wide range of relevant variables 

(e.g., taste, novelty, price, healthiness, and/or carbon footprint). Conflict between 

these variables further complicates the decision by requiring that we trade losses in 

one for gains in another. Classical behavioural economic solutions to decision 

conflict of this sort involve computing the expected value or utility of each option by 

taking a sum over the relevant decision variables weighted by preference (von 

Neumann & Morgenstern, 2007a), and whilst this is indeed a simple and elegant 

solution, human behaviour is not so simply organised (Brown, Miller, Galanter, & 

Pribram, 2006; R. P. Cooper & Shallice, 2006; Fuster, 2008; Yokoi & Diedrichsen, 

2019). Real-world decisions are not made in a vacuum, and actions are chosen in 

the context of other policies of action to which we have already committed. For 

instance, if I decide to become a vegetarian then, for all future decisions of what to 

eat, all non-vegetarian options can be ruled out. Despite its relevance for behaviour, 

the sequential and hierarchical nature of human action has received relatively little 

focus in the science of how we choose to act, and in this thesis, I investigate how the 

hierarchical organisation of behaviour influences how we choose to behave and how 

we manage conflict between our intentions. 

 In this introductory chapter, I first present a review of how behaviour is 

organised in the human brain as this is centrally important to my investigation of how 

this organisation influences choice between candidate actions. Lashley's (1951) 

seminal discussion of the challenges posed by the ubiquity of sequence in behaviour 

and the failure of reflex chaining accounts of the sequencing of behaviour gave rise 

to entire fields of research investigating how best to describe and understand 

ordered behaviour. Here, I discuss Lashley’s contribution by reviewing the pitfalls of 

flat chaining models of sequential action and the relative successes of hierarchical 

approaches. I then review hierarchy and abstraction over sequences in greater 
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detail, with a focus on the high-level and abstract representations of action held by 

the human brain. 

 Next, I present hierarchical reinforcement learning as a useful normative 

framework for considering the question of how a hierarchical organisation of 

behaviour might influence choice. I begin by discussing reinforcement learning and 

its relevance for the human brain generally, before discussing issues faced by flat 

(i.e., non-hierarchical) reinforcement learning (namely, the scaling problem) and 

introducing hierarchy as a solution to these issues.  

I will then discuss how insights from investigations of sequential motor control 

might be integrated with hierarchical reinforcement learning to deepen our 

understanding of how human behaviour is organised to meet our many intentions. 

Both fields of research are relevant for any discussion of how human behaviour is 

organised and controlled, and they are, I argue, mutually informative. 

 To close this chapter, I discuss how people manage decision conflict in light of 

the research presented. I begin by setting the problem of conflict between goals that 

occupy different hierarchical levels more completely, before providing a broad 

overview of classical investigations of flat and isolated decision-making processes. I 

conclude this chapter by summarising the primary aims of this thesis, which are to 

investigate what a hierarchical organisation of behaviour means for decision conflict 

and how different features of a hierarchy might bear on choice. 

1.2 Sequential Motor Control (SMC) 

In the early 20th century, the dominant explanation for sequential action came in the 

form of associative or reflexive chaining models (Ebbinghaus, 2013a; Lashley, 

1951), in which each action in a sequence would reflexively trigger its successor. 

Originating with Ebbinghaus (2013a), the idea of a reflex chain was often tied to 

language, with Watson (1920) proposing that thoughts were produced by a chain of 

associations between inaudible movements of the vocal organs. A similar idea was 

developed more completely by Burtt & Washburn (1918) to propose the peripheral 

chain theory of language, where language was described as a combination of 

movements linked together such that any given movement in the sequence acted as 
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a stimulus for what would follow. These and all other chaining accounts share the 

behaviourist idea that sequence elements serve as conditioning stimuli for 

successive sequence elements, and whilst these models have lost sway as 

descriptions of complex behaviour, the fundamental idea remains visible in state-

space models of skilled motor control (Buonomano & Laje, 2010; Shenoy, Sahani, & 

Churchland, 2013b; Sohn, Narain, Meirhaeghe, & Jazayeri, 2019), where the 

population state of a network of neurons at a given time triggers its state at the next 

time step according to its connectivity. 

 Associative chaining models of sequential action suffer from several 

conceptual problems (Lashley, 1951), and from an inability to explain typical errors in 

human sequence production (Henson, Norris, Page, & Baddeley, 1996). 

Conceptually, the primary issue with associative chaining is that these models 

cannot easily represent different orderings of the same action. Complications arise 

where the same action appears more than once in a sequence and is followed by 

different actions with each repetition. Given that associative chaining models require 

that each action maps deterministically onto the next action in the sequence, 

repeating the same action but requiring that it triggers different successors is difficult 

if not impossible. For example, consider how such a system would produce the word 

“every” – what comes after “e”? One workaround to this issue is to represent each 

sequence element in terms of its context (Wickelgren, 1969). The two instances of 

the letter “e” in “every” would, under this scheme, each be encoded along with their 

neighbours, allowing the first “e” to trigger a “v” and the second an “r”. Whilst this 

context-sensitive code does solve the issue outlined here, it is computationally 

inefficient as each action needs to be represented separately for each possible set of 

neighbours. Further, this context-specific encoding scheme, like simpler context-

insensitive associative chaining models, fails to capture typical errors in human 

sequence production. The most common error in human sequence production is the 

switching of nearby elements in a sequence (Henson et al., 1996), but given their 

strictly feedforward nature this is not a natural error for chaining models to produce. 

The inflexibility of chaining models (Lashley, 1951), and their inability to explain 

typical lapses in sequential human action (Henson et al., 1996) called for a rethink in 

how we understand sequence in behaviour. 
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 Lashley (1951) therefore proposed an alternative account derived from 

observations of the separation of structure from content in language. Lashley 

observed the ease with which children learn “hog Latin”, which involves transposing 

the initial sound of each word to the end of the word and adding a long a – ke-liay is-

thay. Children learn such schemes quickly, and then without hesitation re-structure 

new words and quickly produce entire sentences that follow this new structure. 

Lashley also pointed to errors in sequence production, such as Spoonerisms (e.g., 

“sive drafely”), which demonstrate that entire sequences of words are initiated 

simultaneously in a way that allows sequence elements to be interchanged. Lashley 

used these and other examples to argue for a hierarchical organisation of language, 

which moves up from the vocal movements used in pronouncing a word to the order 

of words in a sentence to the order of sentences in a paragraph and finally to the 

order of paragraphs in a discourse. Whilst this was an important step in our 

understanding of human language, Lashley’s real insight was that this “series of 

hierarchies” was characteristic of all human behaviour (and, in his own words 

“almost all other cerebral activity”). There is a syntax of movement that requires 

explanation, Lashley argued, with the only distinction from language being that in 

language syntax is more formally defined. 

The notion that all human action follows a hierarchical structure has since 

been further developed. Early responses the idea involved investigating the 

acquisition of skilled motor control as a process of developing increasingly high-level 

routines of action (Fitts, 1964; Leonard & Newman, 1964; Schmidt, 1975), which is 

an ongoing field of research (Yokoi & Diedrichsen, 2019). Others presented plans as 

a high-level realisation of our intentions and considered more deeply how multiple 

plans are coordinated to produce a single stream of behaviour (Miller, Galanter, & 

Pribram, 2004). The benefits of hierarchy were also explored: Rosenbaum, Kenny, & 

Derr (1983) found that hierarchical execution of action facilitated faster and more 

accurate execution of individual actions; and Ramkumar et al. (2016) observed that 

monkeys while learning a set of reaching movements would adopt a strategy of 

performing a sequence of locally optimal trajectories to maximise computational 

efficiency. Based only on a conceptual understanding of chaining models and on an 

analysis of sequencing errors, Lashley (1951) correctly inferred the representations 

and organisation required to produce sequential action in humans. The hierarchical 
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structure proposed has since been further developed and arguments have been 

made in favour of its informational efficiency (see Bernstein, 1967), leading to 

hierarchical organisation being the predominant view of how human action is 

structured. 

 Central to Lashley's (1951) proposal of hierarchy was a simultaneous and 

parallel activation of the representations of the actions that make up a sequence. 

This differs not only from classical chaining models, as discussed, but also from 

more contemporary proposals of recurrent state-space network models where 

representations of the elements of a well-learned sequence are never 

simultaneously active (Rhodes & Bullock, 2002; Shenoy, Sahani, & Churchland, 

2013a). Nevertheless, in many cases examined by Lashley, the elements of a 

sequence were knowable in advance and therefore parallel activation is plausible. 

The parallel activation of sequence elements is to some extent a necessary feature 

of any hierarchical system, as activating a high-level representation of a chunk of 

behaviour means activating a representation of all lower-level parts and the order in 

which they are to be executed. 

One influential implementation of a parallel activation of sequence elements is 

competitive queuing (Bullock & Rhodes, 2003; Houghton, 1990). Originally 

developed by Grossberg (1978), competitive queuing (CQ) models are neural 

network models of sequence production where a competitive choice layer of units is 

paired with a parallel planning layer of units such that the most highly-active planning 

unit activates it’s corresponding unit in the choice layer, which then inhibits all other 

choice units and its own planning unit (see Figure 1-1 – Schematic to outline 

competitive queuing architecture (taken from Kornysheva et al., 2019). (A) The most 

active node in the competitive choice layer wins the competition, generates its 

corresponding action, and is then self-inhibited by an inhibitory connection to its 

corresponding unit in the planning layer. This allows the next most active nodes to 

generate the next actions in the sequence, as happens in (B) and (C). This iterative 

process allows a conversion of the gradient of activations over the planning units into 

a temporally structured serial output. (D) Averbeck et al. (2002) measured multi-unit 

activity in prefrontal cortex while monkey drew geometrical shapes, and the results 

were consistent with the graded parallel preparation of sequential shape segments 
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as described by CQ.). The effect of this architecture is that if a gradient of activations 

over the planning layer is established such that the ordering of these activities 

matches the appropriate order of the actions represented by each planning unit and 

we simply allow the network dynamics to unfold, then the intended sequence will be 

produced by activations in the choice layer. CQ models of sequential action 

accurately capture human sequence production, including importantly typical errors 

in sequential behaviour such as the transposition of nearby actions (Rhodes, 

Bullock, Verwey, Averbeck, & Page, 2004a). 
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 Compelling electrophysiological evidence for CQ was provided by Averbeck, 

Chafee, Crowe, & Georgopoulos (2002a). They trained monkeys to draw copies of 

various geometric shapes using routine stroke sequences, such that presentation of 

a shape cued recall of the sequence of strokes required to copy it. Recordings from 

the prefrontal cortex in the moments before the monkey started the stroke sequence 

revealed parallel activations of putative planning units which resembled the 

Figure 1-1 – Schematic to outline competitive queuing architecture (taken from Kornysheva et 
al., 2019). (A) The most active node in the competitive choice layer wins the competition, 
generates its corresponding action, and is then self-inhibited by an inhibitory connection to its 
corresponding unit in the planning layer. This allows the next most active nodes to generate the 
next actions in the sequence, as happens in (B) and (C). This iterative process allows a 
conversion of the gradient of activations over the planning units into a temporally structured 
serial output. (D) Averbeck et al. (2002) measured multi-unit activity in prefrontal cortex while 
monkey drew geometrical shapes, and the results were consistent with the graded parallel 
preparation of sequential shape segments as described by CQ. 
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activation gradients expected by CQ models. These prefrontal neurons jointly held a 

representation of the order of the to-be-executed sequence by scaling their activity to 

match the position of the actions they represent in the sequence. Not only was this 

parallel representation present prior to sequence initiation, but it evolved in exactly 

the way an activation gradient in a CQ model would be expected to evolve during 

sequence execution (with the most active representation being inhibited first, and 

then the second, and so on). Similar observations have since been made in 

parahippocampal and cerebellar areas in humans (Kornysheva et al., 2019).  

CQ models owe their success to a two-level hierarchy. At a low level, 

individual actions are represented and executed by individual choice and planning 

units. At a high level, sequential order is represented in the gradient of activities over 

all planning units. To demonstrate the importance of this high-level representation of 

sequence, recall that associative chaining models were unable to deal with repetition 

(Lashley, 1951). CQ, by contrast, can implement repetition by including a temporal 

context signal which maps onto the planning units and changes their activity over 

time (Bullock, 2004; Bullock & Rhodes, 2003). This allows the high-level 

representation of sequential order implicit in the relative activities of the planning 

units to evolve with time, and planning units that have already initiated action and 

have since been deactivated can simply be reactivated by this signal. For another 

example, recall that switching neighbouring elements is a common error in human 

sequence production (Henson et al., 1996). This is an easy mistake to make in CQ, 

as all that is required is that the activations of planning units that represent 

neighbouring sequence elements (which by design will be close in magnitude) are 

mis-ordered. Again, this success is attributable to the presence of a high-level 

representation of order that is divorced from the structure of the network. Changing 

the order of a sequence is as simple as changing the strength of the activations in 

the planning units, as this is where our high-level ordinal representation is housed. 

The success of CQ models of sequential action in capturing human behaviour and 

explaining brain function is therefore owed to an architecture that makes effective 

and flexible use of a high-level representation of order. 

 The study of sequential action in humans has made substantial progress 

since Lashley's (1951) seminal introduction of hierarchy to the field. We have moved 
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from simple associative chaining models of ordered behaviour towards more 

successful competitive queuing models of sequential action which not only capture 

human behaviour (Bullock, 2004; Henson et al., 1996; Rhodes & Bullock, 2002; 

Rhodes, Bullock, Verwey, Averbeck, & Page, 2004b), but also brain function 

(Averbeck, Chafee, Crowe, & Georgopoulos, 2002b; Kornysheva et al., 2019). Given 

this success, it is important to consider what exactly it means for behaviour to be 

hierarchically organised, and what it means for a representation of action to be high-

level. 

 The most straightforward approach to building a hierarchy of behaviours is to 

build up higher level sequences from a sequence of lower-level actions. Individual 

low-level actions can be sequenced together to form higher-level routines of 

behaviour (Botvinick, 2008; Lashley, 1951; Yokoi & Diedrichsen, 2019), and this rule 

of high-level representations being formed of lower-level parts is the central 

architectural principle of any hierarchical system (see sequencing in Figure 1-2 – 

Figure 1-2 – Hierarchy of actions required to make coffee. Higher-level representations of action 
can come from two distinct operations: (1) sequencing low-level actions (e.g., reach for and 
grasp the handle of a kettle) can provide higher-level representations (e.g., lift kettle); and (2) 
abstracting over the individual actions in a sequence can provide abstract and relational 
representations of the relations between sequence elements independent of their content. This 
second method of abstraction can allow for the same relational representation (in purple) to 
produce distinctly different low-level sequences that adhere to the same relational structure (e.g., 
fetch ground coffee could be replaced with grind coffee beans to satisfy prepare grounds). 
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Hierarchy of actions required to make coffee. Higher-level representations of action 

can come from two distinct operations: (1) sequencing low-level actions (e.g., reach 

for and grasp the handle of a kettle) can provide higher-level representations (e.g., 

lift kettle); and (2) abstracting over the individual actions in a sequence can provide 

abstract and relational representations of the relations between sequence elements 

independent of their content. This second method of abstraction can allow for the 

same relational representation (in purple) to produce distinctly different low-level 

sequences that adhere to the same relational structure (e.g., fetch ground coffee 

could be replaced with grind coffee beans to satisfy prepare grounds).). Higher levels 

in the hierarchy hold a more compact but less detailed representation of behaviour 

than lower levels. Higher levels represent broad abstract action thoughts, while more 

precise motor details are confined to lower levels. Consider the routine of behaviour 

required to boil a kettle of water. The high-level representation of the sequence of 

actions required to complete the task (e.g., reach for the handle, grasp the handle, 

lift the kettle, and so on) need not include the actual motor commands issued to the 

muscles of the arm to reach for the handle, though it must be able to trigger the 

circuits that do hold this information in the appropriate order. High-level 

representations therefore hold no explicit information as to whether a given muscle 

should contract at any given time, but they do trigger of lower-level actions that will 

eventually generate this information. 

Hierarchies of increasingly high-level representations of action established by 

sequencing lower level elements have been observed in the human brain. Yokoi and 

Diedrichsen (2019) trained human participants to perform long sequences of button 

presses and to then reproduce these sequences in an fMRI scanner. The sequences 

were organised on three levels; each sequence consisted of four chunks, and each 

chunk consisted of 2 or 3 finger presses. Here, individual finger presses constitute 

low-level, primitive actions; chunks represent a higher-level sequence of finger 

presses; and sequences represent a higher-level sequence of chunks. Using 

representational fMRI analysis (Diedrichsen & Kriegeskorte, 2017), the authors 

found separable and distinct neural correlates for individual actions, chunks of 

actions, and sequences of chunks, providing direct evidence for this style of 

hierarchical organisation. 
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 Assembling elements into sequences or chunks is clearly one way of 

producing high-level representations; but is it the only way? For a maximally abstract 

representation of action, one would need to go beyond a sequencing of known 

lower-level parts and towards more relational representations that abstract away 

even the individual actions that make up a sequence (see abstraction in Figure 1-2 – 

Hierarchy of actions required to make coffee. Higher-level representations of action 

can come from two distinct operations: (1) sequencing low-level actions (e.g., reach 

for and grasp the handle of a kettle) can provide higher-level representations (e.g., 

lift kettle); and (2) abstracting over the individual actions in a sequence can provide 

abstract and relational representations of the relations between sequence elements 

independent of their content. This second method of abstraction can allow for the 

same relational representation (in purple) to produce distinctly different low-level 

sequences that adhere to the same relational structure (e.g., fetch ground coffee 

could be replaced with grind coffee beans to satisfy prepare grounds).). For 

example, if I frequently encounter sequences where I need to alternate between two 

actions (e.g., right-left-right-left turns while navigating), then it would be 

computationally efficient to abstract away the actions being alternated in the 

sequence towards a relational representation of alternation (e.g., rather than right-

left-right-left, I would represent A-B-A-B). This relational representation holds no 

information as to the precise actions that make up the sequence, but it does hold 

information as to how the component actions (whatever they may be) relate to one 

another. Shima, Isoda, Mushiake, and Tanji (2007) trained two Macaque monkeys to 

perform 11 different 4-length sequences, each of which followed one of three 

different temporal structures: (1) “paired” sequences included two pairs of 

movements (e.g. turn-turn-pull-pull); (2) “alternate” sequences were composed of an 

alternation between two movements (e.g. turn-pull-turn-pull); and (3) “four-repeat” 

sequences consisted of a repetition of the same movement four times (e.g. turn-turn-

turn-turn). Following a set of trials where these sequences were learned under 

guidance, the monkeys were then prompted to perform the sequences from memory 

while recordings were made from neurons in prefrontal cortex. Of 165 task-related 

prefrontal cells that were recorded, more than half (85) exhibited sensitivity to 

sequence structure. These neurons fired selectively in the period prior to execution 

of the first movement of all sequences that followed one of the three sequence 

structures. That is, some neurons fired selectively for all paired sequences, some for 
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all alternate sequences, and others for all four-repeat sequences. These neurons 

were firing selectively for a specific relational representation of behaviour, providing 

evidence for this alternative and abstract mode of hierarchical organisation in the 

primate brain. The idea here is to encode relations between elements in a way that is 

content-neutral, analogous to syntax in language. 

 Whilst the discovery of relational representations of action in primate PFC 

(Shima et al., 2007) is compelling, translating these findings directly to the human 

brain is not straightforward given that we are not the same species. Therefore, while 

we might expect to find similar relational abstractions in the human brain, we should 

still want direct evidence. Kornysheva et al. (2019) trained human participants to 

produce specific sequences of finger presses with different orders and timings before 

reproducing them in a magnetoencephalography (MEG) scanner. Using these 

recordings in combination with multivariate pattern classification, the authors 

observed a CQ activation gradient that reflected an abstract template for ordinal 

position that was used for sequences with different finger presses in different orders. 

This neural competitive queuing gradient, which was localised to parahippocampal 

and cerebellar regions, represented the ordinal position of an action within a 

sequence independently of the action itself. This representation of order is similar to 

the representations of relational structure observed by Shima et al. (2007), in that 

both represent the relational structure of a sequence independently of the specific 

actions that constitute that sequence. These high-level relational representations of 

sequence allow for a conjunctive coding of behaviour, where abstracted structure 

can be combined with specific actions to produce distinct instances of a sequence 

that combine actions in such a way as to adhere to the represented structure. High-

level representations of action in the human brain are therefore not formed only by 

sequencing together lower-level actions. Some representations also abstract away 

the specific actions that make up a sequence and hold instead only information 

about the relations between sequence elements (see Figure 1-2 – Hierarchy of 

actions required to make coffee. Higher-level representations of action can come 

from two distinct operations: (1) sequencing low-level actions (e.g., reach for and 

grasp the handle of a kettle) can provide higher-level representations (e.g., lift kettle); 

and (2) abstracting over the individual actions in a sequence can provide abstract 

and relational representations of the relations between sequence elements 



 27 

independent of their content. This second method of abstraction can allow for the 

same relational representation (in purple) to produce distinctly different low-level 

sequences that adhere to the same relational structure (e.g., fetch ground coffee 

could be replaced with grind coffee beans to satisfy prepare grounds).). 

 Lashley (1951) in his influential critique of the behaviourist idea that each 

action in a sequence of behaviour becomes the stimulus for its successor 

(Ebbinghaus, 2013b; Terrace, 2005) sparked entire fields of research aiming to 

better understand the role of hierarchy in human action. Introductions of hierarchy to 

formal models of sequential action enjoyed success in accurately describing human 

behaviour (Bullock, 2004; Henson et al., 1996; Rhodes & Bullock, 2002; Rhodes et 

al., 2004b), and even in explaining brain function (Averbeck et al., 2002b; 

Kornysheva et al., 2019). Further attempts to understand the nature of the high-level 

representations of action that guide human behaviour lead to evidence for higher- 

and higher-level representations of action formed by sequencing lower-level parts in 

the human brain (Yokoi & Diedrichsen, 2019), and to the discovery of relational 

representations that abstract away the individual actions that make up a sequence 

towards a content-independent representation of the relations between sequence 

elements (Kornysheva et al., 2019; Shima et al., 2007). In reality, all human action is 

sequential, and so these successes in understanding how sequences are produced 

speak to how all human behaviour is organised.  

1.3 Reinforcement Learning and Goal-Directed Behaviour 

Understanding how behaviour is organised in the brain means understanding the 

architecture of behaviour and how that architecture is implemented in the brain, but 

this does not speak to why this specific architecture was chosen by evolution nor 

what its effects are on a goal-directed control of behaviour. The process of choosing 

actions to influence our environments to our subjective benefit is arguably the central 

reason to have a brain, and therefore understanding completely how people choose 

between actions to further our goals is vital should we wish to understand it. To 

investigate the influence a hierarchical organisation of behaviour might have on 

choice and more generally on intentions to meet goals, we must consider 
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frameworks that can solve the problem of needing to decide between candidate 

actions at multiple levels towards the pursuit of multiple goals. 

In a general sense, what it means to be goal-directed is to maximise 

subjective benefit by earning reward and avoiding punishment, though what reward 

and punishment mean will depend on the goal. Early descriptions of how people 

select actions in the face of reward and punishment focussed on the predictive 

relationships between action and/or events in our environments. Pavlovian 

conditioning (Yerkes & Morgulis, 1909) involves learning associations between 

neutral and rewarding or punishing events. Famously, a dog would learn to associate 

a (neutral) bell with (rewarding) food. While this method of learning would allow the 

dog to predict the arrival of food, it offers no explicit instruction as to how to act to 

earn the food. Instrumental conditioning, on the other hand, involves learning how to 

act to maximise the probability of rewarding events and minimise the probability of 

punishing events (Skinner, 1935; Washburn & Thorndike, 1912). Under instrumental 

conditioning, a dog might learn that barking leads to the omission of food but that 

sitting patiently leads reliably to a treat. The relative values of these two actions 

would be learned by experience, and the dog could optimise its behaviour by 

selecting the action that most reliably leads to a subjectively positive outcome. While 

Pavlovian and instrumental conditioning offer relatively simplistic views on behaviour 

as being driven deterministically by associations between our environment, our 

actions, and their outcomes, they do capture two existing classes of conditioned 

behaviour and they make the fundamental point that people can learn what to expect 

and how to act from experience with the world. 

More recently, computational accounts of conditioned behaviour have drawn 

heavily from reinforcement learning (RL) models (Sutton & Barto, 1998), which all 

share the use of a scalar reinforcement learning signal to guide learning. All RL 

problems comprise (1) a set of world states, (2) a set of actions available to a 

reinforcement learning agent to navigate these world states, (3) a transition function 

that defines how actions cause the agent to transition from one state to another, and 

(4) a reward function that defines where reward lies within the state space (Sutton & 

Barto, 1998). The objective held by the agent is to discover a policy (that being a 

mapping from states to actions) that maximises value (that being the expected sum 
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of all future rewards given some policy). RL establishes a normative framework 

within which to interpret behaviour by (1) making predictions regarding the optimal 

form of behaviour, (2) suggesting a means by which optimal prediction and action 

selection could be achieved, and (3) detailing specifically the computations that must 

take place in service of these two functions (Niv, 2009). Why should we want to 

adopt a normative perspective on behaviour? There are two primary reasons. First, it 

is not unreasonable to think that, by evolutionary pressure, the brain adapted to find 

the optimal solutions to sets of behavioural problems (Kacelnik, 1997). Second, 

discrepancies between optimal and actual behaviour can be illuminating as they 

shed light on the implementational constraints under which people make decisions 

(Niv, 2009; Tversky & Kahneman, 1974). RL as a normative model thus offers a 

computational understanding of the optimisation performed by the brain in deciding 

between candidate actions whilst also describing algorithmically how a principled 

solution to that problem might take shape (Marr, 1976). 

The applications of RL to the brain and behaviour are many in number and 

generally successful (for a complete review of RL in the brain, see Niv, 2009). 

Perhaps most famously, in the 90s a connection was made between the dopamine 

system and RL, inspired by a widely-held belief that dopamine served as the brain’s 

reward signal (Wise, Spindler, Dewit, & Gerber, 1978; Wise, Spindler, & Legault, 

1978). In a series of experiments where awake monkeys underwent simple 

instrumental or Pavlovian conditioning while extracellular recordings of the midbrain 

were taken, it was found that phasic dopaminergic firing did not only signal the 

motivational value of rewarding stimuli, but that if these rewarding stimuli were 

reliably preceded by a predictive stimulus then the dopaminergic response to reward 

disappeared and was replaced by a phasic burst of dopamine in response to the 

onset of the predictive stimulus. Further, this shift towards an anticipatory firing 

pattern in the midbrain was accompanied by anticipatory behaviours such as licking 

or anticipatory reaching (Ljungberg, Apicella, & Schultz, 1992; Romo & Schultz, 

1990; Schultz, Apicella, & Ljungberg, 1993). These data were unified under the 

reward prediction error hypothesis of dopamine (Schultz, Dayan, & Montague, 1997), 

which argued that the phasic firing of dopaminergic neurons reflects a temporal 

difference reward prediction error. Indeed, the correspondence is compelling. 

Temporal difference reward prediction errors occur only when rewarding events are 
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unexpected, just as bursts of dopamine accompanied rewards only early in training 

where they were unexpected. Similarly, neutral predictive cues should elicit no 

prediction error until they acquire predictive value, but once they have acquired 

predictive value the unexpected onset of one of these cues should prompt a 

prediction error, and thus a burst of dopaminergic activity. These characteristics of 

dopaminergic activity and their relevance for an RL-like system in the brain have 

been replicated in several experiments (Bayer & Glimcher, 2005; Hollerman & 

Schultz, 1998; Takikawa, Kawagoe, & Hikosaka, 2004), and other important 

elements of RL have been associated directly with the human brain, such as the 

separable roles of model-free and model-based systems in guiding behaviour (Daw, 

Gershman, Seymour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan, & O’Doherty, 

2010). Recent research suggests dopamine also has other roles, such as regulating 

motor vigour (Da Silva, Tecuapetla, Paixão, & Costa, 2018). RL has succeeded in 

providing compelling explanations for how the human brain guides behaviour in the 

pursuit of pleasure. 

As ideas from RL become more influential in psychology and neuroscience, it 

is worth considering how RL research has evolved within computer science 

(Botvinick, Niv, & Barto, 2009). Here, attention has shifted to focus on the limits of 

RL and how they might be addressed. One such limit is the scaling problem, which 

describes how basic RL methods do not deal well with increasingly large task 

domains. As the number of states or the number of candidate actions in a task grow, 

performance worsens, and for very large state or action spaces tasks become 

infeasible to solve. In psychology and neuroscience, investigations of the relevance 

of RL for behaviour have mostly included simple tasks where the number of states 

and actions is constrained for the sake of tight experimental design. However, in 

real-world contexts the brain enjoys no such luxury – state and action spaces are 

vast, and so the scaling problem and the need for a solution must pertain for the 

human brain just as it does for computational RL. 

One influential approach to solving the scaling problem is to make use of 

temporal abstraction (Barto & Mahadevan, 2003; Parr & Russell, 1998; Sutton, 

Precup, & Singh, 1999a), which supplements the basic RL framework to include 

temporally abstract actions. These temporally abstract actions represent sets of 
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interrelated lower-level actions (e.g., reach for kettle, grasp handle, lift kettle, and so 

on), which are cast as a single higher-level routine (e.g., boil the kettle). Under the 

most popular implementation of temporal abstraction in RL – the options framework 

(Sutton et al., 1999a) – these temporally abstract actions are named options. 

Options consist of three components: (1) an initiation set, which defines the set of 

states within which an option can be initiated; (2) a policy, which maps states onto 

actions whilst the option is active; and (3) a termination condition, which specifies the 

states within which the option will be terminated and evaluated. For example, an 

option of making a sandwich would be initiated in states of hunger (the initiation set), 

would be implemented by the actions necessary to make the sandwich (the policy), 

and would be terminated when the sandwich was made (the termination condition). 

Importantly, options can map states not only onto primitive actions, but also onto 

other options, allowing hierarchies of behaviour to be assembled.  

There has been increasing focus in recent years on finding evidence in 

human behaviour and in the human brain for hierarchical reinforcement learning 

(HRL). Most success has been found by investigating the nature of hierarchical 

prediction error signals. Consider what it means to establish a hierarchy of 

behaviours to meet an end-goal such as “brew a coffee”. To begin, we must 

decompose the end-goal of brewing a coffee into a series of sub-goals, such as “boil 

kettle”, “grind coffee”, “mix ground coffee & hot water in cafetiere”, and so on. These 

sub-goals must be further decomposed into the requisite steps, and this process 

continues until we reach primitive action. Note that the primary operation here is to 

decompose one goal into many smaller sub-goals that one must meet in service of 

the original goal. Note also that although people hold many sub-goals they are 

defined as such only by virtue of their relation to our original intention to meet the 

high-level end-goal. More plainly, one does not intend to boil the kettle for its own 

sake – one does so only as a step in the sequence of brewing a coffee. 

