8,394 research outputs found

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    The energy-constrained quickest path problem

    Get PDF
    This paper addresses a variant of the quickest path problem in which each arc has an additional parameter associated to it representing the energy consumed during the transmission along the arc while each node is endowed with a limited power to transmit messages. The aim of the energy-constrained quickest path problem is to obtain a quickest path whose nodes are able to support the transmission of a message of a known size. After introducing the problem and proving the main theoretical results, a polynomial algorithm is proposed to solve the problem based on computing shortest paths in a sequence of subnetworks of the original network. In the second part of the paper, the bi-objective variant of this problem is considered in which the objectives are the transmission time and the total energy used. An exact algorithm is proposed to find a complete set of efficient paths. The computational experiments carried out show the performance of both algorithms

    Dealing with residual energy when transmitting data in energy-constrained capacitated networks

    Get PDF
    This paper addresses several problems relating to the energy available after the transmission of a given amount of data in a capacitated network. The arcs have an associated parameter representing the energy consumed during the transmission along the arc and the nodes have limited power to transmit data. In the first part of the paper, we consider the problem of designing a path which maximizes the minimum of the residual energy remaining at the nodes. After formulating the problem and proving the main theoretical results, a polynomial time algorithm is proposed based on computing maxmin paths in a sequence of non-capacitated networks. In the second part of the paper, the problem of obtaining a quickest path in this context is analyzed. First, the bi-objective variant of this problem is considered in which we aim to minimize the transmission time and to maximize the minimum residual energy. An exact polynomial time algorithm is proposed to find a minimal complete set of efficient solutions which amounts to solving shortest path problems. Second, the problem of computing an energy-constrained quickest path which guarantees at least a given residual energy at the nodes is reformulated as a variant of the energy-constrained quickest path problem. The algorithms are tested on a set of benchmark problems providing the optimal solution or the Pareto front within reasonable computing times

    Non-approximability and Polylogarithmic Approximations of the Single-Sink Unsplittable and Confluent Dynamic Flow Problems

    Get PDF
    Dynamic Flows were introduced by Ford and Fulkerson in 1958 to model flows over time. They define edge capacities to be the total amount of flow that can enter an edge in one time unit. Each edge also has a length, representing the time needed to traverse it. Dynamic Flows have been used to model many problems including traffic congestion, hop-routing of packets and evacuation protocols in buildings. While the basic problem of moving the maximal amount of supplies from sources to sinks is polynomial time solvable, natural minor modifications can make it NP-hard. One such modification is that flows be confluent, i.e., all flows leaving a vertex must leave along the same edge. This corresponds to natural conditions in, e.g., evacuation planning and hop routing. We investigate the single-sink Confluent Quickest Flow problem. The input is a graph with edge capacities and lengths, sources with supplies and a sink. The problem is to find a confluent flow minimizing the time required to send supplies to the sink. Our main results include: a) Logarithmic Non-Approximability: Directed Confluent Quickest Flows cannot be approximated in polynomial time with an O(log n) approximation factor, unless P=NP. b) Polylogarithmic Bicriteria Approximations: Polynomial time (O(log^8 n), O(log^2 kappa)) bicritera approximation algorithms for the Confluent Quickest Flow problem where kappa is the number of sinks, in both directed and undirected graphs. Corresponding results are also developed for the Confluent Maximum Flow over time problem. The techniques developed also improve recent approximation algorithms for static confluent flows

    Arc Routing with Time-Dependent Travel Times and Paths

    Full text link
    Vehicle routing algorithms usually reformulate the road network into a complete graph in which each arc represents the shortest path between two locations. Studies on time-dependent routing followed this model and therefore defined the speed functions on the complete graph. We argue that this model is often inadequate, in particular for arc routing problems involving services on edges of a road network. To fill this gap, we formally define the time-dependent capacitated arc routing problem (TDCARP), with travel and service speed functions given directly at the network level. Under these assumptions, the quickest path between locations can change over time, leading to a complex problem that challenges the capabilities of current solution methods. We introduce effective algorithms for preprocessing quickest paths in a closed form, efficient data structures for travel time queries during routing optimization, as well as heuristic and exact solution approaches for the TDCARP. Our heuristic uses the hybrid genetic search principle with tailored solution-decoding algorithms and lower bounds for filtering moves. Our branch-and-price algorithm exploits dedicated pricing routines, heuristic dominance rules and completion bounds to find optimal solutions for problem counting up to 75 services. Based on these algorithms, we measure the benefits of time-dependent routing optimization for different levels of travel-speed data accuracy

    Quickest Paths for Different Network Router Mechanisms

    Full text link

    Safety Aware Vehicle Routing Algorithm, A Weighted Sum Approach

    Get PDF
    Driving is an essential part of work life for many people. Although driving can be enjoyable and pleasant, it can also be stressful and dangerous. Many people around the world are killed or seriously injured while driving. According to the World Health Organization (WHO), about 1.25 million people die each year as a result of road traffic crashes. Road traffic injuries are also the leading cause of death among young people. To prevent traffic injuries, governments must address road safety issues, an endeavor that requires involvement from multiple sectors (transport, police, health, education). Effective intervention should include designing safer infrastructure and incorporating road safety features into land-use and transport planning. The aim of this research is to design an algorithm to help drivers find the safest path between two locations. Such an algorithm can be used to find the safest path for a school bus travelling between bus stops, a heavy truck carrying inflammable materials, poison gas, or explosive cargo, or any driver who wants to avoid roads with higher numbers of accidents. In these applications, a path is safe if the danger factor on either side of the path is no more than a given upper bound. Since travel time is another important consideration for all drivers, the suggested algorithm utilizes traffic data to consider travel time when searching for the safest route. The key achievements of the work presented in this thesis are summarized as follows. Defining the Safest and Quickest Path Problem (SQPP), in which the goal is to find a short and low-risk path between two locations in a road network at a given point of time. Current methods for representing road networks, travel times and safety level were investigated. Two approaches to defining road safety level were identified, and some methods in each approach were presented. An intensive review of traffic routing algorithms was conducted to identify the most well-known algorithms. An empirical study was also conducted to evaluate the performance of some routing algorithms, using metrics such as scalability and computation time. This research approaches the SQPP problem as a bi-objective Shortest Path Problem (SPP), for which the proposed Safety Aware Algorithm (SAA) aims to output one quickest and safest route. The experiments using this algorithm demonstrate its efficacy and practical applicability
    • …
    corecore