There is a subtle but important point here: the sub-goals are not rewarding in 

themselves, but they are necessary for the receipt of a desired reward at a later 

date. In some cases, sub-goals can in fact conflict with the actions one would take in 

pure pursuit of the explicitly rewarding end-goal. For example, consider a delivery 

driver that must drive south to pick up a package that they must then deliver at a 
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destination that is north of their starting location. Collecting the package moves the 

driver further away from the location of reward, and towards a location that, while 

necessary, is not itself rewarding. What, then, is the motivation for moving away from 

reward to collect the package? 

The issue of motivation to pursue sub-goals was investigated by Ribas-

Fernandes et al. (2011) in a task similar to the delivery described in the previous 

paragraph. The authors investigated whether the brain makes use of pseudo-reward, 

which is a form of internal or intrinsic reward that motivates the attainment of 

subgoals, and is therefore distinct from external or primary reward which is available 

from the environment (Singh, Barto, & Chentanez, 2005). In three neuroimaging 

studies, neural responses consistent with pseudo-reward prediction errors were 

observed within the ACC, habenula, amygdala, and NAcc, all of which have 

previously been implicated in processing temporal difference reward prediction 

errors (Niv, 2009). These findings confirm that the human brain processes pseudo-

reward to motivate the attainment of otherwise unrewarding but necessary sub-

goals, which is a centrally important process of HRL for motivating action. 

A second prediction made by HRL given a hierarchy of goals and sub-goals is 

that outcomes relevant to multiple levels of this hierarchy might be observed at the 

same time, and as a result multiple distinct prediction error signals (which are 

present at different levels of the hierarchy) may coincide. For example, consider the 

hierarchy of decisions involved in going out for a meal. At a high-level I must first 

make a decision between restaurants, and at a low-level once I make it to my 

chosen restaurant, I must decide between the meals listed on their menu. Once my 

chosen meal arrives and I start to eat, two simultaneous but distinct predictions are 

either confirmed or denied: one about the expected quality of the restaurant; and 

another about the expected quality of this specific meal. A similar setup was used by 

(Diuk, Tsai, Wallis, Botvinick, & Niv, 2013) to investigate whether simultaneous but 

separable prediction errors could be measured from relevant regions in the human 

brain. Thirty participants completed a task where they would first select between two 

casinos, and then between four slot machines within their chosen casino. If, for 

example, the participants learned from experience to expect a win from their chosen 

casino, but they experienced a loss given their choice of slot machine, this one 
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outcome should have produced dissociable prediction errors at each of the two 

hierarchical levels in the task. As predicted, analysis of activity in the ventral striatum 

and ventral tegmental area evidenced two simultaneous but distinct and separable 

prediction errors. These findings paired with those presented by Ribas-Fernandes et 

al. (2011) clearly demonstrate the relevance of HRL for how the human brain 

organises behaviour to meet its goals and sub-goals and for how expectations 

around those goals are adjusted with experience. 

HRL is not only an answer to the scaling problem in computational RL, but it 

also provides a promising normative framework for investigations into how 

hierarchical behaviour in humans is organised to meet goals and maximise 

subjective benefit. There is already good reason to think the brain might use HRL-

like systems to organise behaviour to meet its goals (Diuk, Tsai, et al., 2013; Ribas-

Fernandes et al., 2011), but there are many other aspects of HRL that require further 

study. Several connections remain to be made, such as identifying the support 

structures for temporally-abstract actions (or options), and finding evidence for 

option-specific policies and value functions. Botvinick et al. (2009) suggested that 

various premotor and prefrontal areas might subserve these functions of HRL: the 

dorsolateral prefrontal cortex has long been considered involved in guiding 

temporally integrated and goal-directed behaviour (Hoshi, Shima, & Tanji, 1998; 

Shallice & Burgess, 1991; Shima et al., 2007; Wood & Grafman, 2003); and the pre-

supplementary area and premotor cortex have been shown to carry high-level 

representations of task set (pre-SMA: Rushworth, Walton, Kennerley, & Bannerman, 

2004, and PMC: Muhammad, Wallis, & Miller, 2006). Indeed, research on frontal 

cortex generally converges on the idea that it serves to represent behaviour at many 

nested levels of temporal abstraction (Grafman, 2002; Wood & Grafman, 2003), with 

higher-level representations being housed more anteriorly (Botvinick, 2008; 

Botvinick, Niv, et al., 2009; Koechlin, Ody, & Kouneiher, 2003), and such a structure 

would fit well with the architecture of HRL. There is close contact here between the 

representations and neural structures required by HRL in the brain and those 

revealed by investigations into sequential motor control in humans, and so in search 

of a complete description of human behaviour it is worth considering how these two 

distinct bodies of research might be fruitfully integrated. 
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1.4 Integration of Sequential Motor Control & HRL 

RL and the control of sequential action share in the employment of hierarchy to solve 

major computational problems. In sequential motor control (SMC), the inclusion of 

hierarchy (Lashley, 1951) was a necessary step in accurately capturing typical errors 

in human sequence production (Henson et al., 1996) and in otherwise providing 

more efficient and flexible accounts of how people produce sequences of action 

(Bullock, 2004; Rhodes & Bullock, 2002). In RL, introducing hierarchy solved the 

scaling problem (Botvinick, Niv, et al., 2009) by allowing these models to truncate 

large state and action spaces by following temporally extended routines of behaviour 

(Sutton, Precup, & Singh, 1999b). In both cases, the use of temporal abstraction to 

form higher- and higher-level representations of action has been central to their 

respective successes. Given the substantial overlap between the systems that these 

two bodies of research describe, it is worth considering what it would mean to 

integrate them and whether any new light is shed on how human behaviour is 

organised and controlled in doing so. 

Integrating the study of SMC with HRL as a framework means claiming that 

the multi-level representations of action observed in the motor and premotor areas 

(Yokoi & Diedrichsen, 2019) are the neural instantiations of the temporally abstract 

actions (or options) used in HRL (Sutton et al., 1999b). This is a reasonable claim, 

as there is a precise match in the form of these two representations: in each case, 

high-level representations of action map onto a sequence of lower-level actions, 

leading eventually to primitive action. That is, both frameworks use sequencing (see 

Figure 1-2 – Hierarchy of actions required to make coffee. Higher-level 

representations of action can come from two distinct operations: (1) sequencing low-

level actions (e.g., reach for and grasp the handle of a kettle) can provide higher-

level representations (e.g., lift kettle); and (2) abstracting over the individual actions 

in a sequence can provide abstract and relational representations of the relations 

between sequence elements independent of their content. This second method of 

abstraction can allow for the same relational representation (in purple) to produce 

distinctly different low-level sequences that adhere to the same relational structure 

(e.g., fetch ground coffee could be replaced with grind coffee beans to satisfy 

prepare grounds).) to assemble their behavioural hierarchies. That said, there is an 
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important component of HRL that is missed by this connection, that being option-

specific policies. Under the options framework, each option holds its own policy of 

action which maps states onto other, lower-level options in pursuit of a particular 

goal or sub-goal. For example, the option-specific policy for “collect package” held by 

a delivery person would map all states onto the actions that move the delivery 

person closer to the package. Importantly, however, this is not quite the same as an 

explicit representation of the sequence of actions required to move from a starting 

location to the package. A policy is a more general representation of the actions one 

should take within any given state towards the attainment of a given goal or sub-

goal, where a sequence is a simpler list of actions to take. Consider what happens if 

our delivery person mistakenly takes a left turn in a state where the correct action 

was to turn right. If all they know is the sequence of actions required to move to their 

goal, then any deviation from that sequence leaves them with no information as to 

what to do next. By contrast, learning a policy of action over all states allows the 

delivery person to learn how to move towards their destination from any state. After a 

period of learning, the sequence of actions necessary to achieve the sub-goal will be 

represented in the policy as each successive state will map onto the next sequence 

element, but a policy of this sort remains more flexible and less deterministic than an 

explicit representation of the sequence itself, such as the representations of 

sequence observed in premotor areas (Yokoi & Diedrichsen, 2019). To fully integrate 

sequential motor control with HRL, the policies described in HRL and the explicit 

representations of sequence observed in the study of SMC need to be bridged. 

We can reconcile differences between policies of action found in RL and the 

explicit representations of sequence observed by investigations of SMC if we 

consider how these representations are formed. In RL, policies are learned and 

improved by maximising reward and minimising punishment, and hierarchies of 

action come from a top-down decomposition of a goal into the sub-goals necessary 

to achieve it. In studies of SMC, however, there are no explicit rewards nor 

punishments. Instead, higher-level representations of sequence are formed 

presumably by the frequency with which particular chunks of action are repeated, 

and hierarchies of action are built bottom-up from this process of identifying repeated 

chunks of behaviour that might be efficiently grouped up and cast as a higher-level 

representation. Under this light, these two representations of action and the different 
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modes by which they are built are not necessarily incompatible. It could be the case 

that the human brain engages both with a top-down process of breaking down 

abstract and high-level goals into firmer and lower-level sub-goals (as in HRL), whilst 

also building up a repertoire of multi-level representations of oft-repeated sequences 

of action (as in SMC). This scheme would fit well with proposed hierarchically 

arrayed levels of control in the frontal cortex and with a movement from high-level 

and abstract intention to low-level specific action along its rostro-caudal axis (Badre 

& D’Esposito, 2007; Koechlin et al., 2003). 

This dual process of breaking down goals and building up sequences may be 

relevant for the option discovery problem (Botvinick, Niv, et al., 2009). This refers to 

the difficulty of discovering useful options from scratch. Many approaches have been 

suggested, such as options being innate and genetically specified (Bruner, 1973; 

Elfwing, Uchibe, Doya, & Christensen, 2007; Wayne Aldridge & Berridge, 1998). 

Although genetics are likely to play a role, there is also clear evidence that humans 

and other animals discover useful behavioural subroutines through experience 

(Conway & Christiansen, 2001; Fischer, 1980; Greenfield, Nelson, & Saltzman, 

1972). Most approaches to learning these subroutines from experience involve either 

an analysis of trajectories that frequently culminate in reward to identify “bottlenecks” 

in the state space that make for useful sub-goals (e.g., McGovern, 2002), or an 

analysis of the state space itself, again with the intention of identifying useful 

“bottleneck” states that make good targets for action (e.g., Machado, Bellemare, & 

Bowling, 2017; Şimşek, Wolfe, & Barto, 2005). Note that this use of the word 

“bottleneck” is entirely unrelated to the concept of a capacity-limited stage in a 

cognitive processing hierarchy, familiar from the attention literature (Broadbent, 

1957). These methods that aim to find useful “bottleneck” states break down the 

state space so that for any given end-goal within that space, a useful set of options 

are available for achieving it. This maps relatively well onto the top-down process of 

decomposing a goal into a set of sub-goals. However, relatively little attention has 

been given to any bottom-up strategy of building higher-level representations from 

oft-repeated lower-level actions. This second strategy certainly seems to be in use 

by the human brain (Bullock, 2004; Lashley, 1951; Yokoi & Diedrichsen, 2019), and 

although it is unlikely to be able to furnish entire hierarchies of action in complex 

environments, it may efficiently discover and provide useful chunks of behaviour at 
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relatively low-levels. The key difference here between HRL and SMC is that in HRL 

high-level representations of sequence emerge to the extent that sequences lead to 

reinforcement, while in SMC they emerge to the extent that they frequently occur. 

I have discussed two operations that can be used to form higher-level 

representations of action from lower-level parts: people can (1) sequence lower-level 

actions so as to produce a higher-level representation of order; or people can (2) 

abstract away the specific actions in a sequence towards a representation of the 

relations between them (see Figure 1-2 – Hierarchy of actions required to make 

coffee. Higher-level representations of action can come from two distinct operations: 

(1) sequencing low-level actions (e.g., reach for and grasp the handle of a kettle) can 

provide higher-level representations (e.g., lift kettle); and (2) abstracting over the 

individual actions in a sequence can provide abstract and relational representations 

of the relations between sequence elements independent of their content. This 

second method of abstraction can allow for the same relational representation (in 

purple) to produce distinctly different low-level sequences that adhere to the same 

relational structure (e.g., fetch ground coffee could be replaced with grind coffee 

beans to satisfy prepare grounds).). Although clear markers of an HRL-like system 

resembling the first of these operations have been observed in the human brain 

(Diuk, Tsai, et al., 2013; Ribas-Fernandes et al., 2011), the relational representations 

of action derived from the second operation do not feature in HRL. Therefore, the 

human brain may use a framework similar to HRL, which involves both high-level 

representations of action sequences, and also abstract, content-independent 

relational representations of behaviour. An intriguing question here is to consider 

why the human brain would include this additional mode of abstraction, given that 

the sequential representations favoured by both HRL and SMC both constitute 

hierarchies without abstraction. With more abstraction comes more flexibility and 

adaptivity to changes in the environment; if I need to produce a completely novel 

sequence that holds a relational structure already represented in my brain, then a 

good deal of the challenge involved in producing it is already solved. 
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HRL and SMC describe similar systems of behaviour, though there are 

important differences between them. In fact, brain and behavioural data supports the 

frameworks of both HRL (Diuk, Schapiro, et al., 2013; Ribas-Fernandes et al., 2011) 

and SMC (e.g., Kornysheva et al., 2019; Lashley, 1951; Yokoi & Diedrichsen, 2019). 

Therefore, to fully understand how human behaviour is organised and controlled, we 

must integrate HRL as a framework with findings from investigations into how the 

brain produces sequences of action. I have outlined two differences between HRL 

and SMC, centring on the nature of the representations of action held by the human 

brain, though this is by no means an exhaustive list. Table 1-1 – Summary of 

differences and relative strengths/weaknesses of sequential motor control (SMC) 

and hierarchical reinforcement learning (HRL). expands on these differences and 

highlights the relative strengths and weaknesses of SMC and HRL. Where SMC 

represents explicit sequences of action that can produce no behaviour other than the 

specific sequence they define, HRL uses policies of action that can guide behaviour 

more generally towards a goal with whatever actions are necessary to attain it. 

However, SMC has been demonstrated to make use of both sequencing (Yokoi & 

Diedrichsen, 2019) and abstraction (Kornysheva et al., 2019; Shima et al., 2007) in 

building higher-level representations of action, allowing for a more adaptive 

organisation of behaviour than is possible in HRL which under the most popular 

frameworks (Sutton et al., 1999a) uses only sequencing (see Figure 1-2 – Hierarchy 

of actions required to make coffee. Higher-level representations of action can come 

Table 1-1 – Summary of differences and relative strengths/weaknesses of sequential motor 
control (SMC) and hierarchical reinforcement learning (HRL). 
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from two distinct operations: (1) sequencing low-level actions (e.g., reach for and 

grasp the handle of a kettle) can provide higher-level representations (e.g., lift kettle); 

and (2) abstracting over the individual actions in a sequence can provide abstract 

and relational representations of the relations between sequence elements 

independent of their content. This second method of abstraction can allow for the 

same relational representation (in purple) to produce distinctly different low-level 

sequences that adhere to the same relational structure (e.g., fetch ground coffee 

could be replaced with grind coffee beans to satisfy prepare grounds). for a reminder 

of sequencing and abstraction operations). More importantly, HRL is goal-directed in 

a way that the sequences of SMC are not. Thus, only HRL can explain how people 

choose between candidate actions to achieve their goals. Thus, for example, SMC 

cannot be a theory of volition, while HRL could potentially contribute to a theory of 

volition. These differences come from the diametrically opposed approaches of these 

two frameworks to hierarchical organisation – HRL breaks goals down into smaller 

sub-goals, where SMC build sequences up from lower-level actions. An integration 

of these two systems would provide a more complete account of human behaviour 

and would bring together the strengths of each system. This would provide an 

understanding of goal-directed hierarchical behaviour with the formal rigour and 

flexible policies of HRL, the efficient relationally abstract representations of SMC, 

and with both top-down and bottom-up approaches to sequence discovery and 

organisation included. Surprisingly, however, this integration appears not to have 

been attempted previously. 

1.5 Hierarchical Influences on Choice 

In the previous sections, I have outlined how sequential action is implemented by the 

human brain and have discussed the best accounts we have of the processes 

involved, which all include hierarchy. I have presented reinforcement learning as a 

normative framework for the study of goal-directed behaviour in humans, and I have 

introduced hierarchical reinforcement learning and the options framework as an 

answer to the scaling problem which applies not only to the computational limits of 

reinforcement learning as a framework but also to the brain should it use RL-like 

systems to guide behaviour. Having presented the evidence in favour of a process of 

building up increasingly abstract representations of action to generate entire 
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sequences, and evidence in favour of HRL systems being present in the brain, I then 

discussed what it would mean to integrate these two systems. Chapter 2 of this 

thesis will explore these ideas further, but for the remainder of the thesis the focus is 

on understanding what the joint system presented and discussed in the previous 

section means for how people choose how to behave. 

 The study of decision-making and choice has a long history, but the central 

challenge has remained the same throughout. Whenever someone needs to decide 

what to do, they are faced with the challenge of deciding between candidate actions 

based not on a single decision variable, but on several. In deciding where to live, for 

example, there are many factors to consider, such as average house price, proximity 

to friends and family, job prospects, and many more. How can the information from 

all relevant variables be integrated towards deciding on a single action? Early 

accounts proposed expected utility as a common currency for the evaluation of all 

decision variables (Fishburn, 1981; von Neumann & Morgenstern, 2007b). Each 

variable would be assigned some expected utility, a sum over variables weighted by 

preference could be taken for each option, and the option of largest summed 

expected utility would be chosen. Whilst expected utility theory was and remains 

influential, it assumes that humans act rationally; it assumes that people hold 

accurate estimates of the value of each variable for each option, that priorities for 

some variables over others accurately reflect true subjective preferences, that sums 

are accurately taken, and that values are rationally and sensibly compared. 

However, human beings demonstrably do not act rationally (Gigerenzer & 

Gaissmaier, 2011; Hirschman, Kahneman, Slovic, & Tversky, 1983; Kahneman & 

Tversky, 2019). We make decisions under constraints; we do not hold perfect 

information about the world, nor do we have the time for an optimal treatment of the 

information we do hold. This insight led to the identification of heuristics that hasten 

decision time at the cost of accuracy (Tversky & Kahneman, 1974), and eventually to 

the development of prospect theory (Kahneman & Tversky, 2018), which explains 

that we are more sensitive to prospective losses than we are to equivalent gains, as 

just one example of a perception-like bias in the estimation of value which distorts 

human decision-making. These irrationalities in our treatment of information whilst 

suboptimal in the limit of no computational constraints are efficient, fast, and mostly 

accurate shortcuts to the correct decision (Gigerenzer & Todd, 1999). Nevertheless, 
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they do expose the complexity, intricacy, and subjectivity of our decision processes. 

However we decide what to do, we do nothing as simple as a rational comparison of 

expected utilities. 

 Most research on how people decide has focussed solely on isolated 

decisions of what to do now. Behaviourally reductionist decisions such as deciding 

whether a cloud of dots are moving predominantly right or left (Gold & Shadlen, 

2007) may seem at face value to successfully isolate specific decision processes, 

but the decision between right or left is made in the context of an experiment and is 

one element in the sequence of behaviour required to participate in that experiment. 

As argued in the previous sections, no action is taken in isolation; all actions and all 

choices are parts of some sequence and slot into a rich hierarchy of behaviours. 

What influence does the hierarchical nature of action have on how people decide 

what to do? 

By adopting a hierarchical perspective on behaviour, the nature of a decision 

changes substantially because a single decision is no longer simply a function of 

present information. Rather, decisions are now a function of both present information 

and a hierarchy of pre-commitments. Consider the choice a psychology 

undergraduate makes between pressing right or left in response to a random dot 

motion stimulus. We name these tasks two-alternative forced choice, but there is in 

fact nothing forcing the student to choose between only the two alternatives 

presented to them. They could upturn the table, stand up and walk out, or refuse to 

engage with the task and wait patiently for the trials to roll by. They do none of these 

things, because these actions would conflict with higher-level actions initiated by 

past decisions. At the hierarchical level above this one decision between right or left, 

we might find a routine of behaviour for complying with task instructions, above 

which we might find a routine for participating in an experiment, above which we 

might find a routine for being a good student. The student does indeed decide 

between right or left because they are adhering to a hierarchy of behaviours that 

effectively rule out all other alternatives. Progressively lower-level decisions must 

either adhere to the higher-level actions that sit above them, or those higher-level 

actions must be changed. These situations that require a hierarchical treatment of 

behaviour are the primary class of problems of interest to this thesis, and they are 
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too complex for traditional simplistic accounts of choice and behaviour to suffice 

(Weiss & Shanteau, 2021). 

By introducing hierarchy to behaviour, individual decisions are complicated by 

the fact that they must consider their hierarchical context, but they are simplified by 

the fact that some options will be ruled out by that context. Consider someone who 

has decided to become a vegetarian and is perusing a menu. The high-level policy of 

vegetarianism will rule out all non-vegetarian meals on the menu, which at first 

glance simplifies the low-level decision of what to eat by shrinking the number of 

candidates. We can then consider various low-level outcomes such as taste and 

price towards making a final decision. However, consider what happens if the tastiest 

and cheapest meal contains meat. The high-level pre-commitment to vegetarianism 

which was a saving grace in the elimination of half the menu has now become a 

barrier towards a quick and easy decision to select the most enjoyable meal. Note 

that the central difficulty here is a conflict between high-level and low-level 

outcomes. At a high-level, our restaurant-goer may have decided to become 

vegetarian for the sake of their health, or perhaps the climate, both of which are 

relatively high-level outcomes as they are realised only over long spans of behaviour 

in aggregate. At a low-level, taste and price are relatively low-level outcomes which 

are experienced shortly after a single decision of what to order. Where we have 

conflict between levels, how do we decide between them? 

Resolving conflict between hierarchical levels is not a trivial problem to solve, 

primarily because of the difference in timescales. High-level outcomes (e.g., climate 

impact) are by definition further away in time, though they are typically also greater in 

magnitude than lower-level outcomes which are more immediate but lesser in 

magnitude. This exchange of time for magnitude of the outcome as we move from 

low to high levels makes it difficult to see how conflict is resolved, as even by 

application of temporal discounting (Doyle, 2013; Loewenstein, 1988) no clear 

answer may be found given that high-level outcomes might enjoy an exponential 

increase in magnitude to counteract any exponential discounting applied. At heart, 

this is an issue of resolving competition between the high-level goals we hold and 

lower-level outcomes that might distract us from attaining them, and this conflict is 

the central interest of this thesis.   



 43 

1.6 Operationalising Hierarchy 

Hierarchy is a key concept for this thesis. Therefore, a clear experimental 

operationalisation of hierarchy is required. I take two different approaches to this: I 

use a (1) strong operationalisation of hierarchy to test for one specific proposed 

hierarchical organisation (in Chapter 2), and I use a (2) weak operationalisation of 

hierarchy to test for effects of hierarchical structure on behaviour without explicitly 

testing for how the hierarchy is organised (in Chapters 3 & 4). Under the former, 

strong sense, hierarchy is central to the design of the experiment(s) used, and the 

experiment aims to isolate specific behaviours that provide direct evidence for a 

specific hierarchical structure. Under the latter, weak sense, some loosely specified 

hierarchical structure is assumed to be present, and the experiment aims to reveal 

how this structure influences action choices. Note that even under a weak 

operationalisation, hierarchical structure is still useful for solving the tasks involved. 

For example, some rewards in these tasks are contingent upon high-level routines of 

multiple actions, and so a single reward can only be tied to a set of actions if the 

entire action sequence is represented in the mind of the agent as a hierarchically 

organised behaviour. Nevertheless, this strong-weak distinction is important for 

interpretation of the results, because Chapter 2 uses a strong operationalisation of 

hierarchy to search for support for the specific hierarchical structure I propose.  

Thus, in the chapters that follow I use this empirical evidence and a clear theoretical 

framework to investigate the effects of hierarchical structure on decision making 

without testing explicitly for the presence of that structure. 

1.7 Thesis Aims 

This thesis aims to investigate whether the hierarchical organisation that the human 

brain uses to structure action might influence how action decisions are made.  More 

specifically, it aims to understand how people manage conflict between outcomes 

that sit at different hierarchical levels. In search of a complete answer to this 

question, I have broken the thesis down into three parts. 

First, to verify that the hierarchical organisation of behaviour outlined in the 

previous sections provides a useful framework for investigating human behaviour, I 
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search for behavioural evidence connecting the fields of SMC and hierarchical 

reinforcement learning. Such a connection would provide a theoretical framework for 

analyses of behaviour that I will use in the following chapters. Accordingly, the 

studies in Chapter 2 show that people do organise behaviour hierarchically, and that 

relational representations of action can be included in HRL models of human 

behaviour. 

Second, I ask whether features of high-level actions themselves influence 

how people choose choice between those high-level actions. I present an extension 

of self-efficacy theory (Bandura, 1974, 1977) to hierarchical behaviour and 

investigate how perceived capability to carry out a lengthy routine of behaviour 

influences willingness to commit to that routine. I also consider how precommitment 

and self-imposed limits on future choice, as defined by the length of a high-level 

action sequence, influence decisions to commit to that action. The studies in this 

section show that the length of a policy of action, which scales with its hierarchical 

level, influences action choices. This influence arises because lengthy sequences 

are more difficult to perform, and because they limit future choice, which I 

demonstrate to be aversive. 

Third, I ask whether there are any subjective biases to prefer high- vs low-

level outcomes. I search for a hierarchical discounting factor, analogous to temporal 

discounting, but distorting subjective value over hierarchical levels rather than over 

time. I investigate whether biases in subjective value estimates of outcomes at 

specific levels of a hierarchy can be elicited by priming, for example by social or 

attentional contexts. The studies in this section find no evidence to support a general 

bias favouring high- or low-level outcomes. However, biases in either direction can 

be prompted by even minimal social cues to attend to specific outcomes. 

These three parts amount to first asking how the human brain organises 

behaviour hierarchically (chapter 2), before asking how perceptions of self-efficacy 

(chapter 3) and any subjective preferences for outcomes at high or low hierarchical 

levels (chapter 4) might interact with this framework to influence choice. These two 

final components address the questions “do I feel able to carry out this action?” and 

“do I want to pursue this outcome?”. I hypothesise that hierarchical organisation 
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strongly interacts with these issues of choice and value, to determine how people 

control their behaviour. 



 46 

 

Chapter 2  
Abstraction and Hierarchy: 

How is behaviour organised?
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2.1 Introduction 

Classically, sequential action has been described as being a process of building up 

chunks of behaviour by sequencing elementary or primitive actions (Lashley, 1951). 

When executed, each chunk would activate its motor components in order, and 

chunks themselves could be sequenced to form progressively higher-level routines 

of action. This hierarchical structure facilitates faster and more accurate execution of 

primitive actions (Rosenbaum et al., 1983), provides a more computationally efficient 

scheme to store and recall sequences of behaviour (Ramkumar et al., 2016), and 

allows for entirely new sequences to be learned by combining existing chunks in 

novel orders (Sakai, Kitaguchi, & Hikosaka, 2003). Recently, distinct representations 

of individual movements, chunks of movements, and sequences of chunks have 

been observed in primary motor, premotor, and parietal cortices (Yokoi & 

Diedrichsen, 2019), supporting not only the utility of the framework but also its use in 

the human brain. Further, this sequencing of lower-level parts is seen in hierarchical 

reinforcement learning, which provides a normative framework for investigating such 

an organisation (Botvinick, Niv, et al., 2009; Botvinick, Weinstein, Solway, & Barto, 

2015; Solway et al., 2014; Sutton et al., 1999a). Under this scheme of building high-

level routines from low-level parts, the central architectural principle becomes a 

sequencing of lower-level parts (see Figure 2-1 – Hierarchy of actions required to 

make coffee. Higher-level representations of action can come from two distinct 

operations: (1) sequencing low-level actions (e.g., reach for and grasp the handle of 

a kettle) can provide higher-level representations (e.g., lift kettle); and (2) abstracting 

over the individual actions in a sequence can provide abstract and relational 

representations of the relations between sequence elements independent of their 

content. This second method of abstraction can allow for the same relational 

representation (in purple) to produce distinctly different low-level sequences that 

adhere to the same relational structure (e.g., fetch ground coffee could be replaced 

with grind coffee beans to satisfy prepare grounds).) and a loss of fine detail towards 

a more compressed higher-level representation of order (R. Cooper & Shallice, 

2000; Fuster, 2008; Humphreys & Forde, 1998; Miller, Galanter, & Pribram, 2017; 

Yokoi & Diedrichsen, 2019). High-level representations of sequence therefore lack 

fine temporal detail of the low-level movements involved; they need only store 

information of the order in which constituent actions must be initiated. 
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Sequential order is a feature of clear interest for high-level representation, but 

there is evidence for a more abstract mode of representation at high levels; single 

neuron and population (neuroimaging) data converge on the notion that, at high 

levels, the relations between sequence elements are represented independently of 

the elements themselves (see abstraction in Figure 2-1 – Hierarchy of actions 

required to make coffee. Higher-level representations of action can come from two 

distinct operations: (1) sequencing low-level actions (e.g., reach for and grasp the 

handle of a kettle) can provide higher-level representations (e.g., lift kettle); and (2) 

abstracting over the individual actions in a sequence can provide abstract and 

relational representations of the relations between sequence elements independent 

of their content. This second method of abstraction can allow for the same relational 

representation (in purple) to produce distinctly different low-level sequences that 

adhere to the same relational structure (e.g., fetch ground coffee could be replaced 

with grind coffee beans to satisfy prepare grounds).). Shima, Isoda, Mushiake, and 
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Tanji (2007) identified prefrontal neurons in the Macaque monkey that fired 

selectively in the period prior to execution of any sequence that followed one of the 

three learned sequence structures, and Kornysheva et al. (2019) identified an 

abstract representation of ordinal position that was used for distinct sequences 

composed of different actions in different orders. These findings suggest that the 

brain does not only sequence together lower-level actions towards higher-level 

representations of sequence, but that it also abstracts over the content of actions 

sequences towards a representation of the relations between sequence elements. 

I propose that sequencing and abstraction (see Figure 2-1 – Hierarchy of 

actions required to make coffee. Higher-level representations of action can come 

from two distinct operations: (1) sequencing low-level actions (e.g., reach for and 

grasp the handle of a kettle) can provide higher-level representations (e.g., lift kettle); 

and (2) abstracting over the individual actions in a sequence can provide abstract 

and relational representations of the relations between sequence elements 

Figure 2-1 – Hierarchy of actions required to make coffee. Higher-level representations of action 
can come from two distinct operations: (1) sequencing low-level actions (e.g., reach for and 
grasp the handle of a kettle) can provide higher-level representations (e.g., lift kettle); and (2) 
abstracting over the individual actions in a sequence can provide abstract and relational 
representations of the relations between sequence elements independent of their content. This 
second method of abstraction can allow for the same relational representation (in purple) to 
produce distinctly different low-level sequences that adhere to the same relational structure (e.g., 
fetch ground coffee could be replaced with grind coffee beans to satisfy prepare grounds). 
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independent of their content. This second method of abstraction can allow for the 

same relational representation (in purple) to produce distinctly different low-level 

sequences that adhere to the same relational structure (e.g., fetch ground coffee 

could be replaced with grind coffee beans to satisfy prepare grounds).) as two 

methods of building up higher-level routines of behaviour from lower-level actions 

might be fruitfully combined for a more complete theoretical framework to explain 

how the human brain arranges behaviour. How might we detect such an organisation 

from behavioural data? Movement patterns are famously silent about the generative 

processes that cause them. Further, observable movements represent the direct 

output of low-level modules, and recovering underlying higher-level structure is 

difficult because it is filtered by lower-level modules. Here I propose a new approach 

to extracting abstract hierarchical representations from behavioural data based on 

immediate generalisation of learned sequence structure to produce entirely novel 

sequences of action to meet completely new challenges, a process I refer to as zero-

shot learning of novel behaviours. I reasoned that, if people indeed form relational 

representations during learning complex action sequences, this should allow 

immediate generalisation to new action sequences that share the same relational 

properties but involve distinct low-level actions. For example, consider the abstract 

representation of the steps required to brew coffee in Figure 2-1 – Hierarchy of 

actions required to make coffee. Higher-level representations of action can come 

from two distinct operations: (1) sequencing low-level actions (e.g., reach for and 

grasp the handle of a kettle) can provide higher-level representations (e.g., lift kettle); 

and (2) abstracting over the individual actions in a sequence can provide abstract 

and relational representations of the relations between sequence elements 

independent of their content. This second method of abstraction can allow for the 

same relational representation (in purple) to produce distinctly different low-level 

sequences that adhere to the same relational structure (e.g., fetch ground coffee 

could be replaced with grind coffee beans to satisfy prepare grounds).. If one holds 

this abstract and relational representation of the steps required to brew coffee, then 

when faced with a new coffee maker (say, a filter coffee machine), then one may be 

able to learn quickly how to brew coffee with the new apparatus by using this 

abstract high-level representation of the steps required to produce an entirely novel 

sequence of low-level actions. I propose this generalisation of structure to produce 

novel behaviours as a novel behavioural marker of latent hierarchical structure. 
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In this chapter, I aimed to provide evidence for my proposed framework by 

searching for zero-shot learning of novel behaviours as a behavioural marker of this 

latent structure. I report two experiments (experiments 2-1 and 2-2) on goal-directed 

action which use very different surface presentations, but an identical structure. I 

observed in both tasks that participants learned new sequence structures from only a 

single trial, and crucially I found that participants immediately generalised this 

structural knowledge to produce entirely novel sequences of low-level action on 

subsequent trials without practice. To verify that this zero-shot learning of novel 

behaviours was indeed evidence of a hierarchical system that included both 

sequencing and abstraction, I used computational modelling to explore what were 

the necessary cognitive components of this learning process. I found that I could 

only replicate zero-shot learning with a system that (1) organised behaviour 

hierarchically by sequencing lower-level parts to provide higher-level representations 

of order, (2) made use of relational high-level representations of action, (3) 

abstracted learning about these relational representations over multiple states, and 

(4) directed exploration at appropriate hierarchical levels. In sum, I therefore 

successfully provide evidence for my theoretical framework that explain how 

hierarchies of action are assembled, and I find evidence for an influence of the 

hierarchical organisation I propose on choice in that exploration is targeted at 

specific hierarchical levels. 

2.2 Method 

2.2.1 Participants 

Twelve subjects (mean age = 21.08 years, SD = 2.47; 5 males, 7 females) were 

recruited to complete both tasks in one sitting. The only inclusion criteria were that 

subjects were to be aged between 18-35. The probabilities of observing zero-shot 

learning by chance under the null hypotheses of no hierarchical organisation/no 

relational representations were identified by simulation. The chance probabilities 

were found to be low, ranging from 0.01 (0.03) (Mean/SD) for our simplest flat model 

to 0.12 (0.11) for our non-abstract hierarchical models (see Results for more detail 

on these simulations). We adopted a highly conservative estimate of 0.5 for zero-

shot learning to occur by chance, given that zero-shot learning is ultimately a binary 

choice between paths and so under a conservative atheoretical view this choice 
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becomes analogous to a coin flip. We performed a power calculation to calculate the 

sample size required to detect a large effect (Cohen’s d=0.8) of zero-shot learning 

occurrence exceeding this chance estimate, with an alpha level of 0.05 and a beta 

(power) of 0.8. The large effect and relatively low power here are justified by the 

functional nature of the test for zero-shot learning; we are testing for capacity, which 

if present will be highly expressed, and if absent will not. This showed a sample size 

of 12 participants. Subjects were all told that they would be paid an amount that 

depended on their performance. In both tasks, performing well meant moving from 

the starting location to the correct goal in as few moves as possible (the optimum 

being four). All subjects consented to take part and the study was approved by the 

relevant ethics committee. 

2.2.2 Design & Procedure 
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Our behavioural paradigm sought evidence for specific hierarchical representations 

that specify the relations between actions within a sequence. Participants were to 

navigate around the state map seen in Figure 2-2 – (A) map of state space followed 

by both spatial and procedural tasks; (B) illustration of useful chunk of actions for 

navigating to/from the bottleneck state; (C) illustration of the two distinct sequences 

of action required if the association between SG and G is repeat; (D) illustration of 

the two distinct sequences of action required if the association between SG and G is 

alternate.A in search of a sub-goal location (SG on the map). Visiting the subgoal 

would then allow them to receive reward at a separate goal location (G on the map). 

I used this state map to build two tasks which appeared to be very different (see 
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Figure 2-3 – Surface level appearance for spatial and procedural tasks.) but were in 

fact structurally identical. In a spatial version of the task, participants navigated a set 

of rooms in search of a key (SG) that would open a chest (G). In a procedural 

version of the task, participants solved a puzzle by moving a rod to a specific cube-

face (SG), which would then unlock reward at another cube-face (G). At subsequent 

debriefing, none of the participants reported recognising any similarities between the 

two tasks despite their identical structure. 

The state map underlying both tasks was designed to require a specific 

hierarchy of actions to navigate efficiently around it (see Figure 2-4 – Schematic of 

the hierarchy of actions targeted by the task design. Level 1 comprises the four 

Figure 2-2 – (A) map of state space followed by both spatial and procedural tasks; (B) illustration 
of useful chunk of actions for navigating to/from the bottleneck state; (C) illustration of the two 
distinct sequences of action required if the association between SG and G is repeat; (D) 
illustration of the two distinct sequences of action required if the association between SG and G 
is alternate. 
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primitive actions available in the task. Level 2 contains length-2 sequences that are 

useful for navigating to/from the central bottleneck (see Figure 2-2). Level 3 contains 

the full sequences of action required for an optimal solution of the four possible trial 

types (i.e., for all combinations of sub-goal–goal associations and sub-goal 

locations); and finally at level 4 we find abstractions over the two sub-goal–goal 

associations towards a relational representation of the actions involved. for the full 

hierarchy). The bottleneck in the centre of the map (see Figure 2-2 – (A) map of 

state space followed by both spatial and procedural tasks; (B) illustration of useful 

chunk of actions for navigating to/from the bottleneck state; (C) illustration of the two 

distinct sequences of action required if the association between SG and G is repeat; 

(D) illustration of the two distinct sequences of action required if the association 

between SG and G is alternate.A) needed to be traversed on all trials, and it needed 

to be traversed to move from the bottom half of the space to the top half, making it a 

useful target for behaviour. From the start position (S), either a sequence of (NW, 

NE) or a sequence of (NE, NW) would move participants from the starting location to 

the bottleneck (see Figure 2-2 – (A) map of state space followed by both spatial and 

procedural tasks; (B) illustration of useful chunk of actions for navigating to/from the 

bottleneck state; (C) illustration of the two distinct sequences of action required if the 

association between SG and G is repeat; (D) illustration of the two distinct 

sequences of action required if the association between SG and G is alternate.B). 

Given the symmetry between the bottom and top halves of the map, these same 

sequences were sufficient to then move from the bottleneck to each of the two 
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possible goal locations. The four primitive actions (NE, NW, SE, SW) therefore 

occupy the lowest level (level 1 in Figure 2-4 – Schematic of the hierarchy of actions 

targeted by the task design. Level 1 comprises the four primitive actions available in 

the task. Level 2 contains length-2 sequences that are useful for navigating to/from 

the central bottleneck (see Figure 2-2). Level 3 contains the full sequences of action 

required for an optimal solution of the four possible trial types (i.e., for all 

combinations of sub-goal–goal associations and sub-goal locations); and finally at 

level 4 we find abstractions over the two sub-goal–goal associations towards a 

relational representation of the actions involved.) of my target behavioural hierarchy, 

and the chunks of 2 sequential actions that are used for travelling to and from the 

bottleneck are one hierarchical level above the primitive actions (level 2 in Figure 2-4 

– Schematic of the hierarchy of actions targeted by the task design. Level 1 

comprises the four primitive actions available in the task. Level 2 contains length-2 

sequences that are useful for navigating to/from the central bottleneck (see Figure 

2-2). Level 3 contains the full sequences of action required for an optimal solution of 

the four possible trial types (i.e., for all combinations of sub-goal–goal associations 

and sub-goal locations); and finally at level 4 we find abstractions over the two sub-

goal–goal associations towards a relational representation of the actions involved.; 

see Figure 2-2 – (A) map of state space followed by both spatial and procedural 

tasks; (B) illustration of useful chunk of actions for navigating to/from the bottleneck 

state; (C) illustration of the two distinct sequences of action required if the 

association between SG and G is repeat; (D) illustration of the two distinct 

sequences of action required if the association between SG and G is alternate.B for 

a demonstration). 

On a given trial, only one of the two sub-goals (SGL or SGR) and one of the 

two goals (GL or GR) was active.  For example, in the spatial task the participant 

would discover a key in only one of the two sub-goal rooms and a chest in only one 

of the two goal rooms. Participants were told at the start of a trial which of the two 

sub-goal states they should visit, and this therefore guided which of the two level 2 

sequences they should execute (see Figure 2-2 – (A) map of state space followed by 

both spatial and procedural tasks; (B) illustration of useful chunk of actions for 

Figure 2-3 – Surface level appearance for spatial and procedural tasks. 
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navigating to/from the bottleneck state; (C) illustration of the two distinct sequences 

of action required if the association between SG and G is repeat; (D) illustration of 

the two distinct sequences of action required if the association between SG and G is 

alternate.B). Importantly, participants were not told which of the two goal locations 

was active, but the location of the goal could be predicted from the location of the 

sub-goal. Participants were told that they could predict where the goal would be from 

where the sub-goal was, but they were not told how to make this prediction. There 

were two possible associations between sub-goal and goal: (1) the goal could be on 

the same side as the sub-goal, or (2) the goal and sub-goals could be on different 

sides. I refer to the first of these two associations as repeat, and second as alternate. 

If a participant selected the correct level 2 sequence such that they travelled to the 

bottleneck via the active sub-goal, then upon reaching the bottleneck they would 

need to decide between repeating the level 2 sequence that got them there or 

alternating to execute the other of the two level 2 sequences. The correct decision 

here would depend on the current association between sub-goal and goal: if the 

association was repeat, then the correct decision is to repeat whatever level 2 

sequence used to reach the bottleneck, and if the association is alternate, then one 

should alternate. This repetition of or alternation between level 2 sequences 

establishes four higher-level representations of the sequences of actions required to 

solve the task (level 3 in Figure 2-4 – Schematic of the hierarchy of actions targeted 

by the task design. Level 1 comprises the four primitive actions available in the task. 

Level 2 contains length-2 sequences that are useful for navigating to/from the central 

bottleneck (see Figure 2-2). Level 3 contains the full sequences of action required for 

an optimal solution of the four possible trial types (i.e., for all combinations of sub-

goal–goal associations and sub-goal locations); and finally at level 4 we find 

abstractions over the two sub-goal–goal associations towards a relational 

representation of the actions involved.): there are two repetition sequences (one 

each for travelling via the left and right sub-goal, see Figure 2-2 – (A) map of state 

space followed by both spatial and procedural tasks; (B) illustration of useful chunk 

of actions for navigating to/from the bottleneck state; (C) illustration of the two 

distinct sequences of action required if the association between SG and G is repeat; 

(D) illustration of the two distinct sequences of action required if the association 

between SG and G is alternate.C), and two alternation sequences (again, one each 

for travelling via the left and right sub-goal, see Figure 2-2 – (A) map of state space 
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followed by both spatial and procedural tasks; (B) illustration of useful chunk of 

actions for navigating to/from the bottleneck state; (C) illustration of the two distinct 

sequences of action required if the association between SG and G is repeat; (D) 

illustration of the two distinct sequences of action required if the association between 

SG and G is alternate.D). Finally, there is potential for an abstraction over the level 2 

sequences being repeated in level 3 such that my participants would represent 

repetition and alternation independently of the level 2 action sequences being 

repeated or alternated (level 4 in Figure 2-4 – Schematic of the hierarchy of actions 

targeted by the task design. Level 1 comprises the four primitive actions available in 

the task. Level 2 contains length-2 sequences that are useful for navigating to/from 

the central bottleneck (see Figure 2-2). Level 3 contains the full sequences of action 

required for an optimal solution of the four possible trial types (i.e., for all 

combinations of sub-goal–goal associations and sub-goal locations); and finally at 

level 4 we find abstractions over the two sub-goal–goal associations towards a 

relational representation of the actions involved.). Crucially, participants were never 

explicitly told whether they should repeat or alternate, but they could derive this 

information by correctly representing the relation between the sub-goal and the goal, 

i.e., by representing the hierarchical and relational structure of the task. 

Figure 2-4 – Schematic of the hierarchy of actions targeted by the task design. Level 1 
comprises the four primitive actions available in the task. Level 2 contains length-2 sequences 
that are useful for navigating to/from the central bottleneck (see Figure 2-2 – (A) map of state 
space followed by both spatial and procedural tasks; (B) illustration of useful chunk of actions for 
navigating to/from the bottleneck state; (C) illustration of the two distinct sequences of action 
required if the association between SG and G is repeat; (D) illustration of the two distinct 
sequences of action required if the association between SG and G is alternate.). Level 3 contains 
the full sequences of action required for an optimal solution of the four possible trial types (i.e., 
for all combinations of sub-goal–goal associations and sub-goal locations); and finally at level 4 
we find abstractions over the two sub-goal–goal associations towards a relational representation 
of the actions involved. 
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The tasks were organised into three blocks of at least 30 trials each. In the 

first block, the sub-goal-to-goal association was fixed. In the two blocks that followed, 

the association between sub-goal and goal would switch on one of the first 10 trials, 

and participants would then complete 30 trials under the new association (see Figure 

2-5 – (A) An example of the procedure followed by each of the tasks (note that the 

order of SG-G associations was counterbalanced over participants); (B) Observed 

behaviour of 12 subjects on each of the spatial and procedural tasks. The first 

column plots behaviour of all 12 subjects in the first block of each task to 

demonstrate an initial phase of learning and an eventual convergence onto the 

optimal solution to both tasks. The following two columns present recovery after a 

switch in SG-G association. The vertical orange/blue bars are the switch trials (these 

correspond to the underlined switch trials in A), and the hollowed-out points that 

follow plot behaviour on the novel post-switch trial for all twelve participants (these 

correspond to the underlined novel post-switch trials in A). Across the board, for any 

number of trials in between the switch and novel post-switch trials, participants were 

more likely than not to exhibit optimal behaviour, and this was true in both spatial 

and procedural tasks.A). I refer to the trials where these switches in association 

occur as switch trials. Participants were informed in the instructions that the 

associations between sub-goal and goal could occasionally change. A switch trial 

could occur on a trial where the sub-goal was present in either of the right or left 

locations, and so participants first experienced the new association along only one of 

two possible paths through the environment. For example, one participant might 

have experienced a switch from repeat to alternate on a trial where the sub-goal was 

on the right, and they could then learn how to act under alternate when the sub-goal 

is on the right. When the sub-goal is next on the left, although the sequence of 

actions required will adhere to the same alternate structure learned via the right, it 

requires a completely novel sequence of low-level actions (compare the two 

alternate paths in Figure 2-2 – (A) map of state space followed by both spatial and 

procedural tasks; (B) illustration of useful chunk of actions for navigating to/from the 

bottleneck state; (C) illustration of the two distinct sequences of action required if the 

association between SG and G is repeat; (D) illustration of the two distinct 

sequences of action required if the association between SG and G is alternate.D). I 

refer to the first trial along this inexperienced path following a switch in sub-goal-to-

goal associations the novel post-switch trial, and I refer to the novel sequences of 
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actions required on these trials as the novel paths. Given that the sub-goal is 

randomly allocated to the right or left trial by trial, the novel post-switch trial might not 

necessarily follow immediately after the switch: in my dataset the maximum number 

of trials between a switch trial and its associated novel post-switch trial was four). 

2.2.3 Model Simulations 

To simulate the behaviour of four models, I established a grid of parameter values 

for all learning rates in [0.2, 0.4, 0.6, 0.8, 1.0] and all temperatures in [0.2, 0.4, 0.6, 

0.8, 1.0]. For each combination of learning rate and temperature, I simulated the 

behaviour of each model 20 times. Of these 20 simulated datasets, I then 

investigated how often zero-shot learning of novel paths following a switch in sub-

goal–goal association occurred. The simulations included two blocks of 100 trials, 

with the sub-goal alternating between right and left every other trial. The switch in 

association would fall on the first trial of the second block, meaning that these 

models had only a single trial to learn the new association before needing to apply 

any learnings to guide behaviour on the novel post-switch trial. 

2.2.4 Model Fitting Procedure 

To fit my models to data, I used maximum likelihood estimation. I took the negative 

summed log likelihoods of each individual action given a model, its parameters, and 

all “experience” up to that action, and I minimised this value by adjusting the relevant 

free parameters for each model using a limited memory BFGS method of parameter 

estimation (Saputro & Widyaningsih, 2017). 

2.3 Results 

2.3.1 Immediate Acquisition of Novel Sequences 

On both spatial and procedural tasks, all participants learned within the first nine 

trials how to travel to the correct goal via the active sub-goal in an optimal four 

moves (for the spatial task, median number of trials taken to make the optimal four 

moves to goal was 3.5, inter-quartile range = 6.25; for the procedural task, median = 

4.5, IQR = 2.75). Learning was slightly slower on the procedural task (see the 

shallower rate of learning in Figure 2-5 – (A) An example of the procedure followed 
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by each of the tasks (note that the order of SG-G associations was counterbalanced 

over participants); (B) Observed behaviour of 12 subjects on each of the spatial and 

procedural tasks. The first column plots behaviour of all 12 subjects in the first block 

of each task to demonstrate an initial phase of learning and an eventual 

convergence onto the optimal solution to both tasks. The following two columns 

present recovery after a switch in SG-G association. The vertical orange/blue bars 

are the switch trials (these correspond to the underlined switch trials in A), and the 

hollowed-out points that follow plot behaviour on the novel post-switch trial for all 

twelve participants (these correspond to the underlined novel post-switch trials in A). 

Across the board, for any number of trials in between the switch and novel post-

switch trials, participants were more likely than not to exhibit optimal behaviour, and 

this was true in both spatial and procedural tasks.B), though behaviour did 

nevertheless converge on the optimum of four moves to goal. The slower rate of 

learning on the procedural task may be due to the unfamiliar setting. Once 

participants found the optimal solution, they generally continued to perform optimally 

(see the stable optimal behaviour in block 1 of Figure 2-5 – (A) An example of the 

procedure followed by each of the tasks (note that the order of SG-G associations 

was counterbalanced over participants); (B) Observed behaviour of 12 subjects on 

each of the spatial and procedural tasks. The first column plots behaviour of all 12 

subjects in the first block of each task to demonstrate an initial phase of learning and 

an eventual convergence onto the optimal solution to both tasks. The following two 

columns present recovery after a switch in SG-G association. The vertical 

orange/blue bars are the switch trials (these correspond to the underlined switch 

trials in A), and the hollowed-out points that follow plot behaviour on the novel post-

switch trial for all twelve participants (these correspond to the underlined novel post-

switch trials in A). Across the board, for any number of trials in between the switch 

and novel post-switch trials, participants were more likely than not to exhibit optimal 

behaviour, and this was true in both spatial and procedural tasks.B), with only minor 

and infrequent deviations, presumably reflecting lapses in attention. 

Our central interest here was in how quickly my participants could recover 

from a switch in the associations between sub-goal and goal. Specifically, I wanted 

to ask whether participants would behave optimally on novel post-switch trials 

despite having no experience of travelling along the corresponding novel path. That 
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is, I was searching for zero-shot learning. This would require a high-level relational 

representation of alternation and repetition (as in level 4 of Figure 2-4 – Schematic of 
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the hierarchy of actions targeted by the task design. Level 1 comprises the four 

primitive actions available in the task. Level 2 contains length-2 sequences that are 
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useful for navigating to/from the central bottleneck (see Figure 2-2). Level 3 contains 

the full sequences of action required for an optimal solution of the four possible trial 
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types (i.e., for all combinations of sub-goal–goal associations and sub-goal 

locations); and finally at level 4 we find abstractions over the two sub-goal–goal 
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associations towards a relational representation of the actions involved.) that 

participants could use to adaptively generate completely novel sequences of 
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behaviour that followed these relational structures. For example, participants could 

learn that alternating via the left sub-goal following the switch would mean that they 

Figure 2-5 – (A) An example of the procedure followed by each of the tasks (note that the order 
of SG-G associations was counterbalanced over participants); (B) Observed behaviour of 12 
subjects on each of the spatial and procedural tasks. The first column plots behaviour of all 12 
subjects in the first block of each task to demonstrate an initial phase of learning and an eventual 
convergence onto the optimal solution to both tasks. The following two columns present recovery 
after a switch in SG-G association. The vertical orange/blue bars are the switch trials (these 
correspond to the underlined switch trials in A), and the hollowed-out points that follow plot 
behaviour on the novel post-switch trial for all twelve participants (these correspond to the 
underlined novel post-switch trials in A). Across the board, for any number of trials in between 
the switch and novel post-switch trials, participants were more likely than not to exhibit optimal 
behaviour, and this was true in both spatial and procedural tasks. 
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should also alternate via the right sub-goal, and upon first visiting the right sub-goal 

they would know immediately how to solve the task. I found that most of my 

participants selected the optimal path on novel post-switch trials; of a total of 48 

novel post-switch trials, behaviour on 37 of these trials was optimal (𝜒2(1) =

14.08, 𝑝 < .001). Further, the proportions of post-switch trials that were optimal for 

each subject deviated significantly from a conservative chance level of 0.5 (𝑡(11) =

3.22, 𝑝 = .008). The number of intervening trials in between the switch and novel 

post-switch trials had no significant effect (the number of intervening trials did not 

predict a significant portion of variance in steps to goal on novel post-switch trials, 

𝐹(1, 46) = 0.94, 𝑝 = .336). That is, participants spontaneously generalised learned 

sub-goal–goal associations to produce entirely novel and optimal sequences of 

behaviour, an observation I refer to as zero-shot learning. Crucially, the level 1 

actions on switch and novel post-switch trials are entirely different, which requires an 

abstraction over the sequences produced on switch trials to later produce a novel 

sequence of behaviour that follows the same relational structure.  

Note that 0.5 is a very conservative chance level for the likelihood of 

mistakenly performing zero-shot learning of the novel path following a switch. In 

reality, if my participants understood nothing of the high-level relations between sub-

goal and goal, then there would be no reason to think that any change in association 

between the left sub-goal and its corresponding goal location should result in a 

change in association between the right sub-goal and its corresponding goal 

location. As a result, if a switch to alternate trial fell on a trial where the sub-goal was 

on the left, when next encountering a trial where the sub-goal was on the right, the 

rational choice would be to follow the association that was active before the switch 

(repeat) and not the new association learned via the left sub-goal (alternate), making 

the chance level for alternating via the right sub-goal 0. In fact, I found a mean 

proportion of 0.77 (SD = 0.29) of novel post-switch trials being optimal over my 12 

subjects, providing strong evidence for the ability to perform zero-shot learning of 

novel sequences of action. 

2.3.2 Computational Models 

To verify that zero-shot learning of novel behaviours was as I hypothesised a marker 

of hierarchically organised behaviour that makes use of abstract relational 
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representations of action and to search for any other necessary cognitive 

components of the process, I built a systematically organised set of four different RL 

models that aimed to capture my participants’ behavioural data (see Table 2-1 – Key 

differences between my four models. for a summary of differences between the four 

models). The first and simplest model (Model 1 or flat-history) is the only non-

hierarchical model included, meaning it only has access to the four primitive actions 

(see Figure 2-4 – Schematic of the hierarchy of actions targeted by the task design. 

Level 1 comprises the four primitive actions available in the task. Level 2 contains 

length-2 sequences that are useful for navigating to/from the central bottleneck (see 

Figure 2-2). Level 3 contains the full sequences of action required for an optimal 

solution of the four possible trial types (i.e., for all combinations of sub-goal–goal 

associations and sub-goal locations); and finally at level 4 we find abstractions over 

the two sub-goal–goal associations towards a relational representation of the actions 

involved.) in the task. It makes use of memory to solve the task (which is required 

given that the task is non-Markovian), where the remaining four models use 

hierarchically organised action to solve the task. I used standard Q-learning over 

temporal difference prediction errors (Sutton, 1988; Watkins & Dayan, 1992), and 

modelled participants’ choices using a softmax function. Memory was implemented 

by expanding the Q matrix to include a third dimension of sub-goal location (in 

addition to two standard dimensions of current state and candidate action). Including 

this third dimension meant that Q-values for all state-action pairs were sensitive to 

the location of the sub-goal on any given trial. This first model provided a non-

hierarchical baseline against which I could compare the performance of my more 

complex hierarchical RL models. 
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The three remaining models were all hierarchical. All three follow the options 

framework (Sutton et al., 1999a), which supplements the primitive actions available 

in standard, flat RL with temporally-abstract options, corresponding to superordinate 

chunks of behaviour. The three HRL models had access to particular subsets of the 

behavioural hierarchy outlined in Figure 2-4 – Schematic of the hierarchy of actions 

targeted by the task design. Level 1 comprises the four primitive actions available in 

the task. Level 2 contains length-2 sequences that are useful for navigating to/from 

the central bottleneck (see Figure 2-2). Level 3 contains the full sequences of action 

required for an optimal solution of the four possible trial types (i.e., for all 

combinations of sub-goal–goal associations and sub-goal locations); and finally at 

level 4 we find abstractions over the two sub-goal–goal associations towards a 

relational representation of the actions involved.. Models 2 (simple-hierarchical) and 

3 (structured-hierarchical) could carry out the options described in the first three 

levels of the full behavioural hierarchy, and only model 4 (abstract hierarchical) held 

the abstract and relational representations of repetition and alternation present in 

level 4 of the behavioural hierarchy found in Figure 2-4. Model 4 also abstracted 

learning over trials where the sub-goal was on the right and trials where the sub-goal 

was on the left. This was implemented simply by applying all learning updates for 

each of two origin states (which mapped onto each of the two possible sub-goal 

Table 2-1 – Key differences between my four models. 
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locations) to the other state. That is, if the agent learned that alternating from the 

right origin state led to reward, it would also learn that alternating from the left origin 

state led to reward (and vice versa). 

I hypothesised that a preference to explore at high rather than low levels was 

central to the ability to quickly learn and use high-level relational rules, and to test 

this I implemented a specific modification of the softmax function in models 3 and 4. 

Whereas standard softmax would include all actions/options no matter their 

hierarchical level, my structured-softmax function chooses between only the highest-

level options available given the current state of the agent.   In practice, models 3 

and 4 therefore choose only between the highest-level actions available in a given 

state. 

I aimed to do two things with these four models: first, I used a range of 

simulations to see how well the various models could reproduce the zero-shot 

learning of novel paths observed in the behaviour of my participants. Second, I fit 

these models to behaviour to move beyond the few trials where learning of novel 

paths could take place and to investigate the global process of learning to solve the 

entire task. 

2.3.3 The Necessary Components of Zero-Shot Learning 

To estimate how frequently each of my four models could reproduce zero-shot 

learning by behaving optimally on novel post-switch trials, I simulated the behaviour 

from each model for a range of parameter values. I manipulated learning rate (alpha) 

and temperature (beta) to establish a grid of parameter values (each of these two 

parameters could occupy any of the following values: 0.2, 0.4, 0.6, 0.8, 1.0), and for 

each combination of learning rate and temperature within this grid I simulated 

behaviour on the task 20 times. From these simulations, I computed the proportion of 

novel post-switch trials where behaviour was optimal. 

 I found that only model 4 (abstract-hierarchical) exhibited proportions of zero-

shot learning close to those observed empirically. As expected, my non-hierarchical 

baseline produced almost no zero-shot learning, and this model provides a good 

estimate of the true chance level of behaving optimally on novel post-switch trials if I 

make no assumptions about the structure of behaviour. Models 2 (simple-
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hierarchical) and 3 (structured hierarchical) lead to modest incremental 

improvements as the organisation of behaviour becomes more sophisticated. 

However, these two models only produce zero-shot learning by chance; they must 

explore the options available to them on novel post-switch trials, and should they 

happen to explore by selecting the newly optimal high-level routine of action, I would 

then see zero-shot learning. Model 4 offers a qualitative change in this process, as it 

is able to learn from one context how to behave in another. That is, model 4 can 

learn the abstract relations between sub-goal and goal from experience with only 

one of the two sub-goal locations, and it can apply these learnings to guide 

behaviour when it next encounters the other sub-goal. Unsurprisingly, therefore, the 

success of model 4 in capturing zero-shot learning grows monotonically with learning 

Figure 2-6 – (A) Mean (± SD taken from the proportion of incidences of zero-shot learning over 
all 20 replications for each combination of learning rate & temperature) proportion of replications 
that exhibited zero-shot learning for a range of learning rates and temperatures for all four 
models, with the empirical means plotted for comparison. We see incremental improvements as 
we increase the complexity of my hierarchical models, but only model 4 is capable of reaching 
near-human performance. (B) Plot of how the ability of model 4 (our most successful model from 
A) to capture zero-shot learning varies with learning rate – I find a monotonic increase in success 
with learning rate. 



 73 

rate (see Figure 2-6 – (A) Mean (± SD taken from the proportion of incidences of 

zero-shot learning over all 20 replications for each combination of learning rate & 

temperature) proportion of replications that exhibited zero-shot learning for a range 

of learning rates and temperatures for all four models, with the empirical means 

plotted for comparison. We see incremental improvements as we increase the 

complexity of my hierarchical models, but only model 4 is capable of reaching near-

human performance. (B) Plot of how the ability of model 4 (our most successful 

model from A) to capture zero-shot learning varies with learning rate – I find a 

monotonic increase in success with learning rate.B). A higher learning rate allows 

the model to learn new abstract relations between sub-goal and goal from only a 

single trial. In summary, models 1, 2, and 3 fail to capture zero-shot learning of novel 

behaviours, but model 4 succeeds. Neither hierarchical organisation nor a 

preference for high-level exploration alone were sufficient to capture zero-shot 

learning, but when combined with abstract relational representations of action and an 

ability to abstract learning over distinct states, all four components allowed model 4 

to exhibit a near-human ability to generalise learned structure to produce entirely 

novel sequences of action. 

2.3.4 Model Fits to Complete Span of Behaviour 

Our models were designed to capture one key behaviour of interest, namely zero-

shot learning at the novel post-switch trial. However, zero-shot learning corresponds 

to a single sequence of actions within a much larger sequence of navigational or 

problem-solving actions (i.e., the entire task). I therefore additionally fitted these 

models to the full sequence of behaviour in the task, to investigate their generality, in 

addition to local fit. However, my hierarchical models learned to use built-in options 

that were designed to meet the demands of the task, while in reality the brain first 

needs to learn from experience with the task what these useful options might be. 

Practically, this means that my hierarchical models are unable to capture the initial 

period of learning how to solve the task. I reasoned that this reflects the intuition that 

an agent in a novel environment must first explore the outcomes of their low-level 

actions and learn the structure of their environment, and only then can they build a 

hierarchical structure able to exploit the relational and structural features of the task. 

I therefore decided to hybridise my models by using model 1 (flat-history) again as a 



 74 

non-hierarchical baseline and to additionally combine each of the hierarchical 

models in turn with model 1 to establish three hybrid models that would include both 

flat and hierarchical systems. I included an arbitration process to apportion control of 

behaviour between flat and hierarchical systems, which was controlled by an 

additional parameter, omega. When omega > 0.5, the flat system predominates, 

while for omega < 0.5 the hierarchical system predominates. The value of omega 

decays exponentially over time reflecting a shift, with experience, from a flat system 

of behavioural control to a hierarchical organisation of action. The brain must begin 

the task with a flat organisation of behaviour (as it does not yet know the structure of 

the task) but with time discover a useful hierarchy of actions, and this approach of 

hybridising my hierarchical models was intended to capture this transition from flat to 

hierarchical behaviour while comparing the ability of each of my hierarchical models 

to account for global behaviour in the task. 

 We fit our hybrid models to behaviour using standard maximum likelihood 

estimation. All four models were fit with only two free parameters – learning rate, and 

Figure 2-7 – Fits of the flat-history (baseline) and hybrid models to all participants. For 11 of 12 
participants, the hybrid-abstract model clearly fits best, with the one remaining participant being 
fit best by the baseline flat model. 
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temperature. The hybrid models set omega (governing arbitration between flat and 

hierarchical systems) and its decay parameter to be fixed at values of 0.9 and 0.95 

respectively. Fixing these parameters was necessary, as in order to fit our hybrid 

model to behaviour, we had to permit occasional errors in behaviour to be attributed 

to the flat system included in the model whatever the value of omega. In practice, 

this means that we would occasionally allow the flat system to take control despite 

the value for omega being below the threshold that would allow this to take place as 

per the model specification. This slight deviation from the specification was 

necessary because once the hierarchical system takes control (i.e., once omega 

decays to a value below 0.5), the hierarchical models that use our modified 

structured-softmax policy (models 3 and 4) can no longer account for actions that do 

not conform to one of the highest-level representations of action available to these 

models. This would result in infinitely poor fits. The errors observed empirically at this 

late stage of the task were presumably due to lapses in attention and they are not of 

central interest here, and so we allow for this slight deviation from the model 

specification to avoid this issue. This was the case for all hybrid models, and so it 

does not impair comparison between them. 

I found that the hybrid version of model 4 provided the best fit to most 

participants (see Figure 2-7 – Fits of the flat-history (baseline) and hybrid models to 

all participants. For 11 of 12 participants, the hybrid-abstract model clearly fits best, 

with the one remaining participant being fit best by the baseline flat model. for fits, 

and Figure 2-8 – Average simulated behaviour for each model with best fitting 

Figure 2-8 – Average simulated behaviour for each model with best fitting parameters to all 12 
participants. For each model, behaviour under the best fitting parameters was simulated 20 
times, and averages were taken over all replications and over all participants. 
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parameters to all 12 participants. For each model, behaviour under the best fitting 

parameters was simulated 20 times, and averages were taken over all replications 

and over all participants. for average predicted behaviour given best-fitting 

parameters). Of the twelve participants: eleven were fit best by hybrid model 4, and 

one was fit best by the flat baseline (flat-history). In addition to hybrid model 4 

capturing behaviour, it also resulted in parameters that consistently exhibit zero-shot 

learning. I earlier showed that learning rate was the primary factor determining the 

success of model 4 in capturing zero-shot learning, and zero-shot learning was best 

captured by fast learning rates (see Figure 2-6 – (A) Mean (± SD taken from the 

proportion of incidences of zero-shot learning over all 20 replications for each 

combination of learning rate & temperature) proportion of replications that exhibited 

zero-shot learning for a range of learning rates and temperatures for all four models, 

with the empirical means plotted for comparison. We see incremental improvements 

as we increase the complexity of my hierarchical models, but only model 4 is 

capable of reaching near-human performance. (B) Plot of how the ability of model 4 

(our most successful model from A) to capture zero-shot learning varies with learning 

rate – I find a monotonic increase in success with learning rate.). Consistent with 

this, the best fitting learning rates of hybrid model 4 to observed behaviour were 

close to 1 (mean = 0.97, SD = 0.06), and these learning rates did not deviate 

significantly from the learning rate found to most consistently produce zero-shot in 

model 4 (no significant deviation from the optimal learning rate of 1, 𝑡(11) =

−1.74, 𝑝 = .110). Thus, the hybrid model achieved generality while still capturing the 

key behaviour of interest. Hybrid model 4 fits well to behaviour, and it does so by 

fitting parameters that I have demonstrated to facilitate immediate generalisation of 

learned patterns of behaviour to generate completely novel sequences of action. 

Hybridised versions of models 2 and 3 performed poorly – for all but one 

participant, both were outperformed by the flat model. This is owed to their inability to 

capture zero-shot learning. Given that these models cannot reliably capture zero-

shot learning, not only are individual instances of zero-shot learning unlikely, but all 

following trials that perform the same sequence of actions are unlikely because 

these models receive no opportunity to unlearn the previous association between 

sub-goal and goal. For example, if the original association is repeat, model 3 will 

learn to solve the task by learning the two paths that implement repetition via the two 
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sub-goals. However, consider a participant that experiences a switch to alternate via 

the right sub-goal, and then learns immediately what to do via the left sub-goal (i.e., 

a participant that performs zero-shot learning of the left alternate path). Model 3 

would, in this case, be offered no opportunity to learn that repeating via the right is 

no longer rewarding and given that model 3 learns only by experience with its 

environment (and it cannot learn by generalising abstract knowledge), it would 

expect repetition to be more likely than it was in reality because it expects repetition 

to still lead to reward. This was an unexpected finding: the hierarchical organisation 

used by models 2 and 3 was detrimental to their fits to behaviour, and this was owed 

to the inflexibility of these hierarchies and the omission of the abstraction step I 

outlined in Figure 2-1 – Hierarchy of actions required to make coffee. Higher-level 

representations of action can come from two distinct operations: (1) sequencing low-

level actions (e.g., reach for and grasp the handle of a kettle) can provide higher-

level representations (e.g., lift kettle); and (2) abstracting over the individual actions 

in a sequence can provide abstract and relational representations of the relations 

between sequence elements independent of their content. This second method of 

abstraction can allow for the same relational representation (in purple) to produce 

distinctly different low-level sequences that adhere to the same relational structure 

(e.g., fetch ground coffee could be replaced with grind coffee beans to satisfy 

prepare grounds).. 

2.4 Discussion 

Humans readily learn and produce action sequences based on high-level relational 

features that cannot easily be accounted for by simple chaining or flat reinforcement 

learning models. Here, I presented a novel and purely behavioural marker of the 

otherwise latent hierarchical structure of behaviour; I found that human participants 

were able to apply learned structural knowledge to generate completely novel 

sequences of behaviour that met the demands of an evolving environment. This 

ability to learn to produce novel sequences of behaviour without practice was only 

captured by a (1) hierarchical reinforcement learning model that contained high-level 

and (2) relational representations of action, similar to those observed in primate 

prefrontal cortex (Shima et al., 2007), as well as an (3) ability to abstract learning 

over multiple states and a (4) preference to explore at high levels of representation. 
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Simpler models lacking hierarchical structure could not capture this aspect of 

performance, nor could hierarchical models that lacked relational representations of 

action; all four components listed were necessary. Further, I found that immediate 

generalisation of the structure of behaviour from one context to another also 

depended on fast learning rates, and the best fits to behaviour were found by this 

same model of abstract hierarchy (paired with a flat system to describe initial phases 

of learning) with near-perfect learning. Learning how to behave in complex and 

dynamic environments involves progressively building the hierarchies of behaviour 

necessary to navigate through them, and I suggest that human agents do this not 

only be sequencing lower-level actions towards higher-level representations of order, 

but also by abstracting over actions in order to achieve a flexible, efficient, and 

adaptive organisation of action. 

2.4.1 Hierarchical Organisation, Relational Abstraction 

To reproduce the immediate acquisition of novel behaviours, I found that a 

hierarchical organisation of action was necessary, and I found that this should 

include representations of the relations between sequence elements and not only 

simpler chunks of primitive actions. These two components combine insights from 

the study of motor control in human and non-human primates to provide a more 

complete view of hierarchical control. Studies investigating the sequencing of action 

suggest that the brain holds representations for action at several distinct levels of 

detail (Botvinick, 2007; Koechlin et al., 2003; Lashley, 1951; Yokoi & Diedrichsen, 

2019). For example, representations of individual actions, of chunks of actions, and 

of sequences of chunks have been found in the motor and premotor areas of the 

human brain (Yokoi & Diedrichsen, 2019). Separately, abstraction has been 

observed in the shape of relational representations of action that hold information 

about the relations between the elements of a sequence (such as their position or 

whether they will be repeated) independently of the actions that make up the 

sequence found in primate prefrontal cortex (Shima et al., 2007) and in human 

parahippocampal and cerebellar areas (Kornysheva et al., 2019). 

Here, I found relational representations (e.g., repeat vs. alternate) over 

sequences (e.g., repeat-left vs. repeat-right) composed of chunks (e.g., (NE, NW) vs. 

(NW, NE)) of primitive actions (e.g., NE, NW, SE, SW). This organisation involves 
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sequencing of lower-level chunks to establish higher-level representations of order, 

and abstraction to represent the relations between the lower-level sequences. 

Evidence has been presented for both of these operations in isolation: (Yokoi & 

Diedrichsen, 2019) recorded representations of individual movements, chunks of 

movements, and sequences of chunks (sequencing); and Shima and colleagues 

(2007) identified individual neurons in primate prefrontal cortex that responded to 

any sequence containing an alternation between individual, primitive actions 

(abstraction). My results imply the use of relational representation of repetition of or 

alternation between chunks of action, which requires sequencing to form the chunk 

and abstraction to form the relational representation. My research therefore ties 

together sequencing and abstraction to demonstrate that both are used in tandem to 

generate progressively higher-level representations of action and to produce 

adaptive and flexible hierarchies of behaviour. 

Hierarchy and relational structure also form a bridge between the study of 

sequential motor control (Lashley, 1951) and hierarchical reinforcement learning 

(Botvinick, Niv, et al., 2009). To the best of my knowledge, hierarchical reinforcement 

learning has considered only temporal abstraction (as in the options framework, 

Sutton et al., 1999) as a method for building higher-level representations of action 

from lower-level parts. This involves building increasingly high-level representations 

of action by sequencing together lower-level actions. I have demonstrated that 

relationally abstract representations of action similar to those identified in the brain 

(Kornysheva et al., 2019; Shima et al., 2007) can and should be included in 

hierarchical reinforcement learning models to accurately capture human behaviour. 

Close contact can be made here to investigations of abstraction over task structures 

and stimuli within RL problems (Baram, Muller, Nili, Garvert, & Behrens, 2021; 

Whittington, Muller, Mark, Barry, & Behrens, 2018), though note that I describe 

abstraction over the agent’s own actions, which is distinct from (but related to) task 

structure. Relational abstraction over actions led to a powerful and impressively fast 

ability to generalise behaviour between contexts, and it may therefore be of 

computational benefit for HRL. In particular, relational abstraction appeared essential 

for the key behavioural target of this paper: zero-shot learning, or the ability to 

produce entirely novel sequences of action by generalising learned relational 

representations to new contexts. In this way, a hierarchical organisation led not only 
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to an efficient storage of action that minimised computational cost, but also to a 

beneficial ability to learn quickly how to adapt that maximised reward earned. 

2.4.2 State Abstraction 

Abstract representation of action was useful for my HRL models only because of a 

third component I identified as necessary for immediate acquisition of novel 

behaviours: state abstraction (Abel, 2019; Andre & Russell, 2002; Botvinick, Niv, et 

al., 2009; Radulescu, Niv, & Ballard, 2019). I allowed my most complex HRL model 

(model 4) to generalise whatever it learned from one context to other relevant 

contexts. In my task, this meant being able to generalise learning between trials 

where the sub-goal was on the right and trials where the sub-goal was on the left. 

Abstraction over behaviour and the generalisation of learning over states are tightly 

linked. Abstract representations of behaviour are useful because people often want 

or need to execute sequences of action that are structurally similar but differ in the 

low-level details. However, sequences will differ in low-level details only when they 

are performed in different contexts. Thus, abstraction over behaviour is only useful if 

one can apply whatever is learned about abstract behaviour to other contexts where 

it is relevant and useful. For example, I do not need to learn how to brew a coffee 

anew each time I visit a new kitchen – I can reapply my learnings from one kitchen to 

another, i.e., I can abstract over states. Further, if the layout of a new kitchen is 

different to any I have encountered before, I can still make coffee so long as I 

represent the order of the high-level steps involved divorced from the low-level 

actions that would implement those steps (i.e., I hold an abstract representation of 

the sequence) such that I can adapt the precise low-level actions to match the new 

layout. To summarise, I argue that abstraction over behaviour and abstraction of 

learning over states together offer a powerful, adaptive, and efficient framework for 

learning how to behave. In this study, I show how these two crucial cognitive 

elements coexist in complex goal-directed action sequences. 

2.4.3 Preference for High-Level Exploration 

The fourth and final component I identified as necessary for zero-shot learning of 

novel behaviours was a preference to explore at high levels. In my models, this 

constraint was a directive, rather than a preference – the two models with my novel 
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structured softmax function were required to select only between the highest-level 

options available to them in a given state. Exploration at high levels will generally be 

more valuable and efficient than low-level exploration. This is most apparent at the 

extremes: there is little to no value in exploring new methods of reaching out and 

grasping the handle of a kettle (low-level), but there may well be value in exploring 

alternative coffee machines or sources of coffee beans. While exploration-

exploitation trade-offs are well-established in psychology (Mehlhorn et al., 2015), 

their interaction with hierarchical representation has not been explicitly considered. 

In my task, the changes in the environment that prompt exploration are relevant for 

high-level representations of behaviour, so I cannot disentangle a genuine 

preference to explore at higher-levels of abstraction from a preference for level-

appropriate exploration. Future research could change environments in different 

ways, prompting a need to explore at distinct levels of abstraction, to clarify this 

point. However, I see the cognitive efficiency of high-level exploration as a prima 

facie advantage for a genuine preference for exploration at higher levels. Whether 

this is correct or not, it seems the case that pruning the action space by exploring at 

appropriate or high-levels would be beneficial for effectively and efficiently resolving 

the exploration-exploitation trade-off. 

2.4.4 Limitations & Future Directions 

Although I identified these four components as necessary for reliably producing zero-

shot learning of novel sequences of action, they were not sufficient by themselves to 

exactly match human behaviour. In fact, my participants showed more frequent zero-

shot learning than any of my models. I suggest this limitation arises because my 

models lack a sophisticated mode of directed exploration that would build on the 

level-appropriate exploration outlined above. My participants presumably 

immediately recognised that the rules of the task had changed upon visiting a goal 

location they knew to previously hold reward, only to find no reward upon reaching it. 

They could then rule out the association they previously believed to be true and 

engage with directed exploration of alternatives, rather than exploring either of the 

two high-level options they have available to them. This requires incorporating a 

more sophisticated logic into how my agents explored alternative actions in response 

to changes in the environment. As already discussed, future research might 
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investigate how more sophisticated exploration interacts with a hierarchical 

organisation of behaviour to efficiently and adaptively guide choice. 

Hierarchical models provided the best account of the key specific target 

behaviour of zero-shot learning, from the set of models that I compared. However, 

hierarchical models alone are insufficient to explain all behaviour for the simple fact 

that in order to form a hierarchy of behaviour one must understand the structure of 

the environment, and in order to understand the structure of the environment, one 

must have some experience with it. To resolve this, I needed to integrate my 

hierarchical systems which captured the stable and optimal behaviour observed for 

the majority of the task with a flat system that could capture the initial phase of 

learning and any subsequent lapses. In effect, these hybrid models capture the 

transition people must make from a flat system of behavioural control to a 

hierarchical one, and my simple arbitration process represents the gestation of the 

high-level options people come to use. This recalls the “option discover problem” in 

hierarchical reinforcement learning (Botvinick, Niv, et al., 2009; Stolle & Precup, 

2002), which remains largely unsolved. Although I captured a general transition from 

memory-based flat control to hierarchical control, I have not explored mechanisms to 

explain how hierarchies emerge from flat memory-based systems. Recent 

developments in computational RL describe hierarchical memory systems that 

divides the past into chunks for efficient recall of goal-relevant events (Lampinen, 

Chan, Banino, & Hill, 2021). Hierarchical memory suggests a plausible intermediate 

step between my rather simplistic flat system and my more sophisticated hierarchical 

agent; memory could be chunked and explored in such a way that associated 

chunks of behaviour can then be consolidated. Further research is required to 

investigate how action hierarchies emerge from memory. 

2.4.5 Conclusion 

To conclude, I present in this chapter a novel framework for measuring the latent 

hierarchical structure of action from behavioural data alone, and my findings support 

my proposed view of how hierarchies of action are formed in the human brain. The 

key result was that people can learn completely novel sequences of behaviour with 

no practice, a process I refer to as zero-shot learning. I combined insights from 

sequential motor control with hierarchical reinforcement learning to develop a model 
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of goal-directed hierarchical behaviour that could describe zero-shot learning and 

which showed a number of interesting cognitive properties. First, I demonstrated that 

a hierarchical organisation itself was necessary, as were relational representations of 

action, confirming my initial hypothesis that both sequencing and abstraction were 

used to build hierarchies of behaviour in the human brain. Second, I demonstrated 

that abstraction of learning between different contexts goes hand in hand with 

abstract and relational representations of action to allow an efficient, flexible, and 

adaptive organisation. Third, I showed that adding hierarchical structure to action 

has important implications for how the exploration-exploitation trade-off is negotiated. 

In sum, I provided direct behavioural evidence for the latent hierarchical structure I 

proposed in Figure 2-1 – Hierarchy of actions required to make coffee. Higher-level 

representations of action can come from two distinct operations: (1) sequencing low-

level actions (e.g., reach for and grasp the handle of a kettle) can provide higher-

level representations (e.g., lift kettle); and (2) abstracting over the individual actions 

in a sequence can provide abstract and relational representations of the relations 

between sequence elements independent of their content. This second method of 

abstraction can allow for the same relational representation (in purple) to produce 

distinctly different low-level sequences that adhere to the same relational structure 

(e.g., fetch ground coffee could be replaced with grind coffee beans to satisfy 

prepare grounds)., and I identified two unexpected additional components that were 

necessary to explain my behavioural marker of this structure, one of which outlines a 

potential influence exerted by hierarchical structure on decisions between candidate 

courses of action. Future research may shed further light on the interactions between 

hierarchy and exploration, may describe more precisely how people transition from 

flat memory-based behavioural control to hierarchical control, and may expand 

further on the benefits of a hierarchical organisation of behaviour that go beyond a 

mere minimisation of computational cost. 

2.5 Supplementary Materials 

2.5.1 Detailed Procedure 

Subjects performed both spatial and procedural tasks in one sitting. The order of the 

tasks was counterbalanced across participants such that six of the twelve would 
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complete the spatial task first, and the other half would complete the procedural task 

first. Each task began with an initial tutorial section which introduced subjects to the 

rules of the tasks, how they could navigate around the environments, and the 

incentive structure. 

In the spatial task, subjects could move between rooms by clicking on the 

door through which they would like to travel. Each room was identical but for a rune 

which was present in the middle of the room. Each room held a different rune, and 

these runes were static over all trials such that subjects could learn to place 

themselves within the map by learning which room was associated with which rune. 

The objective on each trial was to find a key and to then use that key to open a 

chest. On each trial, participants were told in which of the two sub-goal rooms they 

could find the key by providing them with the rune associated with the active sub-

goal room. Once they found the key, the queue for its location would disappear from 

the screen, and the participants would then need to find the chest (i.e., the goal) 

without any prompt. Once participants found the chest, the trial would end with the 

delivery of reward. Participants would earn a set number of points for reaching the 

goal, and they would earn a number of points based on how many doors they 

opened and travelled through in the environment. If they opened all doors, they 

would earn no extra points, and they would earn 1 point per door left closed at the 

end of the trial. This incentivised participants to travel to the goal in as few moves as 

possible. 

In the procedural task, subjects were to move a rod around the faces of a 

cube by clicking on the edge of the cube-face to which they would like to move. The 

objective was to move the rod to a cube face of a particular colour (sub-goal) before 

moving it to a golden cube face (goal). The target sub-goal colour was instructed at 

the start of the trial. Upon doing so, the trial would end, and points would be earned 

according to the number of moves taken to complete it. The objective was again to 

take as few moves as possible. 

In both tasks, the location of the sub-goal was randomly allocated on each 

trial, though it was kept balanced such that there was always an even number of left 

and right sub-goal trials. From the location of the sub-goal, participants would need 

to learn to predict where the goal could be found. The sub-goal and goal could be 
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associated in one of two ways: (1) under repeat, the sub-goal and goal would be on 

the same side; and under (2) alternate, they would be on different sides. Participants 

would start with one of these two associations being fixed for the 30 trials that make 

up the first block. Then, at some point during the first 10 trials of block 2 the 

association would switch and a fixed 30 trials under the new association would 

follow, and the same process would happen again on block 3. The order of repeat-

alternate-repeat or alternate-repeat-alternate for blocks 1, 2, and 3 was 

counterbalanced over the twelve participants. 

2.5.2 Full Model Specifications 

For full model specifications for all flat and hierarchical models, see Box 1 and Box 2 

respectively. Parameters for the model specifications are as follows: Parameters are 

as follows: St describes the current state of the agent; h describes the hierarchical 

level of a given option; o describes an option; O(h) describes the currently active 

option o at hierarchical level h; 𝜋𝑜 describes the policy defined by option o; Oprimitive 

describes the active primitive option; T(St, Oprimitive) describes the state transition that 

occurs when execution Oprimitive from state St; 𝛼 is the learning rate; 𝛾 is the temporal 

discounting rate; O(0) describes the highest level currently active option 

Box 2 – Hierarchical RL model specification 

Initialise for all 𝑜 and all corresponding 𝑆 : 

    𝑄(𝑆, 𝑜) = 0 

 

Repeat until 𝑟 = 1: 

    ℎ ← 0 

    𝑂(ℎ) ← structured-softmax(𝑄(𝑆𝑡)) 

    𝑆init ← 𝑆𝑡 

    𝑟 ← 0 

    while 𝑆𝑡  is not 𝑆term, 𝑂(ℎ): 

        while 𝑂(ℎ) is not primitive: 

            ℎ ← ℎ + 1 

            𝑂(ℎ) ← 𝜋𝑂ℎ−1
(𝑆𝑡) 

        𝑆𝑡+1 ← 𝑇(𝑆𝑡 , 𝑂primitive) 

        𝑟 ← 𝑅(𝑆𝑡+1) 

    𝑄(𝑆init, 𝑂(0)) ← 𝑄(𝑆init, 𝑂(0)) + 𝛼 ∙ (𝑟 + 𝛾 ∙ max
𝑂

𝑄(𝑆𝑡+1, 𝑂) − 𝑄(𝑆init, 𝑂(0))) 
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2.5.3 Model Recovery 

To ensure that my modelling and fitting procedure was sound and unbiased, I 

simulated behaviour from my hybrid model given the best fitting parameters for each 

subject. I then re-used the fitting procedure to fit my hybrid model to these now 

simulated data to recover the parameters used in the simulation. I repeated this 

process three. For most participants, I could recover the parameters used to 

simulate the data with only minor deviations from ground truth (see Figure 2-9 – 

Ground-truth alongside best-fitting parameters to data simulated from the ground-

truth parameters. I simulated three datasets for each subject from my hybrid model 

with the best-fitting parameters to each subject’s empirical data, and then attempted 

to recover those ground-truth best-fitting parameters three times (corresponding to 

the three blue lines per participant).). The only exception was participant 7: the fits 

for this participant were characterised by a high temperature (beta). Higher 

temperature means that models explore their environment more, leading to greater 

noise in the simulated datasets and therefore more noise in the recovery process. 

With this exception, my simulations accurately recovered the parameters used to 

simulate data from the hybrid model. 

Box 1 – Flat RL model specification 

Initialise for all 𝑎: 

   𝑄(𝑆, 𝑎) = 0 

    𝑆𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝑆0 

Repeat until 𝑟 = 1: 

    𝐴 ← softmax(𝑄(𝑆𝑡)) 

    𝑆𝑡+1 ← 𝑇(𝑆𝑡 , 𝐴) 

    𝑟 ← 𝑅(𝑆𝑡+1) 

    𝑄(𝑆𝑡 , 𝑆𝑜𝑟𝑖𝑔𝑖𝑛 , 𝐴) ← 𝑄(𝑆𝑡 , 𝑆𝑜𝑟𝑖𝑔𝑖𝑛 , 𝐴) + 𝛼 ∙ (𝑟 + 𝛾 ∙ max
𝑎

𝑄(𝑆𝑡+1, 𝑆𝑜𝑟𝑖𝑔𝑖𝑛 , 𝑎) − 𝑄(𝑆𝑡 , 𝑆𝑜𝑟𝑖𝑔𝑖𝑛 ,  𝐴)) 
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Figure 2-9 – Ground-truth alongside best-fitting parameters to data simulated from the ground-
truth parameters. I simulated three datasets for each subject from my hybrid model with the best-
fitting parameters to each subject’s empirical data, and then attempted to recover those ground-
truth best-fitting parameters three times (corresponding to the three blue lines per participant). 
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Chapter 3  
Perceived Capability and Self-Efficacy: 

Do the features of high-level action 

influence choice?
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3.1 Introduction 

Decisions about what to do are not based only on the value of the outcomes that 

follow from our actions, but also on our ability to carry out those actions. It is no good 

to decide to compete in the next Olympics because of the high monetary value of a 

gold medal if I have no real chance of winning. The insight that decisions about how 

to act are influenced by perceived capability to perform the associated actions led 

Bandura to develop his theory of self-efficacy (Bandura, 1974, 1977). Self-efficacy 

judgments are judgments about one’s personal ability to execute contemplated 

actions (Bandura, 1974, 1977; Kirsch, 1995). Self-efficacy theory accordingly 

describes the influence these judgments have on behaviour (Bandura, 1984; Holden, 

1992; Hyde, Hankins, Deale, & Marteau, 2008; Moritz, Feltz, Fahrbach, & Mack, 

2000; Rosenstock, Strecher, & Becker, 1988; Stajkovic & Luthans, 1998). While the 

link between self-efficacy and behaviour is well-evidenced, it has not been well 

formalised. Specifically, it remains unclear how estimates of capability are derived 

from the prospect of an action. Further, the hierarchical nature of action has not been 

considered by, nor integrated with, self-efficacy theory, even though hierarchical 

organisation presents a range of actions that differ in ways that are relevant for self-

efficacy judgments given their hierarchical level. For example, estimating whether I 

would be able to opt for a vegetarian meal on one specific occasion seems distinctly 

different to estimating whether I would be able to maintain a policy of vegetarianism 

in perpetuity. 

 In Chapter 2, I demonstrated that human action is hierarchically structured, 

and I provided evidence for a particular hierarchical framework that brought together 

insights from the study of sequential motor control and hierarchical reinforcement 

learning. I found that low-level actions are grouped into progressively lengthier, 

higher-level, and more abstract representations of behaviour. To date, self-efficacy 

theory has been confined to social psychology approaches and has not made 

convincing links to computational psychology. For example, self-efficacy theory has 

not embraced analyses of the different varieties of action, or their internal structure. 

Rather, the theory tends to homogenise all actions to be described only vaguely as 

behaviour. For example, Moritz and colleagues (2000) conducted a meta-analysis to 

evaluate the relationship between self-efficacy measures and sport performance. 
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The precise nature of the tasks varied over the studies included, but all involved self-

efficacy judgments followed by a skilled motor task that may or may not have been 

familiar to the participants beforehand. The self-efficacy judgments made in these 

tasks were made for distinctly low-level actions; any brief skilled movement is a low-

level action with immediate outcomes, and self-efficacy judgments here will be based 

presumably on the precision of one’s motor control. By contrast, Hyde and 

colleagues (2008) conducted a meta-analysis to estimate the relationship between 

self-efficacy and prolonged abstinence from addictive substances. Here, the 

behaviour in focus was distinctly high-level. Sustained abstinence is a long-term and 

high-level policy of action that will guide very many low-level decisions over the 

course of an entire lifetime. The outcome is not so immediate, and self-efficacy 

judgments are presumably made based on the strength of cognitive control, rather 

than on the precision of motor control. Whether the behaviour in focus is a low-level 

skilled action or a high-level policy of abstinence, self-efficacy treats each the same 

and asks simply “could you perform this behaviour?” (Bandura, 1974, 1977, 1984). 

However, there are important differences between these actions by virtue of their 

hierarchical level that may be relevant to perceived self-efficacy. More generally, it 

remains unclear how the hierarchical organisation of behaviour influences perceived 

self-efficacy. For example, people might feel they can grapple with high-level 

behaviours, where in fact they cannot, or people might feel they cannot maintain 

high-level behaviours consistently, where in fact they can.  

 The principal difference between actions at high vs low hierarchical levels is 

the length of time over which they span and the number of actions that they therefore 

prescribe. An individual low-level decision to not smoke a single cigarette controls 

behaviour for a few minutes and includes a single choice, whereas deciding at a 

high-level to quit smoking will guide behaviour for an entire lifetime and over very 

many choices. Intuitively, judging one’s ability to carry out each of these two 

behaviours would be quite different from judging the other. In the former case, one 

would be estimating one’s ability to reject a cigarette a single time, where in the 

latter, one must estimate one’s ability to reject all cigarettes forever, which may be a 

less feasible prospect. Despite the clear differences here attributable to the structure 

of behaviour, applications of self-efficacy theory have mostly ignored this crucial 

difference. For example, the smoking abstinence self-efficacy questionnaire (Spek et 



 91 

al., 2013), which was derived from Bandura's (1977) self-efficacy theory, asks how 

likely an individual would be to smoke in a series of 12 distinct situations. While this 

does capture the generality of a high-level behaviour (i.e., a decision to quit smoking 

means deciding not to smoke in all situations), it does not capture the difficulty 

inherent in the length of time over which that behaviour spans and the fact that it 

includes not a single choice, but many. To capture this difficulty, the questionnaire 

would need to include a final question that asked whether an individual would 

successfully turn down the cigarettes in all 12 situations listed, and in all other 

situations they might encounter, without a single lapse. Self-efficacy theory neglects 

the hierarchical structure of behaviour and casts all behaviour as low-level action, 

but in so doing it loses the ability to describe how high-level actions influence self-

efficacy judgments and therefore choice. 

Extending self-efficacy theory to consider hierarchically organised behaviour 

means describing how perceived ability to execute a single action now is integrated 

with perceived ability to maintain a long-term and consistent policy of action. One 

approach is to focus on the here-and-now and to consider the feasibility of individual 

actions and their consequences (see implementation intention, Gollwitzer, Wieber, 

Myers, & McCrea, 2010), and to consider high-level self-efficacy as mere repetition 

of lower-level decisions – as the saying goes, “save the pennies and the pounds will 

look after themselves”. An alternative approach is to consider the high-level 

behaviour first, and to consider the feasibility of applying high-level constraints on 

low-level decisions (for one example, see Reagan’s “Just say no” campaign against 

drugs, Bourne, 2008). It remains unclear whether self-efficacy is built from the 

bottom up (by repeatedly dealing with lowest-level action decisions) or from the top 

down (by having a general constraint at a high hierarchical level that guides each 

low-level decision), or by some combination. 

 In this chapter, I extend self-efficacy theory to consider the hierarchical 

structure of action in order to investigate how the hierarchical level of an action 

influences self-efficacy judgments. Over two experiments, I investigate two 

components of high-level action that I hypothesised would contribute to notions of 

self-efficacy. Both components are derived from increases in the length of a 

behaviour as we move into higher hierarchical levels. That is, they deal with 
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hierarchy as a simple cumulation of multiple low-level decisions. First, I investigated 

how the compounding effect of repeating a difficult action multiple times, as 

prescribed by high-level policies of action, might influence self-efficacy judgments. 

Second, I investigated whether the restriction of future choice that comes with a 

commitment to a lengthy high-level policy of action is aversive and thus dissuades 

high-level commitment. The first of these is a straightforward extension of self-

efficacy to include the fact that successfully performing a difficult action multiple 

times is more difficult than performing it only once. The second idea requires an 

additional qualitative change to self-efficacy theory, to capture the effect that a 

commitment now has on a decision made later. By committing to high-level courses 

of action (such as quitting smoking), people are in effect restricting all future relevant 

decisions so that they must conform to that commitment. However, people and 

environments change, so there are good reasons to be averse to such a restrictive 

commitment. 

I test the hypothesis that these two components (cumulation and constraint) 

discourage choices favouring high-level policies of action. This is shown in two 

experiments, both of which present participants with a choice between lengthy high-

level policies of action and a sequence of individual low-level actions of equivalent 

length. I take a novel approach here which is counter to the general approach of 

measuring self-efficacy by asking for subjective judgments of perceived capability to 

carry out an individual action (Bandura, 1974, 1977, 2006). Instead, I measure self-

efficacy by measuring its influence on choice. I pit two policies of action against one 

another, and I make one of the two more valuable but more difficult to achieve. This 

makes a choice to commit to this more demanding but more rewarding policy 

equivalent to saying that the difference in reward trumps the difference in one’s 

perceived ability to carry out that policy. That is, I quantify self-efficacy by requiring 

people to estimate the level of difficulty at which increased reward is no longer worth 

the risk of carrying out the policy to which they have aspired. 

By then adjusting the difficulty level of a risky policy (while keeping rewards 

constant), it is possible to measure quantitatively how a specific factor of interest 

influences self-efficacy. In the first of my two experiments, I vary both the length of 

the candidate policies and the difficulty of the individual actions they prescribe. I find 
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that both of these manipulations predict choice via their influence on self-efficacy. In 

the second experiment, I make the task environment non-stationary to include an 

incentive to avoid restricting future choice, and find, as hypothesised, that people will 

deviate from optimal solutions towards not tying the hands of their future selves. 

3.2 Experiment 3-1 

3.2.1 Methods 

3.2.1.1 Participants 

The present study was approved by the UCL Research Ethics Committee, and it was 

hosted online. Participants were recruited via Prolific (www.prolific.co), and all were 

then redirected to a personal website where the experiment was hosted. All 

participants provided informed consent prior to the start of the experiment. Given the 

lack of any accurate and comparable effect size, I decided to take an approach of 

sequential analysis to ensuring the study was sufficiently powered while avoiding 

false positives (Type 1 errors). Sequential analysis involves collecting and analysing 

data at increasingly large sample sizes while controlling for the Type 1 error rate by 

effectively lowering the threshold for significance (for an in-depth discussion of the 

approach, see Lakens, 2014). I planned to collect data in batches of 20 subjects, to 

analyse that data, and to then decide whether results were convincing enough to 

conclude that an effect was present and to stop data collection. If no conclusive 

results were found, I would then continue data collection, but I would halve my 

threshold p-value for the next iteration (making my threshold for significance in the 

second batch 0.025, and in the third 0.0125, and so on). From my first sample of 20 

participants, three were excluded as their data was incomplete due to issues with 

recording their data, and I found convincing and statistically significant results from 

the data of the remaining 17 participants, terminating my sequential analysis plan at 

the first step. I therefore had a final sample size of 17 participants for this 

experiment. Participants received £5 per hour as a base rate and could earn an 

additional bonus payment (up to £3) based on performance in the task. 

http://www.prolific.co/
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3.2.1.2 Task Design 

Participants performed a skilled motor task where the objective was to throw a ball 

and hit a target in a 2D aiming challenge. Each trial started with a choice between 

two balls, and having chosen between the two balls, participants would then throw 

their chosen ball at a target to complete the trial (see Figure 3-1 – Schematic of 

procedure followed by individual trials (A) and entire blocks (B). Individual trials 

consisted of an initial choice between two balls, with full knowledge of the rewards 

earned under by each option, the size of the target the participant must hit, and the 

length of the block. Having decided between the two balls based on this information, 

participants would throw the ball and aim to hit the target. Each block consisted of 5 

(short) or 15 (long) trials, after which all rewards earned over all trials would be 

delivered at once.A). One ball would be orange, the other blue, and participants were 

instructed in a tutorial that these colours corresponded to two different reward 

schemes. One ball (which I refer to as the low-level ball) would earn more reward (2 

points) for each individual hit, while the other (which I refer to as the high-level ball) 

would earn less reward for a hit (1 point) but would, if selected and successfully 

thrown at the target on every trial in a block, triple all the reward earned for that 

block. Note that the multiplier applied to all reward in a block was a hierarchically 

Figure 3-1 – Schematic of procedure followed by individual trials (A) and entire blocks (B). 
Individual trials consisted of an initial choice between two balls, with full knowledge of the 
rewards earned under by each option, the size of the target the participant must hit, and the 
length of the block. Having decided between the two balls based on this information, participants 
would throw the ball and aim to hit the target. Each block consisted of 5 (short) or 15 (long) trials, 
after which all rewards earned over all trials would be delivered at once. 
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higher-level reward than the rewards received for individual hits because the 

multiplier was contingent upon an aggregate of behaviour over an entire block, 

whereas individual rewards depended on only one throw. Note also that all rewards 

were always delivered at the end of a block, irrespective of whether they were 

individually allocated (low-level balls) or hierarchically allocated (high-level balls) to 

remove any effect of temporal discounting. 

There are two candidate policies of action available in the task: (1) the low-

level policy ignores the high-level multiplier and maximises low-level reward by 

selecting the low-level ball on every trial in a block; (2) the high-level policy pursues 

the high-level multiplier and maximises reward by selecting the high-level ball on 

every trial in a block. Importantly, the high-level policy earns more total reward, but 

maximum reward here is contingent upon the participant successfully landing every 

shot in a block: any one miss is catastrophic for the maximal pay-out. By contrast, 

the low-level policy earns less total reward, but a miss on one trial does not detract 

from the reward earned by hits on other trials. Therefore, to choose between the 

high- and low-level policies, participants needed to estimate how likely they were to 

hit the target on each trial in a block. That is, they needed to make a self-efficacy 

judgment about their ability to hit the target and use this to guide choice. Specifically, 

if they believed they could consistently hit the target (high self-efficacy) they should 

have chosen the high-level policy, otherwise they should have chosen the low-level 

policy. 

I manipulated two variables block-by-block to investigate which features of the 

policies under consideration would influence self-efficacy. First, I varied the difficulty 

of individual trials by varying the size of the targets participants were aiming to hit. 

Difficulty was fixed for every trial within a block but could vary between blocks. There 

were three levels of difficulty: the target could be small, medium, or large, which 

translated into hard, moderate, or easy difficulties (respectively). Note that, according 

to Fitts’ Law (Fitts, 1954, 1964), the distance of the target from the ball’s starting 

position also influences the difficulty of hitting it. While the position of the target was 

randomly set trial by trial, participants could not see where the targets were while 

deciding between the two balls, and so their distance from the starting position could 

not influence choice. However, participants were given a cue as to the size of the 
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target at the start of each trial, and so target size could influence choice, with smaller 

targets being harder to hit. I therefore reasoned that smaller targets would make 

greater demands on self-efficacy, and would therefore more strongly express self-

efficacy effects. Second, I varied the length of each block. There were two levels 

here: short (5 trials), or long (15 trials). This manipulation made the high-level policy 

more difficult to execute as the likelihood of hitting all targets in a block decreases 

exponentially with the number of trials in a block. The 2 x 3 factorial design I used 

here therefore allowed us to investigate how classical notions of self-efficacy interact 

with the features of high-level behaviour. Specifically, I predicted that as either block 

length or trial difficulty increased, perceived ability to carry out the high-level policy 

would decrease, under the hypothesis that people are sensitive to the length of the 

high-level policies they choose to perform when estimating their ability to carry them 

out.  

Given the high-level nature of the candidate behaviours in the task, the most 

informative decisions for my hypotheses were made on the first trial of each block. At 

the start of every trial, subjects are given two cues: (1) one cue for the difficulty of all 

trials in that block; and (2) another cue for the number of trials in that block. These 

cues of difficulty and length gave my participants all the information they needed to 

make an informed self-efficacy judgment for an entire block on the first trial and to 

then use that judgment to decide whether or not to attempt to perform the more 

rewarding but more difficult high-level policy. A decision to attempt this would be 

indicated by selecting the high-level ball on the first trial, and such a decision would 

be equivalent to answering “yes” to the question “are you likely to succeed in 

performing this behaviour?” (or, more colloquially, “can you cope with this?”) as per 

Bandura's (1977) original guidelines for measuring self-efficacy. I planned to direct 

most of my analyses at these first trials in each block, with my central hypothesis 

being that I would observe less frequent commitment to the high-level policy on 

these trials as difficulty and block length increased. That is, participants would 

correctly perceive that sustained effort was likely to tax their performance capacity. 

3.2.1.3 Procedure 

Having signed up for the experiment via Prolific (www.prolific.co), all participants 

would begin by providing informed consent. They would then complete a brief tutorial 

http://www.prolific.co/
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which introduced them to the skilled motor task (with a practice throw for each target 

size), and the reward schemes were then explained in full. Participants were told 

exactly how many points could be earned by selecting either of the two balls and 

were then asked to complete two in-progress blocks until they had earned as much 

as possible from each block. The first of these in-progress blocks had six of ten trials 

already completed by selecting the low-level ball, and the second had six of ten trials 

already completed by selecting the high-level ball. To earn maximal pay-outs for 

each block, participants would need to select the low-/high-level ball and hit the 

target on the remaining four trials. This provided the participants with direct 

experience of the maximum reward available under each of the low- and high-level 

policies. To end the tutorial, participants answered four questions to gauge their 

understanding. They were asked (1) how many different target sizes they could 

encounter, (2) how many points they would earn for hitting the target with the low-

level ball, (3) how many points they would earn for hitting the target with the high-

level ball, and (4) which of the low- and high-level policies would earn more reward 

given perfect performance over a block. Participation in the full experiment was 

permitted only if a correct answer was given for all four questions to ensure that 

participants understood the contingencies involved. Having completed the tutorial, 

participants then moved into the full experiment. My 2 x 3 factorial design provided 

six combinations of trial difficulty and block length, which were repeated five times for 

a total of 30 blocks. Each participant would complete the 30 blocks in a random 

order. Each block began with an inter-block screen which waited for input from the 

participant, which when provided would initiate the trials. Trials began with a choice 

between balls, which was followed by the skilled task of throwing the ball at the 

target, and trials ended with observation of the result (see Figure 3-1 – Schematic of 

procedure followed by individual trials (A) and entire blocks (B). Individual trials 

consisted of an initial choice between two balls, with full knowledge of the rewards 

earned under by each option, the size of the target the participant must hit, and the 

length of the block. Having decided between the two balls based on this information, 

participants would throw the ball and aim to hit the target. Each block consisted of 5 

(short) or 15 (long) trials, after which all rewards earned over all trials would be 

delivered at once.A). Each trial transitioned directly into the next. Once each trial in a 

block had been completed, all rewards were then delivered at once (see Figure 3-1 – 

Schematic of procedure followed by individual trials (A) and entire blocks (B). 
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Individual trials consisted of an initial choice between two balls, with full knowledge 

of the rewards earned under by each option, the size of the target the participant 

must hit, and the length of the block. Having decided between the two balls based on 

this information, participants would throw the ball and aim to hit the target. Each 

block consisted of 5 (short) or 15 (long) trials, after which all rewards earned over all 

trials would be delivered at once.B). Having completed all blocks, participants were 

debriefed and then redirected to Prolific to terminate the experiment. 

3.2.1.4 Analysis 

As mentioned above, I planned to focus my analyses on the first trial of each block, 

as it was here where commitments to one of the two policies would be made. I had 

two variables of interest here: (1) choices; and (2) response times. For choice data, I 

fit nested logistic regression models to choice data to evaluate whether including 

block length, trial difficulty, and the interaction between these two predictors led to 

significant improvements in model fit. For response time data, I had two epochs of 

interest. First, I measured the time taken to decide between the two balls, which I 

named decision time (DT). Second, I measured the time interval between the 

decision of which ball to throw, and the time of actually throwing it. I called this action 

time (AT). I planned to analyse DT by investigating how DT changed with different 

trial types. I had four trials of interest: (1) initial trials were the first trials in each 

block, which, as discussed, are the trials where commitments were made to one of 

the two policies of action; (2) high-level trials were trials in a block that carried out a 

commitment to the high-level policy; (3) first miss trials were the first trials in a block 

where a participants had decided to perform the high-level policy but missed the 

target; and (3) low level trials were trials in a block that carried out a commitment to 

the low-level policy. I planned to compute the average DT for each participant in 

each of these trial types and again to analyse these using the Kruskal-Wallis test 

(given non-normality). For AT, I planned to compute the average AT for each 

combination of trial difficulty and block length separately for trials in which subjects 

chose the high-level and low-level balls, and to analyse these data in a 2x2x3 

repeated measures ANOVA on log AT data (log AT satisfied the normality 

requirement of ANOVA; results from Shapiro Wilk test were W = 0.99, p = 0.317). 
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3.2.2 Results 

3.2.2.1 Choices 

As measured by choices on the first trial of every block, willingness to commit to the 

difficult high-level policy of action towards maximising reward diminished with 

increased trial difficulty (see row 2 of Table 3-1 – results of analysis of deviance tests 

to evaluate incremental improvements in model fit of a sequence of nested logistic 

regression models. The nested models successively introduce target radius, block 

length, and the interaction between these two predictors as predictors of choice 

behaviour. Each row presents the results of a deviance test for the model of that row 

against the model in the row above it.) and increased block length ( see row 3 of 

Table 3-1 – results of analysis of deviance tests to evaluate incremental 

improvements in model fit of a sequence of nested logistic regression models. The 

nested models successively introduce target radius, block length, and the interaction 

between these two predictors as predictors of choice behaviour. Each row presents 

the results of a deviance test for the model of that row against the model in the row 

above it.). Rather unsurprisingly, participants were sensitive to increases in individual 

trial difficulty and to the exponential increases in difficulty that came with repeating 

trials multiple times (see Figure 3-2 – (A) proportion of all blocks where participants 

chose the high-level ball on the first trial in the block, indicating a commitment to the 

high-level policy, split by trial difficulty and block length. (B) accuracy of all trials 

under each choice level split by trial difficulty.A). I also found that including the 

interaction between trial difficulty and block length as a predictor of choice led to a 

marginal improvement in model fit (see row 4 of Table 3-1 – results of analysis of 

deviance tests to evaluate incremental improvements in model fit of a sequence of 

nested logistic regression models. The nested models successively introduce target 

radius, block length, and the interaction between these two predictors as predictors 

of choice behaviour. Each row presents the results of a deviance test for the model 

of that row against the model in the row above it.). Inspection of the proportions of 

high-level commitments made by participants (see Figure 3-2) indicates that this was 

driven by a highly significant boost in willingness to commit to the high-level policy 

for short rather than long block lengths for trials of moderate difficulty (t(16) = 4.60, p 

< .001, d = 1.12), but not for trials of easy (t(16) = 1.46, p = .164) nor hard (t(16) = 

1.10, p < .290) difficulties. This non-linearity suggests that participants were sensitive 
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to the non-linear and exponential decreases in the likelihood of hitting all shots in a 

block that occurred as the length of the block increased. In short, the effect of 

moderate difficulty is much more pronounced in a lengthier block.  

The changes I observed in willingness to commit to the high-level policy 

tracked changes observed in performance accuracy (see Figure 3-2 – (A) proportion 

of all blocks where participants chose the high-level ball on the first trial in the block, 

indicating a commitment to the high-level policy, split by trial difficulty and block 

Figure 3-2 – (A) proportion of all blocks where participants chose the high-level ball on the first 
trial in the block, indicating a commitment to the high-level policy, split by trial difficulty and block 
length. (B) accuracy of all trials under each choice level split by trial difficulty. 

Table 3-1 – results of analysis of deviance tests to evaluate incremental improvements in 
model fit of a sequence of nested logistic regression models. The nested models 
successively introduce target radius, block length, and the interaction between these two 
predictors as predictors of choice behaviour. Each row presents the results of a deviance test 
for the model of that row against the model in the row above it. 
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length. (B) accuracy of all trials under each choice level split by trial difficulty.B). 

Here, I applied the same analysis approach of tested a nested set of logistic 

regression models but now to predict performance accuracy. I unsurprisingly found 

that including trial difficulty as a predictor of performance accuracy led to a highly 

significant improvement in model fit (deviance = 70.01, p < .001), which is reflected 

in the observed decrease in willingness to commit to the high-level policy with 

increased trial difficulty. Second, although it is difficult to analyse these data given 

that participants selected the high-level ball only infrequently for harder difficulties 

(making accuracy difficulty to reliably compute), an inspection of accuracy data split 

by choice level suggests that low-level choice trials were slightly less accurate than 

high-level choice trials (see Figure 3-2 – (A) proportion of all blocks where 

participants chose the high-level ball on the first trial in the block, indicating a 

commitment to the high-level policy, split by trial difficulty and block length. (B) 

accuracy of all trials under each choice level split by trial difficulty.B). Although this is 

speculative, this would be a sensible strategy, as the contingencies involved in the 

high-level policy place greater weight on each individual hit, perhaps encouraging 

more cognitive effort and a slight increase in accuracy. 

3.2.2.2 Response Times 

I analysed two distinct sets of response times: (1) log decision time (DT) was the log 

of the time taken to decide between the two balls on each trial; and (2) log action 

time (AT) was the log of the time taken to then throw the chosen ball at the target. I 

analysed DT separately for four distinct trial types to test my assumption that the first 

trial in a block was the time at which a high-level commitment was made to one of 

the two policies of action under consideration. Indeed, I found a significant effect of 

Figure 3-3 – Response times split by (A) decision time, which is the time taken from the 
beginning of each trial to decide between high- and low-level balls; and (B) action time, which is 
the time taken from the moment of choosing a ball to throw it. 
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trial type on decision time (𝜒2(3) = 32.27, p < .001), with decision times on the initial 

trial in a block being substantially slower than any other trial type (see Figure 3-3 – 

Response times split by (A) decision time, which is the time taken from the beginning 

of each trial to decide between high- and low-level balls; and (B) action time, which is 

the time taken from the moment of choosing a ball to throw itA). This lines up with 

the hierarchical description I provide for behaviour. A hierarchical account claims that 

decisions between policies are made on the first trial, and that all following decisions 

follow deterministically from the initial commitment to a policy. Deliberations between 

the two policies under consideration in light of trial difficulty and block length would 

take time and would under this hierarchical account occur only on the first trial in a 

block. Therefore, this deliberative process can account for the marked increase in 

decision time on the first trial in a block, and much shorter decision times in all trials 

that follow.  

 I analysed action times by considering how they changed with trial difficulty, 

block length, and choice level. I hypothesised that the time taken to make an action 

would increase with the difficulty of succeeding, and that the choice between high- 

and low-level balls would also influence action time as there is more pressure to 

succeed on each individual shot under the high-level policy, which might encourage 

participants to take their time. I found a significant main effect of trial difficulty (F(2, 

32) = 19.65, p < .001, 𝜂G
2  = 0.07), with action times increasing as trials became more 

difficult (see Figure 3-3 – Response times split by (A) decision time, which is the time 

taken from the beginning of each trial to decide between high- and low-level balls; 

and (B) action time, which is the time taken from the moment of choosing a ball to 

throw itA). Unfortunately, given that participants were free to decide whether to 

perform the high-level policy on each block, and given that most participants opted 

not to perform the high-level policy for lengthy and difficult blocks (see Figure 3-2 – 

(A) proportion of all blocks where participants chose the high-level ball on the first 

trial in the block, indicating a commitment to the high-level policy, split by trial 

difficulty and block length. (B) accuracy of all trials under each choice level split by 

trial difficulty.), I do not have enough data for all block types to include choice level in 

my analysis. Nevertheless, an inspection of the sparse data I do have reveals that 

action times were substantially slower under the high-level policy than under the low-

level policy (see Figure 3-3 – Response times split by (A) decision time, which is the 
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time taken from the beginning of each trial to decide between high- and low-level 

balls; and (B) action time, which is the time taken from the moment of choosing a ball 

to throw itB). This is speculative, but it does lend further support to the notion that 

participants took greater care and applied more effort to succeeding under the high-

level policy, which lines up with the catastrophic consequences of failing. 

3.2.3 Discussion 

In this first experiment, I found that willingness to commit to a high-level policy of 

action was dependent upon both the length of the policy and the difficulty of the 

individual actions it prescribed. Participants were less likely to attempt to perform the 

high-level policy in lengthier blocks and in blocks with more difficult trials, and their 

choices were sensitive to the exponential decreases in the probability of success that 

come with lengthier blocks of more difficult trials. My hierarchical interpretation of the 

behaviours on display here was supported by the result that participants took far 

longer to decide what to do on the first trial in a block than on any other trial, 

indicating that they were at that time deciding on a course of action that they would 

follow for the rest of the block (Kaller, Unterrainer, & Stahl, 2012). There were also 

indications that participants exerted more effort on trials where they engaged with 

the high-level policy; accuracy was slightly (though not significantly) higher on these 

trials, and the time taken to execute action was lengthier on these trials than on trials 

where participants pursued low-level reward. Although these final results are 

speculative, they do match the contingencies involved: a single failure under the 

high-level policy diminishes the reward earned by all previous successes, whereas 

failing on any one trial under the low-level policy does not affect the rewards earned 

by hits on other trials. In sum, self-efficacy theory (Bandura, 1974, 1977; Kirsch, 

1995) can and should be extended to consider the features of hierarchically 

organised behaviour. 

 I found an impressive correspondence between the willingness of the 

participants to engage with the high-level policy and the decreases in likelihood of 

success as the length of that policy increased, indicating that people in general make 

accurate hierarchical self-efficacy judgments. These decreases in the likelihood of 

success with longer sequences of actions are exponential. This non-linear decay in 

the probability of success was reflected in a significant interaction between the 



 104 

difficulty of the individual actions and the number of times they were to be repeated. 

For short block lengths, moving from easy to moderately difficult trials resulted in 

only a modest drop in willingness to commit to the high-level policy. By contrast, for 

long block lengths, moving from easy to moderately difficult trials resulted in a severe 

decrease in this same measure. Therefore, the same shift in difficulty had a much 

more pronounced effect on choice for long block lengths than for short ones, and this 

can be attributed to the exponential decreases in the likelihood of success that come 

with increases in length. My participants were therefore not only vaguely aware that 

lengthier policies of action would be more difficult to perform, but they were in fact 

precisely aware of the non-linear decreases in the prospect of success that came 

with these lengthier sequences. Therefore, self-efficacy judgments were made not 

based only on the perceived difficulty of any individual behaviour as described by 

classical self-efficacy theory (Bandura, 1977), but also very precisely on the impact 

of needing to repeat difficult actions many times.  

 In experiment 3-1, I successfully extended self-efficacy to include length as a 

feature of high-level action, and my novel approach of measuring self-efficacy 

judgments using choice as a proxy proved successful. However, the results here do 

not speak to the second of my two hypotheses, namely that length influences choice 

not only by making the prospect of repeated success less likely but also by the 

aversive prospect of restricting choice. I propose that a commitment to a lengthy 

course of action might be aversive because that lengthy course of action would limit 

and restrict future decisions, and in a dynamic and ever-changing world this might 

mean turning down options of which people are currently unaware. In my first 

experiment, the environment was static: rewards were fixed and fully explained at 

the beginning of the experiment. Whilst this was useful for a clean test of an 

extension of self-efficacy theory to hierarchically organised behaviour, there was no 

need for my participants to fear any future restrictions on choice (due to the static 

nature of the rewards in the task). To test the hypothesis that restrictions on future 

choice are aversive, I modified my design in a second experiment to include dynamic 

changes in reward that could provide an incentive to avoid restrictions on choice. I 

structured rewards such that for easy trials, the high-level policy remained the most 

rewarding policy over a long-run average, and so I asked whether my participants 
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would deviate from the optimal high-level policy on these trials towards avoiding 

tying the hands of their future selves. 

3.3 Experiment 3-2 

3.3.1 Methods 

3.3.1.1 Participants 

This second experiment was approved by the UCL Research Ethics Committee, and 

it was also hosted online. Participants were again recruited via Prolific 

(www.prolific.co), and all were then redirected to a personal website where the 

experiment was hosted. All participants provided informed consent prior to the start 

of the experiment. I followed the same sequential analysis approach as described for 

the previous experiment here, however in anticipation of a weaker effect size I 

increased the size of each intermittent sample to 30 (for experiment 3-1, this was 

20). Otherwise, I again planned to collect data in batches, to analyse the data, and to 

then decide whether results were sufficiently convincing to terminate data collection. 

If no conclusive results were found, I would collect an additional sample of 30 

participants, but I would halve my threshold p-value for each successive batch. To 

avoid issues of attrition, I collected an initial sample of 35, of whom 33 completed the 

entire experiment. From this first sample of 33 participants, I found convincing 

statistically significant results and so I terminated data collection at this first step. 

Participants received £5 per hour as a base rate and could earn an additional bonus 

payment (up to £3) based on performance. 

3.3.1.2 Design & Procedure 

Experiment 3-2 followed the same design and procedure as experiment 3-1 but for 

two changes. First, and most importantly, I introduced a third, white ball, which could, 

replace the low-level ball and offer a substantially larger low-level reward if chosen. 

This would happen only infrequently and was unpredictable. I refer to this as the 

boost. The boost could not appear on the first trial in a block, to maintain the need for 

participants to decide between low- and high-level balls and their associated policies, 

but it would otherwise appear stochastically with probability 1/14 on every other trial. 

http://www.prolific.co/
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This boost introduced variability to the environment, and importantly it provided an 

incentive to not want to restrict choice for an entire block by committing to the high-

level policy. If a boost might happen, an extra reward might be available, but 

pursuing it was possible only if one had not already committed to the high-level 

policy, or if one was willing to abandon a commitment to the high-level policy. 

Deviating from the high-level policy to take the boost would result in a loss of the 

bonus available under that policy, and so participants needed to trade off the value 

of the bonus against the possibility of the boost. I set the magnitude of the boost to a 

value of 10, which kept the high-level policy as the optimal behaviour in the long run 

for easy blocks (see the next section for computations of expected value). 

The second change made was to the number of repetitions of each 

combination of block length and trial difficulty. I again included short and long block 

lengths and easy, moderate, and hard difficulties. However, I reasoned that of these 

conditions, I would be most likely to observe the effect of aversion to choice 

restriction on behaviour on short blocks with easy trials. For moderate and hard 

difficulties and for long blocks, the difficulty of executing the high-level policy 

successfully was likely to be the dominant dissuading factor influencing commitment 

to it. Therefore, to focus my measurements on any effect of aversion to choice 

restriction, I doubled the number of easy and short blocks, as this is where I 

expected to observe this effect most clearly. I also lowered the number of total 

repetitions of all factor combinations to two. These two changes to the design of 

experiment 3-1 allowed us to investigate whether participants avoided engaging with 

optimal high-level policies, specifically because doing so involved an aversive 

restriction on future choices. 

3.3.1.3 Analysis 

I planned to analyse the data from experiment 3-2 initially in much the same way as I 

analysed behaviour in experiment 3-1. I analysed the proportion of commitments to 

the high-level policy over all initial trials for all blocks using nested logistic regression 

models to investigate whether I could replicate my findings from experiment 3-1. I 

also tested whether willingness to commit to the high-level policy on blocks with easy 

trials differed between the two experiments, again using nested logistic regression 

models. This would test whether introducing the boost (in experiment 3-2) resulted in 
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a lesser willingness to commit to the high-level policy (relative to experiment 3-1). To 

further investigate whether my participants did indeed deviate from the optimal 

solution to the task, I computed the normative expected value (EV) of each policy 

given a full range of accuracy levels. For each of the EV computations for low- and 

high-level policies, see the equations below. Parameters in these equations are as 

follows: EVπx
 describes the expected value under policy 𝜋𝑥; Pr(ℎ𝑖𝑡) describes the 

probability of hitting the target on a given trial; Pr(𝑏𝑜𝑜𝑠𝑡) describes the probability of 

encountering a boost on a given trial; 𝑟𝑏𝑜𝑜𝑠𝑡 describes the reward offered by the 

boost; 𝑟𝐿𝐿 describes the reward offered by the low-level ball; 𝑟𝑚𝑢𝑙𝑡𝑖 describes the 

multiplier applied to all reward earned if the participant chooses and successfully hits 

all high-level targets in a block; and 𝑟𝐻𝐿 describes the reward offered by the high-

level ball on a single trial. 

EV𝜋LL
= ∑ Pr(hit) ∙ (Pr(boost) ∙ 𝑟boost + (1 − Pr(boost)) ∙ 𝑟LL)

T

𝑡=1

 

EV𝜋HL
= Pr(hit)T ∙ 𝑟multi ∑ Pr(hit) ∙ 𝑟HL

T

𝑡=1

+ (1 − Pr(hit)T) ∙ 𝑟multi ∑ Pr(hit) ∙ 𝑟HL

T

𝑡=1

 

These expected value computations provide a normative estimate of the relative 

values for a given accuracy level (Pr(hit)) and block length (T). For each participant, 

I could record three distinct accuracy levels (one each for the three trial difficulties). I 

took these accuracy levels and computed the expected value of each policy given 

these accuracies separately for each of the two block lengths. I could then take the 

net EV in favour of the high-level policy, and this provided us with a normative guide 

for choice: if net EV was positive, the optimal choice for maximising reward in the 

long run was the high-level policy; if net EV was negative, the optimal choice for 

maximising reward was the low-level policy. I planned to compute these net EV 

values for each participant in both experiments and to test whether the correlation 

between net EV and willingness to commit to the high-level policy was diminished in 

experiment 3-2 relative to experiment 3-1 (by testing the linear model given by 

propHL ~ net EV + boostAvailable + net EV ∗ boostAvailable). This would test whether 

introducing variability in the rewards available prompted deviations from optimal 

behaviour, thereby making behaviour less dependent on EV. In essence, this tests 
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whether the prospect of a boost in reward for low-level choices dissuaded 

commitment to a high-level policy that could not pursue that boost. Such a result 

would strongly suggest that high-level policies were not chosen, even when they 

were attractive, because they effectively tie the hands of the agent and foreclose 

future possibly tempting action choices. 

3.3.2 Results 

3.3.2.1 Choices 
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I found that the willingness of my participants to commit to the high-level policy of 

action in experiment 3-2 was predicted by trial difficulty and block length in much the 

same way as observed in experiment 3-1 (see Figure 3-2 – (A) proportion of all 

blocks where participants chose the high-level ball on the first trial in the block, 

indicating a commitment to the high-level policy, split by trial difficulty and block 
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length. (B) accuracy of all trials under each choice level split by trial difficulty.Error! 

Reference source not found.A).  I found that including target radius (see row 2 of 

Table 3-2) and block length (see row 3 of Table 3-2) led to significant improvements 

in logistic regression model fit to choice behaviour. Including the interaction between 

these two predictors however did not significantly improve model fit (see row 4 of 
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Table 3-2), indicating that participants in this experiment were not as sensitive to the 

exponential decreases in the probability of success that come with increased block 

length. I successfully replicated the key result of experiment 3-2, which was a 

sensitivity to the length of an action sequence while making judgments about the 

likelihood that one could successfully execute that sequence. I find modest evidence 

Table 3-2 – results of analysis of deviance tests to evaluate incremental improvements in 
model fit of a sequence of nested logistic regression models. The nested models successively 
introduce target radius, block length, and the interaction between these two predictors as 
predictors of choice behaviour. Each row presents the results of a deviance test for the model 
of that row against the model in the row above it. 

Figure 3-4 – (A) proportion of all blocks where participants chose the high-level ball on the first 
trial in the block, indicating a commitment to the high-level policy, split by trial difficulty, block 
length, and experiment; (B) accuracy of all trials under each choice level split by trial difficulty. 
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in favour of a sensitivity to changes in this likelihood with the length of a behaviour, 

as was observed in the interaction between trial difficulty and block length in 

experiment 3-1.  

Next, I tested whether commitments changed between experiments and over 

different block lengths for easy trials alone. To do this, I added block length and 

experiment as predictors to a logistic regression model that aimed to predict choice 

behaviour on easy trials. I found no significant improvement in model fit when block 

length was introduced (deviance = 1.43, p = 0.231), but a highly significant 

improvement in fit where experiment was introduced (deviance = 21.78, p < .001). If 

we inspect the accuracy of participants on these trials over both experiments, most 

were at ceiling (see Figure 3-2 – (A) proportion of all blocks where participants chose 

the high-level ball on the first trial in the block, indicating a commitment to the high-

level policy, split by trial difficulty and block length. (B) accuracy of all trials under 

each choice level split by trial difficulty.B & Figure 3-4 – (A) proportion of all blocks 

where participants chose the high-level ball on the first trial in the block, indicating a 

commitment to the high-level policy, split by trial difficulty, block length, and 

experiment; (B) accuracy of all trials under each choice level split by trial difficulty.B). 

Therefore, although the participants in experiment 3-2 would in all likelihood have 

Figure 3-5 – Expected value for each policy given the two different block lengths and the full 
range of accuracy levels (Pr(Hit)). 
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successfully executed the sequence of actions required under the high-level policy 

given their accuracy levels, they were significantly less likely to commit to the high-

level policy in the presence of a possible boost in low-level value than were the 

participants in experiment 3-1 where no such boost was available. In sum, where a 

tempting prospect of future low-level reward was present, participants were less 

likely to engage with a high-level policy of action. 

3.3.2.2 Commitment and Expected Value 

To analyse whether the participants’ behaviour deviated from the optimal solution to 

the task when faced with the prospect of a low-level boost in value, I computed the 

expected value (EV) of each policy for the full range of accuracy levels and for each 

of the two block lengths included in my experiments (see 3.3.1.3 Analysis). The EV 

curves for different accuracy levels can be found in Figure 3-5. At high, near perfect 

accuracy, the optimal choice for maximising long-run reward is to opt for the high-

level policy, but for lower accuracies, the optimal choice is to opt instead for the more 

forgiving low-level policy. Note that the exponential decreases in the probability of 

successfully hitting all shots in progressively lengthier sequences is reflected here in 

the EV of the high-level policy.  

 I mapped the accuracy level of each participant for each level of trial difficulty 

and block length onto these EV curves and computed six net EV scores (EVπHL
−

EVπLL
) per participant (one each for every combination of trial difficulty and block 

length). These net EV scores provide a normative guide for choice: where net EV is 

Figure 3-6 – Correlation between net expected value (Net EV) in favour of the high-level policy 
(computed as EV for high-level policy – EV for low-level policy) and the proportion of high-level 
commitments made by each participant for each difficulty level (which is associated with a 
different accuracy level and therefore different net EVs) separately for each experiment. The 
difference in slopes between the two experiments is significant, with the presence of a low-level 
boost in resulting in a significantly shallower slope, indicating that decisions here deviated further 
from the optimal solution. 
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positive, the optimal choice is to select the high-level policy; and where net EV is 

negative, the optimal choice is to select the low-level policy. I used a linear model to 

predict the proportion of high-level commitments (as measured by choice on the first 

trials of each block) from these net EV scores and from whether the boost was 

available (i.e., whether the participants completed experiment 3-1 or experiment 3-

2). The interaction term between net EV and boost availability would tell us whether 

there was any difference in the relationship between behaviour and the optimal 

estimate of the value of the two policies between the two experiments. The model 

predicted a significant portion of the variance in high-level commitments (F(6, 293) =

109.00, 𝑝 < .001,  R2 = 69.10%). Further, not only did I find that net EV and the 

availability of a boost predicted commitment alone, but I also found that the 

interaction between these two predictors accounted for a significant proportion of the 

variance in willingness to commit to the high-level policy (see Table 3-3 – 

Regression coefficients for the linear model given by: 𝑝𝑟𝑜𝑝𝐻𝐿 ~ 𝑛𝑒𝑡 𝐸𝑉 +

𝑏𝑜𝑜𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑛𝑒𝑡 𝐸𝑉 ∗ 𝑏𝑜𝑜𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦). This interaction term translated into 

a shallower correlation between net EV and the proportion of high-level 

commitments for experiment 3-2 (r = 0.50) than for experiment 3-1 (r = 0.81) (see 

Figure 3-6 – Correlation between net expected value (Net EV) in favour of the high-

level policy (computed as EV for high-level policy – EV for low-level policy) and the 

proportion of high-level commitments made by each participant for each difficulty 

Table 3-3 – Regression coefficients for the linear model given by: 𝑝𝑟𝑜𝑝𝐻𝐿 ~ 𝑛𝑒𝑡 𝐸𝑉 +
𝑏𝑜𝑜𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑛𝑒𝑡 𝐸𝑉 ∗ 𝑏𝑜𝑜𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
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level (which is associated with a different accuracy level and therefore different net 

EVs) separately for each experiment. The difference in slopes between the two 

experiments is significant, with the presence of a low-level boost in resulting in a 

significantly shallower slope, indicating that decisions here deviated further from the 

optimal solution.). In sum, where there was a prospect of an infrequent but large 

boost in low-level reward (as in experiment 3-2), participants would deviate further 

from the optimal solution to the task. This suboptimality took the specific form of not 

tying themselves to a course of action that would prevent them from taking 

advantage of that boost. Where no such prospect was present (as was the case in 

experiment 3-1), participants followed more closely the optimal solution to the task. 

Thus, improbable but attractive rewards significantly detracted from participants’ 

willingness to adopt a high-level policy.  The possible lucky bonus significantly 

undermined the long view.  

3.3.3 Discussion 

In this second experiment, I found that people were less willing to commit to lengthy 

high-level policies of action in dynamic environments than in static ones. This was 

the case even when opting for a low-level (rather than high-level) policy in fact lead 

to less total reward in the long run. I computed the expected value of each option in 

the task and found that decisions were less dependent on expected values where 

rewards in the environment were variable. Rational and normative maximisation of 

value conventionally recommends choosing the action of highest expected value. 

Therefore, this normative model was insufficient to explain behaviour. It seems my 

participants were happy to deviate from the optimal solution to the task to avoid tying 

their hands to a high-level policy of behaviour that would limit their future decisions. 

In particular, they avoided choices that precluded reaping the advantage of a future 

lucky occurrence (the boost) that was unlikely but attractive. 

It is unclear whether this strategy of avoiding future restrictions on choice is, 

strictly speaking, a component of self-efficacy. Early conceptions of self-efficacy 

were concerned primarily with perceived ability to successfully execute a target 

behaviour (Bandura, 1974, 1977, 1984; Kirsch, 1995), such as successfully throwing 

a ball and hitting a target - a paradigm I have reprised here. The subsequent 

development of coping self-efficacy enriched the theory to include perceived 



 116 

capability to deal with barriers that arise during the maintenance of a behaviour 

(Binsch, Wabeke, Koot, Venrooij, & Valk, 2016; Chesney, Neilands, Chambers, 

Taylor, & Folkman, 2006; DiClemente, Fairhurst, & Piotrowski, 1995; Kirsch, 1995; 

Schwarzer & Renner, 2000; Williams, 1995). While coping self-efficacy has not been 

explicitly tied to hierarchically organised action, coping self-efficacy seems like an 

inherently hierarchical concept; since it captures the belief that one will be able to 

maintain a lengthy policy of action despite any challenges that arise. The present 

result places on a computational footing, for the first time, the intuition that self-

efficacy involves predictions of one’s biases (in this case towards high-level policies) 

of future choice behaviour. 

There is close contact here with failures of self-regulation in addiction 

(Sayette, 2004). Indeed, my task captures a widely acknowledged property of 

addictive behaviours, namely that a single deviation from the high-level policy results 

in a complete failure to achieve the outcome to which the high-level policy is 

directed. The alcoholic has only to open the bottle in order to fall (Ibsen, 1891). Not 

only does my task share the same contingencies of addicts’ relapse behaviours, but 

both cases moreover share an essential feature: maintaining the high-level policy 

involves self-restraint and cognitive effort (which has been demonstrated to influence 

preferences, Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2009) to resist 

taking an immediate and highly rewarding off-policy alternative.  

Given my results and my hierarchical lens, I suggest a novel and more formal 

definition for coping self-efficacy. Self-efficacy is the perceived capability to maintain 

adherence to a high-level policy to which people may be genuinely committed, even 

in the face of new and more immediately rewarding alternative courses of action. 

Self-efficacy requires not only that one knows that one can do the right thing in the 

current choice nexus. It also requires that one believes this choice preference is 

resilient to tempting but EV-neutral (or EV-damaging) reward possibilities. True self-

efficacy thus involves an element of resilience to external manipulations of the 

reward landscape. 
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3.4 General Discussion 

Across two experiments, I have provided a systematic treatment of how self-efficacy 

theory can be extended to describe self-efficacy judgments made about 

hierarchically organised behaviours. I focussed on the length of a high-level 

behaviour (that being the number of lower-level actions it prescribes) as the most 

relevant feature of hierarchically organised behaviour for self-efficacy, and I identified 

two ways in which self-efficacy judgments (as measured by choice) are influenced by 

the length of a high-level policy of action. First, as the length of a behaviour 

increases the likelihood of successfully executing all actions it prescribes decreases 

exponentially, and I found in experiment 3-1 that my participants were sensitive to 

this exponential decrease. Second, as the length of a behaviour increases it requires 

that more future decisions adhere to the actions it prescribes, and I found in 

experiment 3-2 that my participants were averse to this restriction on choice. I have 

therefore identified two ways in which length as a central feature of hierarchical 

action influences self-efficacy judgments and as a result influences choice between 

actions. 

Most applications of self-efficacy theory draw on the flat (i.e., non-hierarchical) 

descriptions of behaviour included in the theory (Bandura, 1977) to design measures 

that will estimate perceived capability to execute single actions in isolated contexts. 

To refer to an earlier example, the smoking abstinence self-efficacy questionnaire 

(Spek et al., 2013) asks smokers how confident they are they would not smoke in 

specific individual situations. This style of questioning reflects the fundamental idea 

in self-efficacy theory that self-efficacy judgments are made about single actions in 

isolation. Attempts to extend the theory to consider more prolonged behaviour were 

made in the development of coping self-efficacy (DiClemente et al., 1995; S. L. 

Williams, 1995), which focusses on perceived capability to maintain a behaviour in 

the face of adversity. However even here, notions of hierarchical action are only 

implicit in the theory – high-level policies of action are not explicitly discussed, nor is 

actual behaviour measured. Here I make an explicit claim that features of 

hierarchical action must be integrated with classical notions of flat self-efficacy to 

more completely describe how self-efficacy judgments are made. To support this 

claim, I found evidence for a precise sensitivity to the exponential decreases in the 



 118 

likelihood of successfully executing a sequence of difficult actions as the length of 

that sequence increase. This sensitivity requires two things: (1) accurate estimates 

of perceived capability to execute the difficult action once; and (2) an accurate 

estimate of how needing to repeat the action multiple times influences probability of 

overall success (i.e., a model of how well performance will accumulate). These two 

components capture a need to integrate classical flat notions of self-efficacy that 

remain important with hierarchical self-efficacy to accurate explain self-efficacy 

judgments of real-world behaviours. 

In addition to the mechanical difficulty of executing a skilled task multiple 

times, I identified a second, more cognitive component of the influence the length of 

a behaviour has on self-efficacy judgments. In committing to a lengthy high-level 

course of action we are in effect committing to a restriction of all relevant choices for 

the duration of that course of action. For example, a commitment to vegetarianism 

restricts all future choices between foods to include only those that are vegetarian. I 

found that this restriction on future choice was sufficiently aversive to cause my 

participants to deviate from the optimal solution to the task, which was (for high 

accuracy levels) to engage with the high-level policy and to ignore a tempting and 

immediate but infrequent boost in low-level reward. Note that the boost did not 

change the optimal solution to the task, which was to engage with the high-level 

policy at high accuracy levels (though the boost did narrow the gap between the 

value of the two competing policies). I propose two possible interpretations for this 

effect. 

First, it could be that my participants were averse to tying their hands to a 

high-level policy because they judged that they would be unable to maintain 

adherence to it in the face of a tempting low-level reward. This interpretation is 

grounded in coping self-efficacy (DiClemente et al., 1995; Williams, 1995), and in 

this light the effect can be compared directly to abstinence in addictive behaviours, 

where the temptation of an off-policy reward presents a real challenge for self-

restraint. This interpretation is less about the restriction of choice for the sake of 

being able to pursue valuable off-policy outcomes per se, and more about 

anticipating a failure to behave in line with the high-level policy when presented with 

a difficult choice. It is not that people do not want to maintain adherence to a high-
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level policy long-term, it is that they perceive that they may be unable to reject 

tempting off-policy rewards, and so they do not engage with the high-level policy in 

anticipation of their own failure. The lengths of the commitments involved are 

relevant here. To achieve the high-level outcome of the bonus in my task or 

prolonged abstinence for a smoker, very many actions must be successfully 

executed. By contrast, to experience the low-level reward, only one action must be 

successfully executed. If I perceive that I am likely to fail to resist temptation at some 

point, then why engage with the high-level policy at all? In sum, when deciding 

whether to engage with a high-level policy, people judge how well they expect 

themselves to maintain that policy, and this judgment influences how willing they are 

to commit to the policy at all. 

Second, my participants could have been averse to tying their hands to a 

high-level policy because they wanted to take advantage of any and all highly 

rewarding and immediately available outcomes that came their way. This 

interpretation is derived from prospect theory (Kahneman & Tversky, 2018), which, 

broadly speaking, states that losses feel worse than equivalent gains feel good. It 

may be that the prospect of losing out on a highly rewarding outcome due to a prior 

commitment to a high-level policy that requires ignoring that outcome feels worse 

than earning that outcome feels good. This asymmetry in how we process losses 

and gains would artificially inflate the negative value of the prospective losses 

incurred by the restrictions placed on choice by a candidate high-level policy of 

action. In effect, this would make that policy less appealing by applying an over-

tuned penalty for these losses, thereby dissuading commitment to it. There are other 

heuristics that are relevant here, such as the peak-end rule (Do, Rupert, & Wolford, 

2008), which shows that peaks in value are more salient for our decision making 

processes than more moderately valued but tonic outcomes. In sum, the peculiarities 

in how people estimate value might bias decisions to avoid any restrictions on choice 

where possible to limit prospective losses. Given that higher level behaviours will by 

definition place lengthier restrictions on choice, this would translate into a general 

bias to avoid tying our hands to higher-level policies of action. 

The two interpretations of the effects observed here are not mutually 

exclusive. It could well be the case that people make judgments similar to those 
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described by coping self-efficacy about their ability to maintain adherence to high-

level courses of action and that they are biased to want to avoid restrictions on 

choice so as to avoid any prospective losses. These two may also interact for a 

compounding effect that severely dissuades commitment to high-level policies: if I 

deem myself unable to adhere to a high-level policy for long enough to experience 

the outcomes it aims to achieve and I expect to incur low-level losses from following 

it, I may be very unlikely to ever commit to it. Future research could aim to 

disentangle these two interpretations by varying the cognitive effort required to 

maintain a high-level policy independently of the prospective losses incurred by 

committing to it, and this may shed further light on how these two processes interact 

in decisions between actions at multiple hierarchical levels. 

Future research could also investigate the relationship between the effects 

observed here and the severity of the contingencies involved. In my task and in the 

examples I have discussed (e.g., smoking), a single failure to adhere to the high-

level policy is catastrophic with respect to the end goal the policy aims to achieve. 

However, not all behaviour follows such strict contingencies. If these were relaxed, 

such that some number of failures were permitted under the high-level policy without 

these failures resulting in a complete ruling-out of the high-level outcome, it is 

possible that the effects here would diminish. There is in all likelihood a balance, 

whereby the acceptability of failure under a high-level policy will determine how 

important the features of high-level action identified here are for self-efficacy 

judgments and choice.  

To conclude, I aimed in this chapter to answer how self-efficacy might 

contribute to or resolve decision conflict between actions at different hierarchical 

levels. I identified the length of those actions as a key factor of interest for how the 

brain computes self-efficacy judgments over hierarchically higher-level actions. Over 

two experiments, I demonstrated first that the length of a course of action influences 

choice both due to the increased mechanical difficulty of executing lengthier 

sequences of action and due to the increased cognitive difficulty of adhering to 

lengthier sequences of action that place restrictions on choice. These findings outline 

two factors tied to a now extended hierarchical self-efficacy theory that contribute to 

resolutions of conflict in decisions between actions at different hierarchical levels. 
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Chapter 4  
Subjective Biases:  

Do we prefer to pursue outcomes at 

specific hierarchical levels?
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4.1 Introduction 

In Chapter 2, I demonstrated that human behaviour is hierarchically organised. I then 

turned to focus on whether such an organisation has any influence on how we 

decide how to behave. In Chapter 3, I found that lengthy high-level behaviours are 

associated with a diminished sense of self-efficacy, and that people are less likely to 

commit to these behaviours as a result. In this chapter, I investigate a 

complementary aspect of any action decision. When deciding whether to perform an 

action, people consider not only the likelihood that they will succeed, but also the 

value of the outcomes that would follow from success. In this chapter, over three 

experiments I investigate whether higher-level outcomes are intrinsically and 

subjectively more valuable than lower-level outcomes. 

 Why might people be biased to prefer to pursue outcomes at specific 

hierarchical levels? Temporal discounting (Doyle, 2013; Kacelnik, 1997; Odum, 

2011), is the a well-documented discount in the value of an outcome as it moves 

further away in time, is intuitively sensible. As the span of time between now and a 

prospective outcome increases, the probability of the outcome occurring decreases 

in an uncertain world. Is there a similarly sensible justification for discounting the 

value of an outcome not according to time, but according to its hierarchical level? 

Given that humans do discount the value of more distant outcomes (Odum, 2011) 

and given that higher-level outcomes are by definition further away in time, the 

absence of any counteracting force (i.e., a discounting of lower-level outcomes) here 

would make sufficiently high-level outcomes unreasonably difficult to pursue. Even 

outcomes high in objective value would, if at a high-enough level (and therefore far 

enough away in time), have their subjective value diminish to near zero thanks to 

temporal discounting. For example, the risks posed by climate change are very large 

in magnitude but may seem very far away in time, such that the negative value of the 

extreme outcomes involved may be discounted to near-zero thanks to their extreme 

distance. An inability to act on high-level outcomes with high-level courses of action 

is ultimately maladaptive – in the case of climate change, this inability would lead to 

a species-level existential risk being unanswered. However, this could be rectified 

should the human brain discount value differently at different levels of the 

behavioural hierarchy. 
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 There are two ways in which hierarchical level-dependent biases in subjective 

value could be implemented (see Figure 4-1 – Two possible implementations for a 

subjective bias in the evaluation of outcomes at specific hierarchical levels: (A) a 

global boost in value (implemented here by 𝜂) could be applied to outcomes at 

specific hierarchical levels, even though both outcomes share a common discounting 

function; and (B) different temporal discounting rates (implemented here by 𝜃) could 

be applied for outcomes at different hierarchical levels, even though the outcomes 

share a common current value. Other parameters are as follows: 𝑄(𝑠, 𝑎) Q value 

associated with the state action pair (s, a); 𝛼 – learning rate; 𝛾 – temporal 

discounting rate; 𝑟 – reward.). First, it could be that there is a global boost in 

subjective value for higher-level outcomes. This would elevate the value of any high-

level outcome, though it would still be subject to the same rate of temporal 

discounting as a low-level outcome, and so this boosted value would still decay 

quickly over time. Second, it could be that the rate of temporal discounting applied to 

any outcome is dependent upon the hierarchical level of that outcome. This would 

not alter the subjective value of two comparable high and low-level outcomes, but it 

would allow for high-level outcomes to maintain their value over a longer span of 

time. This implementation more directly addresses the issue outlined with distant but 

highly valued high-level outcomes being ignored, as higher-level outcomes could be 

subject to slower temporal discounting than lower-level outcomes. 
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 Over three experiments, I test whether humans hold any such level-

dependent subjective bias. My approach was to first test for whether any such bias 

was present in human behaviour, and if so, I intended to then investigate which of 

the two mechanisms proposed in Figure 4-1 – Two possible implementations for a 

subjective bias in the evaluation of outcomes at specific hierarchical levels: (A) a 

global boost in value (implemented here by 𝜂) could be applied to outcomes at 

specific hierarchical levels, even though both outcomes share a common discounting 

function; and (B) different temporal discounting rates (implemented here by 𝜃) could 

be applied for outcomes at different hierarchical levels, even though the outcomes 

share a common current value. Other parameters are as follows: 𝑄(𝑠, 𝑎) Q value 

associated with the state action pair (s, a); 𝛼 – learning rate; 𝛾 – temporal 

discounting rate; 𝑟 – reward. was responsible for this bias. In experiment 4-1, I pit 

two policies of action that earn equal sums of reward but different distributions of 

reward over high and low levels against one another. Consistent with the absence of 

any level-dependent bias, I find no general preference in the population to prefer to 

pursue high- (or low-) level outcomes. Note that for any bias of this sort to exist, I 

would expect it to be consistent within the population, with any inter-individual 

differences manifesting only in the strength of the bias and not in its direction (as is 

the case for temporal discounting, Odum, 2011). In two follow-up experiments, I 

investigate whether any subjective bias in the evaluation of high-/low-level outcomes 

Figure 4-1 – Two possible implementations for a subjective bias in the evaluation of outcomes at 
specific hierarchical levels: (A) a global boost in value (implemented here by 𝜂) could be applied 
to outcomes at specific hierarchical levels, even though both outcomes share a common 
discounting function; and (B) different temporal discounting rates (implemented here by 𝜃) could 
be applied for outcomes at different hierarchical levels, even though the outcomes share a 
common current value. Other parameters are as follows: 𝑄(𝑠, 𝑎) Q value associated with the 
state action pair (s, a); 𝛼 – learning rate; 𝛾 – temporal discounting rate; 𝑟 – reward. 
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can be produced by context. I introduce a social-attentional cue to the same task 

used in experiment 4-1, and I find that preference can indeed be shifted to favour 

high- or low-level outcomes as per this social-attentional cue. While people seem to 

hold no general preference to pursue high-level outcomes, it seems that such 

preferences can be induced by even minimal social cues to guide attention. 

4.2 Experiment 4-1 

4.2.1 Methods 

4.2.1.1 Participants 

This experiment was approved by the UCL Research Ethics Committee, and it was 

hosted online. Participants were recruited via Prolific (www.prolific.co), and all were 

then redirected to a personal website where the experiment was hosted. All 

participants provided informed consent prior to the start of the experiment. As in the 

previous chapters, a sequential analysis approach was used to ensure the study was 

sufficiently powered while avoiding Type 1 errors. Sequential analysis involves 

collecting and analysing data at increasingly large sample sizes while controlling for 

the Type 1 error rate by lowering the threshold for significance (see Lakens, 2014). I 

planned to collect data in batches of 40 subjects, to analyse the data, and to then 

decide whether results were convincing enough to conclude data collection. If no 

conclusive results were found, I would then continue data collection, but I would 

halve my threshold p-value for the next iteration. Note that a post-tutorial 

questionnaire was included and failure to answer any of the questions here resulted 

in early termination of the experiment (though I continued data collection until a full 

sample of 40 participants had fully completed the experiment). From my first sample 

of 40 participants, I found no evidence for any effect of hierarchical level on choice 

and no indication that such an effect might be present in human behaviour, and so I 

terminated my sequential analysis plan at the first step. I therefore had a final sample 

size of 40 participants for this experiment. Participants received £5 per hour as a 

base rate and could earn an additional bonus payment (up to £3) based on 

performance in the task. 

http://www.prolific.co/
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4.2.1.2 Design 

The experiment consisted of six blocks of five trials of a delivery task, with each trial 

requiring that the participants select and deliver a single package. Blocks in the task 

corresponded to weeks, and trials to days of the week (Mon-Fri). Each trial 

presented a choice between one of two possible deliveries (as marked by orange 

and blue packages), the task being to select a package and then deliver it at its 

destination. The rewards were structured such that one of the two packages would 

earn a lesser amount per individual delivery (6 points vs 10) but could earn a bonus 

amount that would make up for this difference if repeated over all five trials within a 

block (the assignment of orange or blue to either reward scheme was randomised 

over participants). I refer to the package that could earn the high-level bonus as the 

high-level package and the package that maximised low-level payments for 

individual deliveries as the low-level package. 

 The reward structure used in the task presented participants with a choice 

between two competing policies of action. First, selecting the low-level package on 

all trials in a block would maximise low-level reward and would earn a total of 50 

points (10 points per package). Second, selecting the high-level package on all trials 

in a block would earn less low-level reward (30 total; 6 per package) but would 

secure a high-level reward in the form of a bonus (20 points). I refer to the former as 

the low-level policy, and the latter as the high-level policy. Critically, the bonus 

payment occupies a higher hierarchical level than do the payments earned for 

individual deliveries. The bonus is contingent upon a policy of action taken over an 

entire block, whereas payments for individual deliveries depend only upon behaviour 

within a single trial. Therefore, although the two policies earn an equal objective sum 

of reward, they differ in the distribution of that reward over the behavioural hierarchy. 

Where the low-level policy earns only low-level reward, the high-level policy earns a 

mixture of high- and low-level rewards. As a result, if my participants held a general 

preference for pursuing high- over low-level outcomes, I would expect them to prefer 

the high-level policy over the low-level policy. 

 To rule out any effect of temporal discounting, all reward was delivered at the 

end of the block. This allowed a contrast of high- vs low-level policies with the only 

differentiating factor being the distribution of rewards over high and low levels of 
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behaviour. If I did detect a preference for one policy over another, I could therefore 

attribute this to a genuine preference for higher- or lower-level outcomes. Note 

however that this design decision does make a disentanglement of the two potential 

biases outlined in Figure 4-1 – Two possible implementations for a subjective bias in 

the evaluation of outcomes at specific hierarchical levels: (A) a global boost in value 

(implemented here by 𝜂) could be applied to outcomes at specific hierarchical levels, 

even though both outcomes share a common discounting function; and (B) different 

temporal discounting rates (implemented here by 𝜃) could be applied for outcomes 

at different hierarchical levels, even though the outcomes share a common current 

value. Other parameters are as follows: 𝑄(𝑠, 𝑎) Q value associated with the state 

action pair (s, a); 𝛼 – learning rate; 𝛾 – temporal discounting rate; 𝑟 – reward. 

impossible – I could detect a bias, but I could not attribute any bias conclusively to 

either level-dependent temporal discounting rates nor to a level-dependent global 

boost in value. 

 Comparisons between optimal policies of action make sense only if my 

participants know what those policies are with certainty. If a participant did not know 

how much reward was available under the high- and low-level policies, then they 

could not make an informed decision between them. To verify that all participants 

had complete knowledge of the rewards available under each policy, participants 

completed an extensive tutorial that would present all information necessary. The 

tutorial ended with a questionnaire which probed for complete understanding of the 

rewards available under each policy and an understanding that the policies earned 

the same objective sum of reward. To proceed on to the main experiment, all 

questions here must have been answered correctly, and so all participants in my 

data held complete knowledge of the reward structure, allowing for a clear 

interpretation of their choices in the task. 

4.2.1.3 Procedure 

The task was organised into six blocks of five trials, and as mentioned payment for 

the block was provided only after all trials were completed. Prior to the task itself, 

participants completed a tutorial that explained the task and the reward structures in 

detail (see Figure 4-2 – Illustration of procedure followed by experiments 1, 2, and 3. 

for a full summary of the procedure followed).  
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Tutorial 

The tutorial began with an introduction to the environment within which participants 

were to be making deliveries (this comprised a 10x10 grid with some basic obstacles 

restricting movement). Participants were then given an opportunity to navigate 

around the environment by moving their avatar up, down, right, and left using the 

corresponding arrow keys. Once they were comfortable with how to move around, 

the participants were asked to complete a series of practice trials. The first two 

practice trials had the participant select and deliver an orange package before doing 

the same for a blue package (the order of the colours was randomised over 

participants). 

Blocks in the task corresponded to weeks, and participants were to complete 

one delivery per day Monday to Friday (corresponding to 5 trials per block). 

Participants were able to track their progress through any given week by looking to 

the top left of the on-screen display, where they could find a record of the days of the 

week with all completed days coloured in according to the package delivered on that 

day. A third and final practice trial was set up as the fifth and final trial of an in-

progress block to introduce this to participants. On this trial, participants were free to 

decide for themselves between the two packages. Participants then received 

Figure 4-2 – Illustration of procedure followed by experiments 1, 2, and 3. 
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payment for the week as though they had completed it all themselves. This 

introduced the idea that individual payments earned for delivering orange or blue 

packages were unequal (with one of the two packages being more valuable than the 

other), and that there was a bonus available each week. Participants were told that 

they could earn the bonus payment each week should all deliveries within a week be 

of the less rewarding package. 

Participants were then trained on the two competing policies that exist within 

the task (see Design). This was achieved by having participants complete two in-

progress weeks (with Mon-Wed deliveries already completed) repeatedly until they 

earned as much as possible given the deliveries already completed. One of the two 

weeks required that participants select the high-level package every day to earn the 

bonus; the other required that participants ignored the bonus and selected only the 

low-level package. 

To end the tutorial, participants answered three sets of questions on the 

content they had covered. Each set consisted of the same three questions: (1) 

participants were to select which of two in-progress weeks they would most like to 

complete given the rewards available to them for doing so; (2) for their selected in-

progress week, participants were to judge whether the bonus was attainable; (3) 

again for their selected in-progress week, participants were to estimate the maximum 

amount they could earn by completing the week. These questions were chosen to 

ensure that participants (1) understood how to attain the bonus, (2) understood that 

the two competing policies offered greater earnings than any other sub-optimal 

alternative, and (3) understood that the two competing policies offered objectively 

equal pay-outs for particular values of the bonus (i.e., on neutral blocks). Importantly, 

should participants fail to answer either of the final two questions correctly for any of 

the three sets, they were excluded from the remainder of the experiment. The first 

two sets of questions pitted each of the two competing policies in turn against sub-

optimal alternatives, where the third set posed participants with a choice between the 

two competing policies.  

Main Experiment 
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The experiment was organised into six blocks of five trials. Each trial began with a 

selection between an orange and a blue package (the position of the packages on 

the right or left of the screen was randomised over all trials). Having selected a 

package, an avatar would automatically leave the depot and the destination would 

be revealed (this was concealed during selection so as not to bias decisions 

between packages). Participants would then navigate to the destination, and upon 

entering the appropriate tile on the grid the package would be delivered and the next 

trial would begin. At the end of each block, participants received payments for the 

individual deliveries made and any bonus they may have earned and then the next 

block would begin. Once all six blocks were completed, participants were required to 

answer a closing question that asked for a justification of their preferred policy 

(“Please tell us whether (in general) you preferred to go for the bonus or ignore it and 

why?”). 

4.2.1.4 Analysis 

Our analysis plan for the current task was simply to investigate whether the average 

preference for each participant (computed as the proportion of times a participant 

selected the high-level policy over all six blocks) deviated from the chance level of 

0.5. I planned to compute preference for each participant, and to then perform a one-

sample t-test against the chance level to detect any significant deviation. 

4.2.2 Results 
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 I found no evidence to suggest that people have a general bias to prefer to pursue 

high- or low-level outcomes. Analysis of the proportions of blocks completed by my 

40 participants under the high-level policy revealed no significant deviation from the 

chance level of 0.5 (𝑡(39) = −0.66, 𝑝 = .511). The distribution of proportions does 

appear to be tri-modal, with some participants opting to commit to the low- or high-

level policies on all blocks in the experiment, and others hovering around the chance 

level of 0.5 (see Figure 4-3 – Smoothed density of proportions of blocks completed 

under the high-level policy for all participants. For each participant, I computed the 

proportion of blocks completed under the high-level policy, and I show here the 

density of those proportions over the full range.). Whilst this may well indicate that 

there are inter-individual differences in preference for high- vs low-level outcomes, it 

may also be a result of the fact that in the absence of any bias to nudge preference 

in the direction of either outcome, participants are free to select any strategy they like 

to complete the blocks under one or other of the optimal policies. The lack of any 

general shift in the population in one direction or another indicates that people are 

not biased in how they evaluate outcomes at different hierarchical levels.  

4.2.3 Discussion 

I found no evidence to suggest that humans are biased in how they estimate the 

value of outcomes that occupy different levels of a behavioural hierarchy. The lack of 

any consistent shift in my population of participants in favour of high- or low-level 

Figure 4-3 – Smoothed density of proportions of blocks completed under the high-level policy for 
all participants. For each participant, I computed the proportion of blocks completed under the 
high-level policy, and I show here the density of those proportions over the full range. 
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outcomes does not support the concept of level-dependent biases. Failure to relax 

the severity of temporal discounting for high-level outcomes (by way of some 

subjective bias) makes it difficult to see how any individual motivates action in their 

pursuit. Yet, people are in fact able to motivate actions directed at high-level 

outcomes (for one example, see prevalence rates of vegetarianism: Paslakis et al., 

2020). We can rule out any general and global bias to prefer high level outcomes on 

the basis of my current experiment, but there may well be other factors that 

contribute to high-level preferences than hierarchical level alone. 

 The high-level outcomes of particular interest here are those that are high in 

magnitude, making them valuable to pursue, but very high-level, meaning that their 

value decays to near-zero given their distance in time. The claim that temporal 

discounting is maladaptive here rests on these two requirements: the claim is that 

due to extreme distance, extremely rewarding/punishing outcomes that people 

should pursue/avoid are ignored. The outcomes involved in climate change are a 

good example: the cost of failing to act is immense, and yet the distance to those 

outcomes makes motivating action difficult. However, note that at these very high 

levels of behaviour, the quality of the goal shifts from being one that can be feasibly 

attained by an individual person to one that requires input from many people. This is 

a straightforward extension of a hierarchical organisation of behaviour: just as 

individual actions can be sequenced, the actions of individual people can be 

combined. We see this in issues like climate change: the action of any individual is 

unlikely to dent the problem, but the joint action of many people will have impact. 

The outcomes and the behaviours that achieve them therefore take a different 

shape. Vegetarianism, as one example, has become a social identity (Nezlek & 

Forestell, 2020), and research into the social psychology of vegetarianism reveals 

that motivation for and maintenance of vegetarianism are tightly linked to one’s 

social context (for a review, see Rosenfeld, 2018). Such psychological factors are 

interesting but are scarcely captured by the relatively simple experiment reported 

here. While experiment 4-1 found no direct evidence to support the presence of a 

general bias to pursue high- over low-level outcomes (or vice versa), the outcomes 

involved in the task did not quite match the nature of the high-level outcomes 

identified as problematic, because they included no social context. As a result, we do 

not know what effect social context has on preference for high- vs low-level 



 133 

outcomes, which is relevant for the high-level outcomes discussed. Effectively, real-

world choices might be more successful in triggering high-level choices than the 

simple scenarios described here. 

 In experiment 4-1, I presented participants with a choice between two policies 

of action that differed only in the distribution of reward over two hierarchical levels, 

and I found no population-level preference to pursue high-level outcomes over low-

level outcomes making the prospect of any general subjective bias here unlikely. 

Given that high-level outcomes of the sort I am interested in here tend to involve 

group action towards a common good, I hypothesised that introducing a social 

context might allow us to manipulate preferences to pursue outcomes at specific 

levels. Therefore, over two experiments I introduced social cues to the task used in 

experiment 4-1 to draw attention to one or other of the two hierarchical levels 

included in the task. I found that introducing even minimal social cues systematically 

shifted preference in favour of the cued level, supporting the idea that although there 

is no general bias to prefer to pursue outcomes at higher hierarchical levels, a 

preference can be manufactured by a social context that guides attention. 

4.3 Experiments 4-2 & 4-3 

4.3.1 Methods 

4.3.1.1 Participants 

Both experiments 4-2 and 4-3 were approved by the UCL Research Ethics 

Committee, and both were hosted online. Participants were recruited via Prolific 

(www.prolific.co), and all were then redirected to a personal website where the 

experiment was hosted. All participants provided informed consent prior to the start 

of the experiment. As for experiment 4-1, a sequential analysis approach was used 

to ensure the study was sufficiently powered while avoiding Type 1 errors (Lakens, 

2014). I planned to collect data in batches of 30 subjects (for each experiment), to 

analyse the data, and to then decide whether results were convincing enough to 

conclude data collection. If no conclusive results were found, I would then continue 

data collection, but I would halve my threshold p-value for the next iteration. Note 

that a post-tutorial questionnaire was again included and failure to answer any of the 

http://www.prolific.co/
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questions here resulted in early termination of the experiments (though I continued 

data collection until a full sample of 30 participants had completed the experiment). 

From my first samples of 30 participants, I found conclusive and statistically 

significant results, and so I terminated my sequential analysis plan at the first step. I 

therefore had a final sample size of 30 participants for each of experiments 4-2 and 

4-3. Participants received £5 per hour as a base rate and could earn an additional 

bonus payment (up to £3) based on performance in the task. 

4.3.1.2 Design & Procedure 

Experiments 4-2 and 4-3 followed the same design and procedure as experiment 4-1 

(see Figure 4-2 – Illustration of procedure followed by experiments 1, 2, and 3.) but 

for two changes. First, the amount of reward available in the bonus and in the low-

level payments earned by the low-level package could vary. Second, a social-

attentional cue was introduced to the task in the shape of a “boss” character that 

would instruct the participants as to what rewards were available for each block. In 

experiment 4-2, the high-level bonus could change between blocks, but low-level 

rewards were fixed, while in experiment 4-3 the low-level rewards earned by the low-

level package could change between blocks, but the high-level bonus was fixed. 

These changes in reward were set so that on four of the six blocks the high-level and 

low-level policies were of equal objective value as these blocks followed the same 

reward scheme used in experiment 4-1. Of the two remaining blocks, one would 

make the high-level policy more rewarding (by increasing the bonus in experiment 4-

2 and by decreasing the low-level payments in experiment 4-3), and one would make 

the low-level policy more rewarding (by decreasing the bonus in experiment 4-2 and 

by increasing low-level payments in experiment 4-3). On each trial, the “boss” would 

appear at the bottom right of the screen and would provide exact information of the 

rewards available block by block (in experiment 4-2, the cue read “I can offer you a 

bonus of X this week”; in experiment 4-3, the cue read “I can offer you payments of X 

this week”). I made these changes with two goals: (1) adjusting the relative values of 

the high- and low-level policies allowed us to measure whether my participants 

remained sensitive to the rewards involved in the task; and (2) introducing a “boss” 

figure added a minimal social cue that would draw the attention of my participants to 

one or other of the policies (high-level in experiment 4-2 and low-level in experiment 
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4-3). I hypothesised that this minimal social cue would shift preference in favour of 

the cued outcomes and their associated policies. 

4.3.1.3 Analysis 

Our analysis plan for experiments 4-2 and 4-3 was similar to that used for 

experiment 4-1 – I would compute the proportion of blocks completed under the 

high-level policy as a measure of preference, and I would test (with one-sided one-

sample t-tests) for a deviation in this population of preferences from the chance level 

of 0.5. I had clear predictions here, which were that deviations would be in the 

direction of the outcome cued by the social cues introduced to the two experiments, 

i.e., I would find a shift in favour of the high-level policy in experiment 4-2 and a shift 

in favour of the low-level policy in experiment 4-3. To evaluate my original hypothesis 

for this chapter, which was that there may be subjective biases in how outcomes at 

specific hierarchical levels are evaluated, I also fit reinforcement learning models to 

behaviour. For all possible proportions of blocks completed under the high-level 

policy, I fit three RL models: one was a simple Rescorla-Wagner model, and the 

other two extended on this simple baseline by implementing one or other of two 

biases outlined in Figure 4-1 – Two possible implementations for a subjective bias in 

the evaluation of outcomes at specific hierarchical levels: (A) a global boost in value 

(implemented here by 𝜂) could be applied to outcomes at specific hierarchical levels, 

even though both outcomes share a common discounting function; and (B) different 

temporal discounting rates (implemented here by 𝜃) could be applied for outcomes 

at different hierarchical levels, even though the outcomes share a common current 

value. Other parameters are as follows: 𝑄(𝑠, 𝑎) Q value associated with the state 

action pair (s, a); 𝛼 – learning rate; 𝛾 – temporal discounting rate; 𝑟 – reward.. These 

biases capture (1) level-dependent rates of temporal discounting, and (2) a global 

boost in value for high-level outcomes. I fit these three models to preference data, 

and I compared their fit using the Bayesian information criterion, which would 

penalise the latter two models for their additional parameter (which controlled the 

strength of their respective biases). The intention here was to see whether 

introducing a bias led to significant improvement in the fit of my models to data, 

which would, if true, support the idea that such biases exist and can be prompted by 

social context. 
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4.3.2 Results 
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When cued to attend to outcomes at specific hierarchical levels, my participants 

Figure 4-4 – Smoothed density of proportions of blocks completed under the high-level policy for 
all participants in each experiment. For each participant, I computed the proportion of blocks 
completed under the high-level policy, and I show here the density of those proportions over the 
full range. 
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tended to pursue those cued outcomes (see Figure 4-3 – Smoothed density of 

proportions of blocks completed under the high-level policy for all participants. For 

each participant, I computed the proportion of blocks completed under the high-level 

policy, and I show here the density of those proportions over the full range.). Where 

there was a social cue to attend to the high-level outcome (in experiment 4-2) there 

was a significant shift in preference in favour of the high-level policy (𝑡(29) =

2.07, 𝑝 = .048, 𝑑 = 0.37), and where there was a social cue to attend to the low-level 

outcome (in experiment 4-3) there was a significant shift in preference in favour of 

the low-level policy  (𝑡(29) = 2.10, 𝑝 = .045, 𝑑 = −0.38). It seems therefore that 

minimal social cues are sufficient to prompt a bias in preference to pursue outcomes 

at specific hierarchical levels. 

 For a full comparison of behaviour on all three experiments, I fitted RL models 

that did or did not include a bias to pursue specific hierarchical levels to all possible 

levels of preference across all three experiments. The no bias model implemented 

classic temporal difference Q-learning (as in the equation in Figure 4-1 but without 

Figure 4-5 – Fits of bias and no-bias models to the full range of proportions of blocks completed 
under the high-level policy. The top panel plots BIC values for the two models for comparison of 
fit (lower BIC = better fit). The bottom panel plots histograms of proportions for experiment 4-1, 
which included no social cues, and experiments 4-2 & 4-3, which included social cues to pursue 
the high-level and low-level outcomes respectively. 
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either of the two biasing parameters 𝜃 and 𝜂). The two bias models implemented 

each of the two biases outlined in Figure 4-1. Note that although both models were 

implemented, they were equivalent in terms of performance. Learning rates for all 

models were fixed at a value of 1 to reflect the fact that human participants were 

overtrained on the task and had perfect knowledge of the competing values of high- 

and low-level policies. We thus fit the biasing parameters and the temporal 

discounting rate as free parameters to the behavioural data using maximum 

likelihood estimation. 

I compare the fits of these models using the BIC, which penalises the bias 

models for their inclusion of a bias parameter (in addition to the base learning rate 

and temperature parameters included in all models). Note that the fits of the two 

alternative bias models (TD and V) are equivalent given that the strength of the bias 

can be equivalently adjusted in both models by adjusting their respective bias 

parameters. I find that only at very high levels of subjective bias do the bias models 

provide a better account of behaviour (see Figure 4-5 – Fits of bias and no-bias 

models to the full range of proportions of blocks completed under the high-level 

policy. The top panel plots BIC values for the two models for comparison of fit (lower 

BIC = better fit). The bottom panel plots histograms of proportions for experiment 4-

1, which included no social cues, and experiments 4-2 & 4-3, which included social 

cues to pursue the high-level and low-level outcomes respectively.). These high 

levels of bias were only found consistently in experiments 4-2 and 4-3, meaning that 

the simpler no-bias model is the best fit to behaviour in experiment 4-1 and the bias 

models fit best to behaviour in experiments 4-2 and 4-3. Note also that my models 

assume that any subjective bias in the evaluation of outcomes at specific hierarchical 

levels is in favour of high-level outcomes, i.e., a bias here inflates the value of 

higher-level outcomes. As such, my bias models do not capture behaviour in 

experiment 4-3, in which most participants prefer to pursue the low-level outcome in 

line with the social cues presented to them. A relaxation of my assumption that 

subjective biases are always in favour of higher hierarchical levels however would 

result in a symmetrically good fit for low-level preference. Taken together, the 

performance of my models demonstrate that (1) in the absence of any social cues to 

guide attention, there is no general bias in favour of high-level outcomes (see 

experiment 4-1); (2) biases to pursue outcomes at specific hierarchical levels can be 
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readily induced by social cues (see experiments 4-2 & 4-3); and (3) biases in how 

people evaluate outcomes at specific hierarchical levels do not always inflate the 

value of higher-level outcomes (as in experiment 4-2): they can also shift 

preferences in favour of lower-level outcomes (as in experiment 4-3). 

4.3.3 Discussion 

Over two experiments I demonstrated that introducing a minimal social cue to attend 

to outcomes at specific hierarchical levels can shift preference in favour of whichever 

level is cued. In experiment 4-2, I found that a cue to attend to a high-level bonus 

delivered by a boss figure would bias choice to pursue the bonus. In experiment 4-3, 

the cue was instead for low-level payments and here choices were biased to 

maximise low-level reward. I fit simple RL models to choice behaviour, and found 

that introducing a level-dependent bias in how outcomes are evaluated provided a 

marked improvement in the fit of these models to participants that were extreme in 

their preferences (i.e., participants that would select high- or low-level policies on all 

blocks). Taken together, these results indicate that a preference to pursue outcomes 

at specific hierarchical levels can be manufactured by social context. 

 What was it about the social cue introduced to experiments 4-2 and 4-3 that 

prompted a shift in preference? One interpretation is that the participants engaged 

with a learning process similar to that described by social reinforcement leaning, 

which extends standard reinforcement learning to include the many social 

interactions that might be relevant for learning how to behave (Isbell, Shelton, 

Kearns, Singh, & Stone, 2001; Jones et al., 2011; Najar, Bonnet, Bahrami, & 

Palminteri, 2020). Najar et al. (2020) investigated precisely how social signals 

influence human learning by comparing three plausible algorithms for the influence 

of social signals on learning: (1) decision biasing postulated that imitation consisted 

of a transient bias to select action in line with an agent’s peers without affecting the 

agent’s value function; (2) model-based imitation postulated that the agent would 

infer the value function of a peer and use that inferred value function to guide action 

without replacing their own; and (3) value shaping postulated that the agent would 

update their own value function according to the actions of a peer. They compared 

these three alternative mechanisms in two novel social reinforcement learning tasks.  

Model comparison revealed that value shaping provided the best fit to human 
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behaviour. Value shaping, that is the updating of one’s own value function according 

to the actions of one’s peers, lines up neatly with my proposal that participants were 

biased in how they estimated the value of outcomes at specific levels according to a 

social cue to attend to those outcomes. In both cases, there is a social signal that 

some action or outcome is somehow important, and in both cases this social signal 

directly influences computation of value. 

 A second, alternative interpretation of the results discussed is that participants 

were biased to pursue cued outcomes simply because they were more salient. The 

cue would draw attention to one or other of the two policies, and the salience of that 

policy might then have biased choice in its favour. Indeed, people do tend to place 

disproportionately high weight to more salient outcomes (in e.g., consumer choice: 

Bordalo, Gennaioli, & Shleifer, 2013). However, the outcomes involved in my tasks 

are of equal objective value, and participants knew this with certainty. It is therefore 

unclear how salience would bias preference. In consumer choice, for example, 

salience exerts an influence by drawing attention to one feature (such as price) over 

others (such as quality) such that decisions are based on the more salient features. 

However, alternative choices still vary along these more salient dimensions. In my 

case, there is no variability along the major decision-relevant dimension (points 

earned) between the two alternative policies. Thus, although the cues involved in the 

task did make one or other of the two policies more salient, all that is really drawn to 

my participants’ attention is that the two policies are of equal objective value. 

Attention can be used to collect information that can break symmetrically valuable 

options (Brunton, Botvinick, & Brody, 2013), but attention alone does not break 

equalities.   

 I favour the first of these two interpretations: that biases in preference here 

are due to a process of social reinforcement learning, where the social signal to 

attend to outcomes at a specific hierarchical level influences computations of value. I 

favour this interpretation for two reasons. First, there is correspondence between the 

behaviour I observed here and demonstrations of value shaping in social contexts 

(Najar et al., 2020). Second, alternative explanations that appeal to attention and 

salience do not easily discriminate between the two candidate policies of action here, 

given that they are of equal objective value. Therefore, I suggest that social context 
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can bias the evaluation of outcomes that fall at specific hierarchical levels, 

introducing a subjective and level-dependent bias in people’s preferences for 

pursuing high- or low-level outcomes. 

4.4 General Discussion 

In this chapter, I aimed to investigate whether people are biased in how they 

estimate the value of outcomes at specific hierarchical. I started with the hypothesis 

that it would be rational to bias evaluation in favour of higher-level outcomes given 

that these outcomes are necessarily further away in time and are therefore subject to 

more severe temporal discounting. However, in experiment 4-1, I found no evidence 

for such a bias. There was no indication of even a slight shift in favour of either high 

or low-level outcomes, suggesting that there is no hierarchical level-dependent bias 

in how humans evaluate outcomes. In two follow-up experiments, I investigated 

whether such a bias, if not present in a vacuum, could be induced by social context. 

High-level outcomes of the type identified here (i.e., those that are high in magnitude 

but far away in time) tend to require group action, and so I hypothesised that 

introducing social cues to attend to outcomes at specific levels might produce a 

preference for those outcomes. Consistent with this hypothesis, I found that minimal 

social cues were sufficient to produce a preference for outcomes at either of the two 

hierarchical levels included in the task. Taken together, these results suggest that 

although people hold no intrinsic, general bias to prefer to pursue high-level 

outcomes, such a bias can be produced by social context. 

 Is it sub-optimal to hold no general bias to value high-level outcomes more 

highly than low-level outcomes? Answering this question depends on our definition 

of optimal. We can define the optimal course of action as the one that would 

maximise expected long-run sum of reward. However, this long-run sum is 

complicated by temporal discounting (Odum, 2011), which will discount the value of 

a reward as it moves further away in time. The complication arises due to the fact 

that higher level outcomes will necessarily be further away in time, and so they will 

always be subject to more severe temporal discounting (than would a lower-level 

reward). This may well be a reasonable imbalance: higher-level outcomes require 

lengthier spans of action to achieve them, which requires a larger commitment and is 
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associated with a lesser certainty of success. However, for some high-level 

outcomes that are very large in magnitude, this imbalance become more a barrier to 

normative action than a reasonable conservatism around making lengthy and 

uncertain commitments. Consider climate change, or one’s personal health. 

Outcomes under both examples are far away in time but potentially immense in 

magnitude (see also Pascal’s wager; Connor, 2007). Is it reasonable to devalue the 

destruction of the planet’s ecosystems or the degradation of our own health and 

wellbeing to zero purely because these outcomes are distant, and we have no 

counteracting bias to allow an adaptive pursuit of the high-level outcomes that 

matter? This is an open and philosophical question, but it is one that is important to 

ask in light of my finding that there appears to be no subjective bias to value high-

level outcomes more highly.  

Rather than finding a general bias to value high-level outcomes more highly 

than low-level outcomes, I found that I was able to influence preferences by 

introducing social cues to attend to specific outcomes at specific hierarchical levels. 

This is a distinctly different bias to the one I searched for in experiment 4-1 – I 

searched for a general bias to prefer to pursue all outcomes that occupy specific 

hierarchical levels, but what I found in experiments 4-2 and 4-3 was that preference 

for one outcome or another was influenced by social cues. Note that this is not a 

level-dependent bias per se, but a bias to pursue a specific outcome that does itself 

occupy a specific hierarchical level, and a bias of this sort is in line with the social 

reinforcement learning literature in which social influences on choice are best 

captured by biases in how value is computed (Najar et al., 2020). Although the bias 

here was not itself purely hierarchical, social cues could interact with a hierarchical 

organisation of behaviour in important ways. 

There are two reasons that might underpin a social cue to attend to a specific 

outcome: (1) a peer/group might be sharing their preference (e.g., “You should eat 

the burger because it tastes good.”); or (2) a peer/group might be sharing a common 

goal (e.g., “You should not eat the burger because eating meat contributes to climate 

change.”). These two cues differ in the hierarchical level on which they operate: the 

former is a lower-level cue, as it provides information that bears on a single choice, 

whereas the latter is a higher-level cue, as it encourages the individual to act in line 
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with a shared policy of action towards some shared high-level goal. Future research 

could investigate whether and how these distinct cues of shared preferences or 

common goals contribute to decisions between actions directed at high- and low-

level actions to elaborate further on how social context interacts with hierarchy. 

Sharing a common goal makes a connection between the way any individual 

person organises their behaviour and the organisation of a group of people. 

Individual people organise their behaviour hierarchically, and at sufficiently high 

levels a natural progression of this hierarchical organisation is to move beyond the 

action of the individual alone and towards a grouping together of the actions of 

multiple people. This provides a natural way for social cues to be integrated with 

hierarchically organised behaviour; a cue that one person is working towards a goal 

that requires collaboration offers another person the possibility to collaborate with 

them towards that goal. Social influences on choice therefore describe a 

straightforward extension of hierarchically organised behaviour to higher-level 

outcomes that require collaboration. 

The social context dependent bias observed here goes some way to resolving 

the problems that occur when temporal discounting for high-level outcomes reduces 

their effective value. However, the mechanism by which this social bias operates 

remains unclear, and I can provide no precise account of how the bias operates. I 

speculate that the observed bias may be similar in function to the value shaping 

algorithm put forward by Najar et al. (2020), which adjusts the value function held by 

an individual according to social information. As an extension of this, I proposed two 

possible methods by which a subjective bias in the evaluation of outcomes at 

different hierarchical levels could be implemented: (1) first, I suggested that temporal 

discounting could be eased for higher-level outcomes allowing their value to persist 

over time; and (2) second, I suggested that a global boost in value could be applied 

to progressively higher-level outcomes (see Figure 4-1 – Two possible 

implementations for a subjective bias in the evaluation of outcomes at specific 

hierarchical levels: (A) a global boost in value (implemented here by 𝜂) could be 

applied to outcomes at specific hierarchical levels, even though both outcomes share 

a common discounting function; and (B) different temporal discounting rates 

(implemented here by 𝜃) could be applied for outcomes at different hierarchical 
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levels, even though the outcomes share a common current value. Other parameters 

are as follows: 𝑄(𝑠, 𝑎) Q value associated with the state action pair (s, a); 𝛼 – 

learning rate; 𝛾 – temporal discounting rate; 𝑟 – reward.). The former suggestion 

would, I argue, have been the better description of any general preference for high-

level outcomes given that the rationale for this preference would be to counteract the 

effect of temporal discounting for necessarily distant outcomes. However, the latter 

of these two suggestions aligns better with value shaping. It is intuitive for a social 

cue to act towards a particular outcome by boosting the value of that outcome as 

means of demonstrating the social approval tied to it. For example, celebrity 

endorsement of a product boosts the value of that product now, and it does not 

merely diminish the rate at which the product loses its value with time. I cannot 

conclusively disentangle these two possibilities, however, as each possibility offers 

an equally good description of my data. Future experiments could resolve this by 

varying the time at which equally valuable outcomes that occupy distinct hierarchical 

levels are delivered. 

To conclude, I found no general preference to pursue high-level over low-level 

outcomes. I argue that this can lead to sub-optimal behaviour for particularly high-

level and particularly valuable outcomes that suffer a decay in their value which 

makes motivating action in their pursuit difficult. However, this sub-optimal behaviour 

is resolved by social context, which can prompt a bias to pursue specific outcomes. I 

suggest that this social context dependent bias can be interpreted as a natural 

extension of hierarchically organised behaviour to a level above the action of any 

individual and into the joint action of a group. A complete understanding of how 

exactly this bias functions and how it interacts with hierarchically organised 

behaviour is important, as many of the most pressing real-world problems fall into 

the category of those outcomes discussed here. For two examples, the outcomes 

involved in climate change and in personal health are distant in time and require 

lengthy policies of action to fulfil them. Understanding how people counteract the 

influence of temporal discounting on these outcomes given their high-level nature is 

an important component of understanding adaptive human behaviour in the real 

world. 
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Chapter 5  
General Discussion



 147 

5.1 Summary 

This thesis aimed to investigate how a hierarchical organisation of human action 

might influence how people decide to act. The hierarchical nature of human action is 

well evidenced (Barto, Konidaris, & Vigorito, 2014; Botvinick, 2008; Conway & 

Christiansen, 2001; Diedrichsen & Kriegeskorte, 2017; Koechlin & Summerfield, 

2007; Lashley, 1951; Rhodes et al., 2004a; Sakai et al., 2003). Most descriptions of 

this hierarchical structure appeal to a sequencing of lower-level actions to produce 

higher-level routines of behaviour (Lashley, 1951; Sakai et al., 2003; Sutton et al., 

1999a; Yokoi & Diedrichsen, 2019), though there is also evidence for an abstraction 

over sequences such that the relations between sequence elements are represented 

independently of the elements themselves (Kornysheva et al., 2019; Shima et al., 

2007). I unified these descriptions of hierarchical organisation to propose a 

normative theoretical framework which I could use to investigate whether and how 

such an organisation would influence decisions between candidate actions. The 

central interest here was in conflict between hierarchical levels. How do people 

decide between courses of action that lead to low-level rewards and those that lead 

to high-level rewards, and how do people evaluate courses of action that accept 

losses at low levels towards pursuing high-level outcomes? To answer these 

questions, I started by searching for evidence for the normative theoretical 

framework proposed to verify that this was a useful lens for investigating behaviour. 

Having done so, I then aimed to investigate how actions at different hierarchical 

levels are evaluated by asking two questions. First, I asked whether and how 

perceived capability to carry out an action influenced willingness to commit to that 

action in a way that was influenced by its hierarchical level. Second, I asked whether 

people hold any subjective bias to value higher- or lower-level outcomes more highly 

due to their hierarchical level alone. By asking these questions, I aimed to produce a 

complete view on the way in which the hierarchical level of a course of action 

changes how people estimate its value. 

 In Chapter 2, I developed a novel method of testing for latent hierarchical 

structure from low-level action alone and found that a normative framework derived 

by combining insights from sequential motor control with hierarchical RL provided the 

best fit to human behaviour. The task centred on testing for an ability to generalise 
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learned structure to produce completely novel sequences of action in a non-

Markovian decision space. I demonstrated that this ability to produce novel 

sequences of action without practice was captured only by a model which included 

hierarchically organised action, abstract representations of the relations between 

sequence elements, abstraction of learning about these abstract representations 

over distinct states, and a preference to explore at high hierarchical levels. Further, 

the full span of behaviour observed over the entire task was best captured by a 

transition from a flat (i.e., non-hierarchical) system of behavioural control to this more 

sophisticated hierarchical model. These findings therefore support the theoretical 

framework introduced by combining the well formalised hierarchical structure 

described by hierarchical RL (Botvinick, Niv, et al., 2009; Sutton et al., 1999b) with 

insights from the study of sequential motor control (Kornysheva et al., 2019; Shima 

et al., 2007), and they evidence an impressive ability to generalise learned structure 

to produce novel behavioural routines in novel settings. These findings also highlight 

an asymmetry in exploration strategies over hierarchical levels that is relevant for my 

exploration of how hierarchical level influences choice between actions: exploring at 

high-levels may be more likely to lead to useful discovery, where exploring at low-

levels may be redundant. 

 In Chapter 3, I extended self-efficacy theory (Bandura, 1974, 1977, 1984), 

which has classically concerned itself with flat, isolated behaviours, to hierarchically 

organised action. Over two experiments, I demonstrated that the length of a course 

of action (as a proxy for hierarchical level) influenced choice by distorting self-

efficacy judgments. There were two components to this association between length 

and self-efficacy. First, as the length of a course of action increases, it prescribes 

more low-level actions, and this increase in the number of low-level actions that must 

be performed decreases the likelihood of successfully performing all actions involved 

without a single failure. I found that people are sensitive to this decrease in likelihood 

of success with increased length. Second, as the length of a course of action 

increases, it requires that more individual low-level decisions adhere to its 

prescriptions. This restriction rules out the possibility of acting on changes in the 

environment should they conflict with the original course of action. This limit placed 

on an increasing number of future decisions was aversive, and this aversion was 

sufficient to prompt a deviation in behaviour away from the optimal solution to the 
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task used here – participants were less likely to commit to lengthier courses of action 

in non-stationary environments than suggested by a normative maximisation of 

value. In sum, I found in this chapter that the hierarchical level of an action 

influences perceptions of self-efficacy in ways that dissuade commitment to it. 

 In Chapter 4, I investigated whether people are biased in how they estimate 

the value of outcomes that occupy high vs low hierarchical levels. The rationale for 

such a bias is that temporal discounting (Odum, 2011), which discounts the value of 

outcomes that are further away in time, will bias against the pursuit of high-level 

outcomes given that higher-level outcomes are necessarily further away in time than 

lower-level outcomes. Therefore, without any counteracting force to inflate the value 

of higher-level outcomes, they may become infeasible to pursue with any 

consistency. I used a novel delivery task where participants would choose between 

two policies of action that were of equal objective value but earned an uneven 

distribution of rewards over hierarchical levels – one earned primarily low-level 

reward, and the other high-level reward. No evidence was found to support the 

presence of any general bias to pursue either high- or low-level outcomes. However, 

by including minimal social cues to attend to specific outcomes, such biases could 

be manufactured. It seems therefore that there is no force to counteract the effect of 

temporal discounting at high hierarchical levels, but that social context can go some 

way to boosting the subjective value of specific outcomes at specific levels. It 

remains to be seen whether this is specifically an interaction between social context 

and hierarchy, but these findings open the door to research in this area. 

 In summary, the theoretical framework presented in the introduction of this 

thesis has proven to provide accurate accounts of human action and has proven 

useful in guiding investigations of the influence of hierarchical organisation on choice 

between actions. I have presented novel behavioural methods for empirical research 

into latent hierarchical structure, and I have used these methods to explore the 

intricacies of the relationship between how we organise our behaviour and how we 

decide between them. I have found that we prefer to explore at high hierarchical 

levels, that we are biased against high-level courses of action because they are 

difficult to perform and they require that we tie the hands of our future selves, and 

that while we are not generally biased in how we estimate the value of outcomes at 



 150 

particular hierarchical levels, our social environment can prompt a subjective bias in 

what we deem most valuable. These findings paint a more complete picture of how 

we decide how to behave given how we organise our own behaviour. 

5.2 Theoretical Implications 

5.2.1 Implications for SMC 

Previous research into sequential motor control has focussed on either a progressive 

process of chunking actions and sequencing chunks (and so on) (Lashley, 1951; 

Yokoi & Diedrichsen, 2019), or on abstraction over sequences to extract the 

relational structure between sequence elements (Kornysheva et al., 2019; Shima et 

al., 2007). I here presented evidence for a unification of these two distinct processes 

into a single system of behavioural control. These two processes together provide a 

powerful conjunctive coding of action. Such a code was put forward by Kornysheva 

et al. (2019) to explain the effector-independent and abstract representation of 

ordinal position they observed in MEG recordings of the human brain during a 

sequence production task. Abstract representations of the relations between 

sequence elements (such as their order, e.g., (1st, 2nd, 3rd)) can be combined with 

representations of specific actions (e.g., turn, push, and pull) to establish specific 

sequences of those actions that adhere to the represented structure (e.g., (push, 

turn, pull)). My findings suggest that this same process can be applied to higher-level 

routines which sequence together not primitive actions, but lower-level sequences of 

action. This combination of sequencing to produce progressively higher-level 

representations of behavioural routines and abstraction to abstract away the 

relations between sequence elements independent of the content of that sequence 

provides a powerful, flexible, and efficient code for action. This organisation confirms 

Lashley's (1951) claim that there must be a hierarchical structure and syntax for all 

movement just as there is a hierarchical structure and syntax for language. It was 

unclear from these previous findings (Kornysheva et al., 2019; Yokoi & Diedrichsen, 

2019) whether and how sequencing of progressively higher-level representations of 

action and abstraction over sequences of individual actions were integrated in the 

human brain. I resolve this question here by presenting evidence for a more 
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complete view of how human action is organised that integrates both processes 

under a single framework.  

5.2.2 Implications for Reinforcement Learning 

Implications of the research presented here for RL can be divided into those that 

bear on computational RL as the study of ever-more capable RL algorithms, and 

those that bear on the intersection between RL and neuroscience. 

5.2.2.1 Computational Reinforcement Learning 

To solve the scaling problem, which describes the difficulty flat RL methods have 

with navigating large state an action spaces, computational RL turned to hierarchy. 

The most popular implementations of hierarchical RL (see the options framework, 

Sutton et al., 1999a) make use of temporal abstraction to group together sequences 

of related actions to form progressively higher-level routines of action. This 

sequencing of lower-level parts to form higher-level behaviours captures only one of 

the two architectural processes I identified as necessary for immediate acquisition of 

novel behaviours. Abstraction over sequences, so that the relations between 

sequence elements are represented independently of the motor content, was also 

necessary. The inclusion of this process when paired with abstraction of learning 

over distinct states provided a powerful scheme for learning what to do quickly in 

novel environments by making use of prior structural knowledge. Computational RL 

might usefully consider how this form of abstraction might be best implemented and 

integrated with state abstraction, which is already well established (Abel, 2019; 

Andre & Russell, 2002; Barto & Mahadevan, 2003). Doing so could lead to advances 

in the adaptability of hierarchical RL methods to changes in their environment. 

 It remains to be seen quite how hierarchies of behaviour emerge from 

experience. The issue of discovering useful high-level routines of behaviour is 

captured in computational RL by the option discovery problem (Machado et al., 

2017; Stolle & Precup, 2002; Sutton et al., 1999b). Many algorithms have been 

proposed for discovering useful options, and the findings presented in chapter 2 

support those that include an intuitive transition from a flat system of behavioural 

control dependent on memory to a hierarchical system. To establish a hierarchical 

organisation of the sort put forward in this thesis, an agent must also discover which 
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relations between sequence elements are worth representing, which hierarchical 

levels are worth exploring, and which states are similar enough such that abstracting 

learning between them is useful. For adaptive responses to changes in the 

environment, I found that all these components were necessary, and so to take 

computational advantage of the immediate acquisition of novel behaviours observed 

here, computational RL must account for the discovery of the information required by 

these components. 

 A final implication for computational RL involves the focus of this thesis on the 

influence exerted by the way a system organises its actions on the way it decides 

between them. Several such influences have been discussed here, and the question 

for computational RL is whether it would be advantageous to consider implementing 

these biases in normative models of action. Commitment to an ongoing high-level 

policy of action may result in losses when faced with unexpected and highly valuable 

rewards that require off-policy actions to attain them. Therefore, in uncertain and 

variable environments, it may be optimal to apply a penalty to high-level (and 

therefore lengthy) courses of action (as observed in human behaviour in chapter 3). 

Similarly, it may be optimal to apply a discounting factor to counteract the effect of 

temporal discounting applied at very high hierarchical levels (as discussed in chapter 

4) if successful execution of the high-level policies involved is very likely. Whether or 

not such biases should be included is an open question, and it is one that is heavily 

influenced by how we define optimal. However, these hierarchical biases in 

estimations of value may be important for maximising expected sums of reward over 

all levels of the behavioural hierarchy, rather than being biased to maximise low-level 

reward alone. 

5.2.2.2 RL and the Brain 

It is well established that the human brain makes use of RL-like systems to decide 

how to act (Niv, 2009). The observation that the scaling problem must therefore 

pertain in neuroscience as it does in computational RL led to a search for evidence 

supporting the use of hierarchical RL-like systems in the brain (Botvinick, Niv, et al., 

2009). This search was successful, with evidence being found supporting 

hierarchically organised prediction errors (Diuk, Tsai, et al., 2013; Ribas-Fernandes 

et al., 2011). This thesis provides behavioural evidence in further support of 
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hierarchical RL-like systems being used to control human action. I also extend the 

typical hierarchical RL frameworks used to investigate human behaviour by 

integrating findings from motor control research. This provided more accurate 

descriptions of human behaviour, and this success argues for further development 

and investigation of the normative framework put forward. Hierarchy and abstraction 

are centrally important for how people organise behaviour and how people decide 

how to act, and hierarchical RL provides a formal lens through which this can be 

better understood. 

 Integrating hierarchical RL with the study of sequential motor control brings to 

light a dual process of establishing hierarchies by breaking down goals and building 

up sequences. In Chapter 1, I found support for a hierarchical organisation of human 

action that brought together insights from hierarchical RL, which describes a process 

of breaking down goals to progressively lower-level sub-goals, and the study of 

sequential motor control, which describes a process of building up sequences from 

oft-repeated chunks of action. This may be a relevant insight for how the human 

brain solves the option-discovery problem and how it learns useful high-level 

routines of action. As explained by sequential motor control, the human brain might 

learn to chunk together individual actions that are frequently repeated, and to 

sequence together chunks in a similar fashion, building up progressively higher-level 

representations of sequential action. This might also explain how relational 

representations are discovered – frequent alternation between actions within multiple 

distinct sequences may well be recognised and alternation as a relational structure 

thus extracted. Hierarchical RL describes a second process of breaking down goals 

into progressively lower-level sub-goals with progressively lower-level routines of 

action aiming to fulfil them. The evidence presented here in favour of a model of 

behavioural control derived by integrating SMC with HRL lends credibility to the idea 

that these dual processes may work in collaboration to discover and establish 

hierarchies of action. Indeed, such a scheme would align well with the long-held idea 

that there is a movement from high-level and abstract intention to low-level specific 

action along the rostro-caudal axis of the frontal cortex in the human brain (Badre & 

D’Esposito, 2009; Koechlin et al., 2003; Koechlin & Summerfield, 2007). 
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5.2.3 Implications for the Study of Decision Making 

Is the way in which the human brain organises behaviour important for how it 

decides how to behave? Answering this question was a central aim of this thesis, 

and the empirical evidence presented converges on the idea that yes, the way in 

which candidate actions are organised can influence decisions between them: in 

Chapter 2, I demonstrated that people prefer to explore actions at specific 

hierarchical levels; in Chapter 3, I demonstrated that the hierarchical level of a given 

course of action influences people’s willingness to commit to it; and in Chapter 4, I 

demonstrated that social context could bias decisions between actions in favour of 

outcomes at specific hierarchical levels. The hierarchical organisation used by the 

human brain clearly affects how the human brain decides what to do, and I will now 

discuss how research into the brain’s decision-making processes can and should 

take this into account. 

The trade-off between exploration and exploitation is central to all decisions of 

how to act (Berger-Tal, Nathan, Meron, & Saltz, 2014; Kayser, Mitchell, Weinstein, & 

Frank, 2015; Macready & Wolpert, 1998; Mehlhorn et al., 2015). Is it better to 

explore new courses of action in search of a new optimum, or is it better to exploit 

learned information by opting for a course of action known to be rewarding? Most 

solutions to this trade-off centre on establishing at what point during learning one 

should transition from a primarily explorative strategy to a primarily exploitative one. 

For a simple example, in RL one can set a small probability of ignoring all learned 

information and selecting randomly between all available actions, and this small 

probability can decay with time to indicate a lesser need for exploration with more 

experience (this is the epsilon-greedy algorithm). The hierarchical perspective taken 

in this thesis has highlighted a new feature of this trade-off, which is a level-

dependency in how it is managed. To accurately describe human behaviour, I found 

that a preference for high-level exploration was necessary. This could also be a 

more general level-appropriate mode of exploration, where the brain chooses to 

explore at a level that somehow matches the environment, but the central insight is 

the same – when deciding whether to explore or exploit, not all actions are equal. 

This is most intuitive for very low-level behaviours; there is no use in exploring new 

methods of reaching for a handle, such as extending the arm behind one’s back. 
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Therefore, the hierarchical organisation used by the human brain to structure 

behaviour can go some way to simplifying its decision between exploring new 

courses of action and exploiting those it knows to be rewarding. 

Self-efficacy theory (Bandura, 1977) has a long history and a strong body of 

research supporting the interactions it describes between perceived capability and 

choice between actions (DiClemente et al., 1995; Maddux & Stanley, 1986; 

Weinberg, Gould, & Jackson, 2019), though this has not been without debate 

(Eastman & Marzillier, 1984; Kirsch, 1995; D. M. Williams, 2010). Throughout its 

history, however, self-efficacy has described actions as isolated, flat behaviours that 

can all be equivalently compared with respect to one’s own perceived capability to 

carry them out. However, here I demonstrated that this is not the case: higher-level 

actions are more difficult to perform because they describe lengthier sequences of 

action which introduces more opportunity for failure. This insight was captured by 

coping self-efficacy (Chesney et al., 2006) which was an extension of self-efficacy to 

probe individuals for how well they expected they would be able to maintain 

adherence to a given policy of sustained action. Although this is a hierarchical idea, 

hierarchy was only ever implicit in the underlying theory. The results presented here 

suggest that a wider revision of self-efficacy theory and its applications is necessary 

to ensure that wherever measures of self-efficacy are taken, they are done so in full 

knowledge of the relative hierarchical levels of the actions under consideration. 

The length of higher-level courses of action had a second effect on behaviour 

– the requirement that future decisions adhere to a commitment to a high-level 

course of action, and the restrictions placed on future choices to fulfil this 

requirement, was aversive. The rationale put forward here to explain this effect is 

that lengthier restrictions placed by a given high-level policy on low-level choices 

make it more likely that unexpected and desirable off-policy options are encountered, 

and in anticipation of this desire to deviate from the high-level policy at some point in 

the future, people become less likely to commit to the policy in the first place. By 

contrast with the previous discussion on self-efficacy which captures the mechanical 

difficulty of executing a sequence of actions, this effect captures the cognitive 

difficulty of consistent self-restraint. Indeed, cognitive effort has been implicated in 

the maintenance of cognitive control during goal pursuit (Dayan, 2012; Kurzban, 
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Duckworth, Kable, & Myers, 2013; Shenhav, Botvinick, & Cohen, 2013; Westbrook, 

Kester, & Braver, 2013), and cognitive effort discounting (that is, a reduction in the 

subjective value of an outcome based on the cognitive costs borne to attain it) has 

been observed in human decision making (Botvinick, Huffstetler, & McGuire, 2009; 

Magno, Foxe, Molholm, Robertson, & Garavan, 2006; Shenhav et al., 2013). These 

findings and the general framework of cognitive control align with the results 

presented in this thesis. The prospect of rejecting all future unexpected and 

desirable off-policy options may represent too large a cognitive cost and thus the 

value of the high-level policy itself may be discounted by the cognitive effort required 

to maintain it. Indeed, cognitive control and hierarchy go hand-in-hand – a 

hierarchical organisation of behaviour requires strict control to adhere to (or else 

change) all levels of the hierarchy that bear on low-level decisions. The restrictions 

placed by progressively higher-level policies on choice and the effect these 

restrictions have on behaviour therefore highlight the need to consider hierarchy 

when investigating cognitive control (and vice versa). 

Temporal discounting reduces the subjective value of outcomes that are 

further away in time (Green & Myerson, 2004; Green, Myerson, & Macaux, 2005; 

Green, Myerson, & McFadden, 1997; Odum, 2011), and given that higher-level 

outcomes are necessarily further away in time, temporal discounting establishes a 

bias to prefer to pursue lower-level outcomes. In this thesis, I investigated whether 

any counteracting force was used by the human brain to limit the strength of this 

bias. I found no evidence in support of any general boost in subjective value for 

higher-level outcomes (which would counteract the effect of temporal discounting), 

which indicates that temporal discounting may indeed bias the human brain to prefer 

lower-level outcomes. However, it may be the case that while there is no global 

boost in value for higher-level outcomes, the rate of temporal discounting applied to 

a given outcome depends upon its hierarchical level and that the timescales used in 

the experiments presented here were too small to detect any meaningful difference 

in temporal discounting rates. Whether or not there is any mechanism used to 

balance the asymmetrical effects of temporal discounting over the behavioural 

hierarchy, it is clear that temporal discounting and hierarchical organisation work 

together to bias how we decide between candidate actions. If there is conflict 

between high and low hierarchical levels, temporal discounting will exert a bias in 
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favour of the low level. Understanding whether this is indeed how hierarchy and 

temporal discounting interact and whether any balancing of the interactions involved 

is performed is important for a complete view of the effect time has on our decisions. 

Social decision-making is a complex field of research that describes many 

interacting processes (for a review, see Rilling & Sanfey, 2011). In this thesis, I 

presented evidence for an effect of social context on computations of value, where 

social cues to attend to specific outcomes biased subjective value in their favour. 

This aligns with a large body of research describing social biases to value some 

outcomes over others (see Díaz-Gutiérrez, Alguacil, & Ruz, 2017). However, the 

hierarchical approach taken in this thesis offers a novel perspective on these biases. 

If we consider the full behavioural hierarchy followed by any individual person, there 

are limits on the highest-level goals they may feasibly work towards alone. As a 

result, a sensible extension of this hierarchy is to include, at levels above one’s own 

highest-level behaviours, an abstraction over the behaviours of other people. 

Hierarchies could then be assembled over groups of people towards a common goal, 

which resolves the issue of some high-level goals being unattainable for any one 

person. Note that this social hierarchy is distinct from social hierarchies as typically 

studied (e.g., Santamaría-García, Pannunzi, Ayneto, Deco, & Sebastián-Gallés, 

2014); this is not a hierarchy of chains of command and superior/inferior individuals, 

but more simply a hierarchy of behaviours abstracted over multiple people. This 

mode of social hierarchical behaviour can explain the results presented in this thesis; 

if I receive a cue that other people are willing to work towards a common goal, then 

this opens the door for me to collaborate with them. However, it remains to be seen 

whether the human brain does organise social action in this way, but this is one 

framework for considering how the hierarchically organised behaviour of an 

individual could be scaled up to meet the demands of behaving within a group. 

In sum, there are many diverse influences of hierarchical organisation on 

decisions between actions. This is with good reason – a sensitivity to the way in 

which candidate actions will be implemented and carried out is very likely to be 

useful in deciding whether to commit to them. Therefore, in answer to the question 

posed at the outset of this thesis (does the hierarchical organisation of human action 

influence how people decide between candidate actions?), we may answer: yes, the 
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hierarchical organisation of human behaviour does influence decisions between 

candidate actions, and the ways in which conflict between hierarchical levels are 

resolved are many and they are diverse. The degree to which a given hierarchical 

level is promising for exploration, the length of a given course of action (which 

correlates with its hierarchical level), the number of decisions over which choice is 

restricted, the distance of an outcome in time (which also correlates with its 

hierarchical level), and the social context of an outcome all contribute to both how 

the value of an outcome and its associated policy of action are computed and the 

resolution of any conflict between different outcomes. 

5.3 Practical Implications 

5.3.1 Experimental Implications 

If correct, the claim made here that all human action is hierarchically organised has 

an important implication for experimental design. When measuring behaviour, we 

must acknowledge that no individual action is ever truly isolated. Our best attempts 

at isolating behaviour will fail given that all actions performed within an experiment 

will be made in adherence to a higher-level policy that controls participating in the 

experiment in the first place. We as neuroscientists must therefore be mindful of the 

hierarchy of behaviour that sit above the behaviours we intend to measure, and we 

should consider how these high-level courses of action might influence the lower-

level behaviours of interest. In practice, this means both accounting for high-level 

policies that may be held external to the experiment and which might influence the 

behaviours we intend to measure, and exploring how the behaviours required within 

an experiment are organised and what this means for how we take our 

measurements. Failure to treat hierarchy appropriately here could well lead to poor 

behavioural measures, misinterpreted results, and flawed frameworks of 

investigation. 

5.3.2 Real-World Applications 

The findings presented in this thesis have clear application to real-world intervention 

design. The hierarchical focus taken here translates particularly well into a 

description of how best to design interventions that aim to aid in the long-term 
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maintenance of high-level policies. Existing frameworks for behaviour change (such 

as COM-B and the behaviour change wheel, Michie, van Stralen, & West, 2011) 

detail how various aspects of cognition (e.g., capability, motivation, emotion etc.) can 

be integrated to characterise behaviours and interventions and highlight useful areas 

for intervention. While such frameworks have proven successful (Michie & West, 

2013), I here present a formal approach to explaining the ways in which we evaluate 

high-level behaviour and the ways in which we could therefore intervene to 

encourage engagement with these high-level behaviours. For example, my finding 

that the length of a high-level policy of action is a barrier to commitment in two 

distinct ways leads to the conclusion that simply asking for shorter spans of 

commitment should increase willingness to commit. For another example, my finding 

that minimal social cues can boost the subjective value of high-level outcomes leads 

to the conclusion that establishing a social context to encourage maintenance of a 

high-level policy will improve adherence to it. These conclusions are not necessarily 

novel, though the hierarchical perspective taken here does offer a deeper and more 

complete understanding of the algorithms through which they operate. Further 

investigations of hierarchically organised behaviour may reveal other important 

elements of intervention design to aid in many real-world applications. 

5.4 Limitations & Future Directions 

5.4.1 Methodological Considerations 

This thesis focussed exclusively on an analysis of human behaviour to uncover and 

understand the algorithms that control it. No neuroimaging methods were used, and 

no claims were made regarding the neural implementations of the hierarchical 

organisation and effects put forward. This was a deliberate decision – I take the view 

that careful experimental decomposition of behaviour is best suited for 

understanding cognitive processes and their component algorithms (Krakauer, 

Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017; Niv, 2021). Detailed analysis 

of tasks and the behaviour they elicit has led to much success in identifying the 

latent cognitive processes that produce behaviour: in low-level perception, scientists 

correctly inferred from psychophysical experiments that colour vision is implemented 

by three types of retinal cones and were even able to estimate the cones’ 
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wavelength sensitivity (Stiles, 1959); and in higher-level cognition, the role of 

attentional signals and the information they feed back to low-level perceptual 

processing areas was correctly predicted by purely behavioural paradigms (Ahissar 

& Hochstein, 1993; Ahissar & Hochstein, 1997; Hochstein & Ahissar, 2002). By 

contrast, inferring processes from their neural processors alone is difficult, if at all 

possible (Krakauer et al., 2017). For example, consider the Caenorhabditis elegans, 

whose behaviour we cannot fully predict despite knowing with precise detail the full 

circuitry of its 302 neuron nervous system (Bargmann & Marder, 2013). To quote 

Barlow (2013), “a wing would be a most mystifying structure if one did not know that 

birds flew”. 

The behavioural focus taken here does not imply that application of 

neuroscientific techniques would not be a fruitful future direction for the research 

presented. The argument is that a detailed analysis of behaviour is a necessary 

prerequisite for interpretable investigations of potential implementations of the 

algorithms uncovered by behaviour (Krakauer et al., 2017; Marr, 1976). More simply, 

we need to understand the processes that produce behaviour before we can 

understand how those processes are implemented in the human brain. Consistent 

with this, a marriage of incisive behavioural experimentation and neuroscientific 

techniques have led to significant advances in neuroscience. For example, the 

influential reward prediction error hypothesis of dopamine (Schultz et al., 1997) was 

derived from a detailed understanding of reward-seeking behaviours paired with 

precise measurements of midbrain dopaminergic neurons during execution of those 

behaviours. For other examples, the spatial navigation literature is replete with 

behavioural paradigms that hint at specific spatial representations that have since 

been measured in the brain (Banino et al., 2018; Doeller, Barry, & Burgess, 2010; 

Mittelstaedt & Mittelstaedt, 1980; Moser, Kropff, & Moser, 2008). 

This thesis performs a detailed analysis of hierarchically organised behaviour 

and the interactions between such an organisation and decision-making processes, 

but I can make no claims as to the neural circuits that underlie the algorithms and 

effects described. A natural next step, therefore, would be to investigate the 

underlying circuits. One promising possibility is to extend existing research into the 

sequencing of action in motor and pre-motor areas to investigate in greater detail the 
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transition from abstract representations of behaviour to precise low-level action along 

the rostro-caudal axis of the frontal cortex, with the proposed framework in mind. 

This would mean searching for relational representations of sequences of action, 

searching for circuits that implement abstraction of learnings about these relational 

representations across distinct but related states, and searching for circuits that 

compute the value of candidate high-level actions with all relevant elements 

uncovered in this thesis taken into account. Doing so would, if successful, refine the 

framework presented here and lend further support to it as an explanation of how 

human behaviour is organised. 

5.4.2 Conceptual Considerations 

5.4.2.1 Social Influences 

In Chapter 4, I uncovered that minimal social cues were sufficient to bias choice 

between outcomes at different hierarchical levels. I have discussed this effect at 

length, though my treatment of the social component is limited. There are many 

relevant interactions that feed into social hierarchies and delving in detail into the 

social component uncovered here is beyond the scope of this thesis. My search in 

Chapter 4 was for any bias in the subjective evaluation of outcomes that occupy 

distinct hierarchical levels, and I found such a bias in this effect of social context. 

However, the effect does require further investigation to be more completely 

understood, and it is likely that social effects on hierarchical behaviour are a much 

wider topic that go far beyond the one effect measured here. Future research could 

aim to understand more completely how interactions between people allow them to 

establish hierarchies of group behaviour that go beyond the behaviour any one 

individual could perform alone. 

5.4.2.2 A Complete View on Hierarchical Decision-Making 

The treatment of hierarchical behaviour presented in this thesis establishes a 

normative framework for investigations of not only how human behaviour is 

organised, but also of what this organisation means for how decisions between 

candidate actions are made. I investigated several ways in which the organisation of 

behaviour could influence decisions between action, but my investigations are non-

exhaustive, and they do not provide a complete view on hierarchical decision-
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making. Future research could adopt and extend the framework presented here to 

investigate other influences on action selection and to provide a deeper 

understanding of how the human brain controls behaviour. I contend that all human 

action is hierarchically organised. Many established findings in psychology and 

neuroscience concerning how people decide how to act may benefit from a second 

pass with a hierarchical lens. 
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